八年级数学上册 13.4课题学习最短路径问题课件2_1-5

合集下载

13.4课题学习 最短路径问题 课件(共31张PPT) 初中数学人教版八年级上册

13.4课题学习  最短路径问题   课件(共31张PPT)  初中数学人教版八年级上册
∙B A∙
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.

人教版初中数学八年级上册第十三章13.4课题学习 最短路径问题(ppt课件)

人教版初中数学八年级上册第十三章13.4课题学习 最短路径问题(ppt课件)

拓展延伸
2. 某班举行文艺晚会,桌子摆成AB,AC两行,如图13-4-27,AB桌面上 摆满了橘子,AC桌面上摆满了糖果,小明现在P处,准备先去拿橘子再 去拿糖果,然后回到P处.请你帮他设计一条行走路线,使其所走的总 路程最短.(保留作图痕迹,并简单写出作法)
拓展延伸
3. 如图,小华每天都要到李奶奶家做好事,在途中她要先到草场打
对点练习
4. 如图,AD为等腰三角形ABC底边上的高,E为AC边上一点,在AD
上求一点F,使EF+CF最小.
对点练习
5.如图,M为正方形ABCD的边CD的中点,BM=10,在对角线BD上求 作一点N,使MN+CN的值最小,并求出这个最小值.
拓展延伸
1、如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接 游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船 的最短路径.【来源:2教育
E
一只在E处的蚂蚁要爬到圆柱内侧D点处,试
画出其最短路径。
对点练习
2.(河边饮马问题)如图所示,牧马人从A地出发,到一条笔直的河边L饮
马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?
对点练习
3.点P是直线l上的一点,线段AB∥l,能使PA+PB 取得最小 值的点P的位置应满足的条件是 ( C ) A.点P为点A到直线l的垂线的垂足 B.点P为点B到直线l的垂线的垂足 C.PB=PA D.PB=AB
学习难点
确定最短距离及理论说明.
知识回顾:
思考:
(1)图①中从点A走到点B哪条路最短? (2)图②中点C与直线AB上所有的连线中哪 条线最短? 以上路径选择基于什么原理?
类型一:两点之间,线段最短——直接应用

人教版八年级数学上册《最短路径问题》课件(共15张PPT)

人教版八年级数学上册《最短路径问题》课件(共15张PPT)

联想:
如果点A、B在直线l的异侧时
A
C
l
B
分析:
B
A
A
C
l
l
C
B
思考:
能把A、B两点从直线 l 的同侧转化为异侧吗?
作法及思路分析
1.作点B关于直线 l 的对称点B′ ,连接
CB′。
B
A C
l
B′
2.由上步可知AC+CB=AC +CB′,
思考:当C在直线 l 的什么位置时AC +CB′最短?
根据前面的分析,我们认为的
人民教育出版社义务教育教科书八年级数学(上册)
第十三章 轴对称
13.4 课题学习 最短路径问题
饮马问题
如图,牧马人从马棚A牵马到河边 l 饮水,然后再到帐蓬B.问:在河边 的什么地方饮水,可使所走的路径最 短?
B B
AA l
l
分析:
B
B
A
A
l
CC
l
转化为数学问题 当点C在直线 l 的什么位置时,AC+CB的和最小?
谢谢观赏
You made my day!
我们,还在路上……
A
B
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。

人教版数学八年级上册13.4课题学习-课件

人教版数学八年级上册13.4课题学习-课件

你能证明为什么点C即为所求吗?
B′
• 证明:在L上另取一点C′,连接 AC′,BC′,B′C′,
• ∵AC′+BC′=AC′+B′C′ • 在△AB′C′中 • AC′+BC′>AB′(两边之和大于第三边) • ∴点C即为所求。
• 问题2 A和B两地在一条河的两岸,现在要 在河上造一座桥MN。桥造在何处可使从A 到B的路径最短?(假定河的两岸是平行的 直线,桥要与河垂直。)
• 根据问题1的知识,请同学们: • 1、自主探究, • 2、同学讨论, • 3、对照课本, • 找出不足,,我们通常利用 轴对称、平移等变化把已知问题转化为容 易解决的问题,从而作出最短路径的选择。
• 小结:
本节课同学们学到了哪些知识?还有哪 些困惑?
13.4课题学习 最短路径问题
复习:
• 我们以前学过哪些知识能说明线段最短?
1,两点间线段最短
2,连接线段外一点与直线上各点的所有 线段最短。
2,如何做直线外一点B关于直线的对称点?
• 1,过这个点做已知直线的垂线,与直线交 于P点。
• 2,在直线上截取CB′=CB. • 3,则B′点即为所求。
A
B
• 根据“两点之间,线段最 短”可知:连接 AB与L的交点即为所求。
那么我们如何才能把同则的两点变成异则的 两点呢?
• 如果能把点B或A移到L的另一则B′或A′处, 同时对直线上的任一点C,都保持CB=CB′, 就可以了。
• 你能利用轴对称找到符合条件的B′点吗?
B A
B A
C 点C 即为所求
A
a M
N
b
B
• 分析:可以把河岸看成两条平行线a和b,N 为直线b上一个动点,MN垂直于直线b,交 直线a于点M,这样问题可以转化为:

人教版八年级上册. 课题学习最短路径问题PPT课件

人教版八年级上册. 课题学习最短路径问题PPT课件

证明 : 连接AC ,BC ,B C
A
由轴对称性质: BC B C
C' C
B AC BC AC B C AB 同理:BC B C
┓ l AC BC AC B C
在AB C 中,
B'
由两边之和大于第三边 得:
AC B C AB 即AC BC AC BC
从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马 问题”.
你能将这个问题抽象为数学问题吗?
探究二
A B
河l
已知:直线l和同侧两点A、B
求作:直线l上一点C满足AC+BC的值最小

3.本题运 用说明 文限制 性词语 能否删 除四步 法。不 能。极 大的一 词表程 度,说 明绘画 的题材 范围较 过去有 了很大 的变化 ,删去 之后其 程度就 会减轻 ,不符 合实际 情况, 这体现 了说明 文语言 的准确 性和严 密性。

4.开篇写 湘君眺 望洞庭 ,盼望 湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。

9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。

5.以景物 衬托情 思,以 幻境刻 画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。

6.石壕吏和老妇人是诗中的主要人物 ,要立 于善于 运用想 像来刻 画他们 各自的 动作、 语言和 神态; 还要补 充一些 事实上 已经发 生却被 诗人隐 去的故 事情节 。

八年级数学人教版(上册)课件_13.4课题学习最短路径问题(共20张PPT)

八年级数学人教版(上册)课件_13.4课题学习最短路径问题(共20张PPT)

探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直
线上的一个动点,当点C 在l 的什么位置时,AC 与CB
的和最小?
追问2 你能利用轴对称的
A··B源自有关知识,找到上问中符合条
l
件的点B′吗?
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直
线上的一个动点,当点C 在l 的什么位置时,AC 与CB
八年级数学上册·人教版
第13章 轴对称
13.4 课题学习 最短路径问题
• 本节课以数学史中的一个经典问题——“将军饮 马问题”为载体开展对“最短路径问题”的课题研 究,让学生经历将实际问题抽象为数学的线段和最 小问题,再利用轴对称将线段和最小问题转化为 “两点之间,线段最短”(或“三角形两边之和大 于第三边”)问题.
B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;
探索新知
追问2 你能用自己的语言说明这个问题的意思,
并把它抽象为数学问题吗?
(3)现在的问题是怎样找出使两条线段长度之和为最
短的直线l上的点.设C 为直线上的一个动点,上
面的问题就转化为:当点C 在l 的什么位置时,
课件说明
• 学习目标: 能利用轴对称解决简单的最短路径问题,体会图形 的变化在解决最值问题中的作用,感悟转化思想.
• 学习重点: 利用轴对称将最短路径问题转化为“两点之间,线 段最短”问题.
引入新知
引言: 前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段 中,垂线段最短”等的问题,我们称它们为最短路径问 题.现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的“将军饮马问题”.

人教版八年级上册数学内文课件:13.4课题学习 最短路径问题(共13张PPT)

人教版八年级上册数学内文课件:13.4课题学习 最短路径问题(共13张PPT)

变式训练 2. 如图1-13-30-4,要在街道l旁修建一个牛奶站, 向居民区A,B提供牛奶,牛奶站应建在什么地方, 才能使A,B到它的距离之和最短?
解:如答图13-30-4, 作点A关于直线l的对称点A′, 连接A′B交直线l于点M,则点M即为所求.
典型例题
知识点3:网格中或坐标系中的最短路径问题 【例3】 如图1-13-30-5,在11×11的正方形网格 中,每个小正方形的边长都为1,网格中有一个格点 △ABC(即三角形的顶点都在格点上).在直线l上 找一点P,使得PA+PB的和最小.
第十三章 轴对称
第30课时 课题学习 最短路径问题
典型例题 知识点1:两点在直线异侧时的最短路径问题 【例1】 如图1-13-30-1,在直线l上找一点P,使得 PA+PB的和最小.
解:答图13-30-1,点P即为所求.
变式训练 1. 如图1-13-30-2,高速公路l的两侧有M,N两城 镇,要在高速公路上建一个出口P,使M,N两城镇到 P的距离之和最短.请你找出P的位置.
1.自然界没有风风雨雨,大地就不会春华秋实。2.瀑布跨过险峻陡壁时,才显得格外雄伟壮观。3.诽谤,同时造了无数的罪业,这是嫉妒;自己欢喜4.在茫茫沙漠,唯有前时进的脚步才是希望的象征。5.只会幻想而不行动的 人,永远也体会不到收获果实时的喜悦。6.我们只要每天睁开眼睛,看到自己还活着,就该庆幸自己多么的幸运7.赞叹,同时积累了同样的功德利益,这是随喜。怎么做,完全在于自己。8.盲目的上进,就像在死胡同里打转。 你浪费的人生,原本可以有更多的精彩。9.其他烦心的事,想开点,看开点,再苦再难的日子,熬着熬着也就挨过来了。10.这个世界到处充满着不公平,我们能做的不仅仅是接受,还要试着做一些反抗。11.懦弱的人只会裹 足不前,莽撞的人只能引为烧身,只有真正敢的人才能所向披靡。12.精神健康的人,总是努力地工作及爱人,只要能做到这两件事,其它的事就没有什么困难。13.命,是失败者的借口;运,是成功者的谦词。带着青春的印 记,我们这代人,慢慢的随着时间的流淌,渐渐老去。晚安!14.努力不是为了做给谁看,无论什么结果都能问心无愧;努力是因为你可以不接受命运的框定,靠自己来场漂亮的反击。15.美国人口普查局的“世界人口时钟” 显示,全世界每秒钟有1.8人死亡,一小时就是6,360人,一天就有152,640人死亡。16.当你觉得老天对你不公的时候,别急着红眼,别急着抱怨,因为这样只会削弱你的意志,消磨你的斗志,最后让你变得平庸,一事无成。 17.昨天,再值得留恋,也不会为你的留恋停留;明天,再艰辛,也不会因为你的脆弱而怜悯;优雅之人心如止水,波谰不惊,不以物喜,不以己悲。做一个优雅从容的人,只有先稳下来,静下心,学会宽容,仁爱,温和。 18.无论你正经历着什么,过得是否开心,世界不会因为你的疲惫,而停下它的脚步。那些你不能释怀的人与事,总有一天会在你念念不忘之中遗忘。无论黑夜多么漫长不堪,黎明始终会如期而至。睡一觉,愿美梦治愈你的 难过。晚安!19.凡事顺其自然,凡事不可强求。人生,错过太多,我们都在重复,所以,我们不必为自己错过的悲哀,而应该为自己拥有的而喜悦。错过了漂亮,你还拥有健康;错过了健康,你还拥有智慧;错过了智慧,你还 拥有善良;错过了财富,你还拥有安逸;错过了安逸,你还拥有自由20.人生,总有乌云密布的低沉的时刻,但也会有蓦然抬头,拨云见日的一天。而最重要的是在低潮时要忍耐得住,不要放弃对光明的追求,永远不要以为走

13.4 课题学习 最短路径问题 课件(共15张PPT)人教版初中数学八年级上册

13.4 课题学习 最短路径问题   课件(共15张PPT)人教版初中数学八年级上册

迁移应用
3.如图,点P是∠AOB内任意一点,点M和点N分别是射线OB和射线OA 上的动点,当△PMN的周长为最小时,画出点M,N的位置.
B P'
M P
O
N
A
P''
解:如图所示,点 M,N 即为所求
B
M
P
O
A N
课后延伸
1.课本P93,第15题 2.收集最短路径的其他模型
人教版八年级数学第十三章《轴对称》
课题学习—最短路径问题
情境引入
古从军行 唐·李颀
经验唤醒
如图所示,请规划从A地到B地最近的路线?为什么 这条路线最近?
A
B
AB即为最短路线,因为两点之间,线段最短
探究一
问题情境1
图形
将军从烽火台到河边饮马 在这个情境中我们 再回到营地,饮马点在什么位 分别把烽火台,营 置,可使将军所走的路径最短? 地,河流抽象成哪
种几何图形?
A. 点 B.线
A
l B
最短路径作法
直线异侧 “两定点”
连定点 得最短
A
l P
B
两点之间 线段最短
探究二
问题情境2
将军从烽火台到河边 饮马再回到营地,饮马点 在什么位置,可使将军所 走的路径最短?
图形
我们可以把情境 2抽象成怎样的几何 图形?
最短路径作法
直线同侧“两定点”
作对称 化折为直得最短
∴AM1+M1N1+BN1=AA1+A1N1+BN1 在△A1N1B中
因为A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN. ∴AM +MN+BN为最短路径.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乐鱼直播法甲直播
二 造桥选址问题
如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从 A到B的路径AMNB最短(假定河的两岸是平行的直线,桥要与河垂直)?
A
A
M
N
B
B
如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短呢?
M N B'
B AM+MN+BN长度改变了
3.把桥平移到和A相连. A
M N
AM+MN+BN长度 有没有改变呢?
B 4.把桥平移到和B相连.
●A
M N

M
N
?
●B

思维火花 我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图 形变换能帮助我们呢?
各抒己见
1.把A平移到岸边. 2.把B平移到岸边. 3.把桥平移到和A相连. 4.把桥平移到和B相连.
A

NBLeabharlann 1.把A平移到岸边. A A'
2.把B平移到岸边.
AM+MN+BN长度改变了
相关文档
最新文档