2018届云南省昆明市第一次市统测理科数学试卷及参考答案
云南省昆明市高三数学上学期第一次月考试题理(new)

云南省昆明市2018届高三数学上学期第一次月考试题 理第Ⅰ卷 选择题(共60分)一.选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( ) A .{1} B .{4}C .{1,3}D .{1,4}2。
复数=+i12( ) A. 2-i B 。
2-2i C. 1+i D. 1-i3. 函数f (x )=2x-1+1x -2的定义域为( )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)4。
命题“若x 2+y 2=0,x ,y ∈R ,则x =y =0”的逆否命题是( )A .若x ≠y ≠0,x ,y ∈R ,则x 2+y 2=0 B .若x =y ≠0,x ,y ∈R ,则x 2+y 2≠0 C .若x ≠0且y ≠0,x ,y ∈R ,则x 2+y 2≠0 D .若x ≠0或y ≠0,x ,y ∈R ,则x 2+y 2≠05.设f (x )=ln x ,0<a <b ,若p =f (错误!),q =f 错误!,r =错误!(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q6。
已知幂函数f (x )=xα的图象过点(4,2),若f (m )=3,则实数m 的值为( )A 。
错误!B .±错误!C .9D .±97。
设x∈R,则“1<x<2”是“|x-2|<1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8。
设a=0。
60.6,b=0.61.5,c=1。
50。
6,则a,b,c的大小关系是( )A.a〈b〈c B.a〈c<bC.b<a<c D.b<c〈a9。
2018年云南省第一次省统测试卷(理).docx

MW*a用的4/1 19 0 15: 00 I7:x>]2018年以附省离中毕业生如习统检测理科数学注M«>1. 水试ft分歓I Q Hl Bl! E贰算分・»■*・9牛务必川"色的妙名•宙助i£*h勺场勺•啦位・"UJlt*冷糸形冈上的冷勺迁弓.号场号・堆位号及科"•庄娩H的付条形硏•2. 回答an卷时.逡出毎小・答第后•用岳笔把樹»卡上対冈・日的杏条栋兮祿》»・如H邀劝.用“皮擦梅卜*甘•艸选涂热它存■如号•均庄事试on无效・3. 何W71UQH. 上• U/T本试总I.无败•4. 勺试储浪坊.将車试第1卷i&»Bx *大Sft 12小li・耳小115分・在包小■恰出的四个送項中・只有一从是符合H 目鼻束的・(I)已知・{厲| t ♦9 > 0 }• T ji' i; <5 i |> w T '•r. (-90) D. ( 0.5 )<2) dto/MiW位.设厂3*・:ft内灼应的点仁!人»-taC. «2*m D・(3) Z = (-2.l).若:丄A. KA. JiB. 3C V10a)已fein^y-iRX -2 ^Kx2^/ -2,t-4v-4^0KK r t AB - 6.则C・6 D. 7♦ tl) H*0C V•L"Hf囂:需}•(叫:1o9・WM«|OV"nmE(8) 已知岡=2,岡=2万,花与乔的夹角等于扌,刚AC CB^A. — 6B. ■ 4 C・ 4 D・ 6(9) 己知可、乃是关于x的方程ox + 22» = 0的实数根,若!<X2<2.设" — 46 + 3,则c的取值范刚为A・(-4.5) B. (-4,6) C. [-4.5] D. [-4.6](10) 己知正三棱柱ABCfBG的底面边长为2, P、M、N分别是三侧棱BB、、CG上的点,它们到平面的距离分别是1、2、3,正三棱柱ABC-A.B,C〔被平面PM7V 分成两个几何体,则其中以力、B、C、P、M、N为茨点的几何体的体积为 A. 2>/3 B.— C. VJ D.—2 2<H)《九章算术》是我国古代数学成就的杰出代表.足“算经十书”中最直要的一种,是当时世界上址面练有效的应用数学,它的出现标志中国古代数学形成了完整的体系. 第九章“勾股”中有如下问题:“今有勾八步,股一十五步•问勾中容圖径几何?”其童思是,“今有直角三角形,短的直角边长为8步.长的直角边长为15步,问该宜角三角形能容纳圆的直径量大是多少?”我们知逋,当關的直径帰大时,该圆为亶和三角形的内切圆.若往该宜和三角形中随机投掷一个点•则该点落在此三角形内切圆内的概率为A.竺B.兰10 4C・兰 D.丸5 20(12) 已知*, B , C是锐角MBC的三个内角,8的对边为b,若数列V, B, C走等差数列,b =2、§,面积的取值范围迢A・(2V2.3V3) B・C・[2运,3历] D. ( 273,3^3]理科敷学试卷・第3页(共8页)第II卷本卷包括必考題和选考题两部分,第13题〜第21题为必考題,每个试题考生都必须作答。
云南省昆明市2018届高三数学第一次摸底测试试题理2017110201121

云南省昆明市2018届高三数学第一次摸底测试试题理第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.x11.已知集合,集合,则()A{x0}B{x N1x5}A Bx3A.{0,1,3,4,5}B.{0,1,4,5}C.{1,4,5}D.{1,3,4,5}2.如图,正方形ABCD内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是()11A.B.C.D.42841z3.已知(其中是虚数单位),则()i i1z1zA.1 B.0 C.2D.24.设函数f(x)x1x a的图象关于直线x1对称,则a的值为()A.3 B.2 C. 1 D.-15.二项式(x x1)5展开式中的常数项为()xA.10 B.-10 C. 5 D.-56.设数列{a}的前n项和为S,若2,S,3a成等差数列,则S的值是()n n n n5A.-243 B.-242 C.-162 D.2437.执行如图所示的程序框图,若输出n的值为9,则判断框中可填入()1A.S45?B.S36? C. S45?D.S55?8.设x,y为正数,且3x4y,当3x py时,p的值为()A.B. C. D.log4log36log2log234339.一个正方体挖去一个多面体所得的几何体的三视图如图所示,其中正视图、左视图和俯视图均为边长等于2的正方形,这个几何体的表面积为()A.1643B.1645 C. 2043D.204510.已知函数f(x)sin(x)sin(x)(0),且f()0,当取最小值时,623以下命题中假命题是()A.函数f(x)的图象关于直线x对称12B.是函数的一个零点6C. 函数f(x)的图象可由g(x)3sin2x的图象向左平移个单位得到32D.函数f(x)在[0,]上是增函数1211.已知抛物线C:y24x的焦点为F,准线为l,点A l,线段AF交抛物线C于点B,若FA3FB,则AF()A.3 B.4 C.6 D.712.已知数列{a}的前n项和为S,且,S 14a2,则数列{a}中的a为a12n n n n n12()A.20480 B.49152 C. 60152 D.89150第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a(2,1),a b10,a b52,则b.x3y3014.若实数x,y满足不等式组2x y30,则x y的最大值为.x y115.已知双曲线C的中心为坐标原点,点F(2,0)是双曲线C的一个焦点,过点F作渐近线的垂线l,垂足为M,直线l交y轴于点E,若FM3ME,则双曲线C的方程为.16.体积为183的正三棱锥A BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC2:3,点E为线段BD的中点,过点E作球O的截面,则所得截面圆面积的最小值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC中,a,b,c分别是角A,B,C的对边,且a2c23ac b2,3a2b (1)求3a2b的值;(2)若b6,求ABC的面积.18. 如图,在直三棱柱中,,,点分别为ABC A B C BAC900AB AC2M,N111A1C1,AB1的中点.3(1)证明:MN//平面BB C C;11(2)若CM MN,求二面角M CN A的余弦值.19. 某市为了解本市2万名学生的汉字书写水平,在全市范围内进行了汉字听写考试,发现其成绩服从正态分布N(69,49),现从某校随机抽取了50名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.(1)估算该校50名学生成绩的平均值x(同一组中的数据用该组区间的中点值作代表);(2)求这50名学生成绩在[80,100]内的人数;(3)现从该校50名考生成绩在[80,100]的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前26名的人数记为X,求X的分布列和数学期望.参考数据:若X~N(,2),则p(X)0.6826,p(2X2)0.9544p(3X3)0.997420. 已知动点M(x,y)满足:(x1)2y2(x1)2y222.4(1)求动点 M 的轨迹 E 的方程; (2)设过点 N (1, 0) 的直线l 与曲线 E 交于 A , B 两点,点 A 关于 x 轴的对称点为C (点C与点 B 不重合),证明:直线 BC 恒过定点,并求该定点的坐标.a21. 已知函数 f (x )e x , g (x ) x 2x ,(其中 a R , e 为自然对数的底数,2e 2.71828……).(1)令 h (x )f (x )g ' (x ) ,若h (x )0对任意的 x R 恒成立,求实数 a 的值;nim(2)在(1)的条件下,设 m 为整数,且对于任意正整数 n ,( )m ,求 的最小值.nni 1请考生在 22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修 4-4:坐标系与参数方程极坐标系中,O 为极点,半径为 2的圆C 的圆心坐标为 (2, ) .6(1)求圆C 的极坐标方程;(2)设直角坐标系的原点与极点O 重合, x 轴非负关轴与极轴重合,直线l 的参数方程为1 x t2 3y t 82( 为参数),由直线 上的点向圆 引切线,求线线长的最小值.t l C23.选修 4-5:不等式选讲 已知函数 f (x )x 2 x 3 .(1)求不等式 f (x ) 3的解集; (2)若不等式 f (x )a 26a 解集非空,求实数 a 的取值范围.5昆明一中全国联考第一期参考答案参考答案(理科数学)命题、审题组教师杨昆华李文清孙思应梁云虹王在方卢碧如凹婷波吕文芬陈泳序一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C C A B B A C D C B B1.解析:集合A,1U3,,B0,1,2,3,4,5,所以A I B0,1,4,5,选B.2.解析:设正方形边长为2,则圆半径为1.此时正方形面积为224.图中黑色部分面积为2.则此点取自黑色部分的概率为2,选C.481izi3.解析:因为1i ,所以1z 2,选C.4.解析:12a1所以a 3,选A.r15511555r r r5.解析:通项T C x x C x221r 0,所以r 3,所以常,令r rr155x22数项为C5110,选B.336.解析:据题意得223a12;当n 2时,Sa,当n 1时,2S 23a,所以n n113333a S S a a a a ,即11n n n1n n1n n1222213aa a ,即3n 2,所以nn n122an1数列a是首项a ,公比q 3的等比数列,S5,所以12 n a 1q52135 2421q 13选B.7.解析:模拟执行如图所示的程序框图知,该程序的功能是计算S 12L 945,选A.8.解析:可令3x 4y t,则x log t,3y log t,由3x py 得4p3log t3log43,选C.t3log46l og233log t log34t19.解析:将三视图还原可得下图,所以S 5224252045,选D. 263310. 解析:f xxxxsin cos 3 sin2 23得 ,由f ( ) 0 3Z,即 3k 1,由 0 知 的最小值是 2,当 取得最小值时,kk3 33sin2f xx.由 f3 sin 2 3 sin 33 1212 32可得出:函数 f (x )的图象关于直线 x对称,A 为真; 12由 f3 sin 2 066 3可得出: x是函数 f (x ) 的一个零点,B 为真; 6将函数 g x 3 sin 2x 的图象向左平移6个单位得到3sin2f xx 的图象,所以3 C 为假;由复合函数单调性可得 f (x ) 在 0,上是增函数,所以 D 为真,选C.1211.解析:由已知B为AF的三等分点,作BH l于H(如图),则24BHFK,所以33BF BH 43,所以AF 3BF 4,选B.12.解析:由S a有2412a a a ,解得12412a ,故28a22a14,又aSSaa,于是aaaa ,因此数列aa是以n n n n n n n n n n n 221414221212127a 2 2a 14 为首项,公比为 2 的等比数列.得 1 24 2 1 2 1a a,于是nnnnaan 1n11, 22nn因此数列aanan.是以1为首项,1为公差的等差数列,解得1 1nnn ,2n22nnn所以 a 1249152 ,选 B.二、填空题13. 解析:因为 a b 5 2 ,所以2a b50 ,即2 2 2a b a b5 b20 50 250 ,所以所以 b 5 .14. 解析:如图, x y 在点 A (4, 5) 处取得最大值9 .15. 解析:设双曲线C 的方程为:xy2 2221 ,由已知得: FM b ,所以 a b24b 4 3, a 2b而 a 2 4 b 2 ,所以b 2 3 , a 2 1,所以双曲线C 的方程:y2x 21 316. 设 BC 3k ,则 R 2k k0,因为体积为18 3 的正三棱锥 A BCD 的每个顶点都在半13径为R的球O的球面上,所以9k2h 18 3,得34h24.由2R2h R3k,2 k2得k 2或k 324(舍),所以R 4.由题意知点E为线段BD的中点,从而在△ODB中,OD OB 4,DB 6,解得OE 1697.所以当截面垂直于OE时,截面圆的半径为1673,故截面圆面积最小值为9.三、解答题17.解:(Ⅰ)由cos Ba2c2b23ac3得出:2ac2ac2B,6由3a 2b及正弦定理可得出:3sin A 2sin B,所以sin2sin1A,3638再由3a2b 知 a b ,所以 A 为锐角, cos1 12 2 A, 9 3所以sinsinsin sin coscos sin CA BA BA BA B3 226(Ⅱ)由b 6 及3a 2b 可得出 a 4 ,113 2 2所以Sab sin C46 2 3 2 2 . 2 2 618. 解:(Ⅰ)证明:连接 A B , BC 1 ,点 M , N 分别为 A 1C 1 ,A 1B 1的中点,所以 MN 为△ A BC 的一条中位线, MN //BC ,111MN平面 BB C C , 1 1BC平面1BB C C ,1 1所以 MN // 平面 BB C C .1 12a 2 a 2 4 8(Ⅱ)设 AA 1 a ,则1 MN 1,CM, 2a24420CN5 , 2a 2a 244由CMMN ,得CM 2MN 2CN 2 ,解得 a 2 ,由题意以点 A 为坐标原点, AB 为 x 轴, AC 为 y 轴,AA 为 z 轴建立空间直角坐标系.12可得 A (0,0,0) ,C (0, 2,0) , N (1,0, ) , M (0,1, 2) ,22 2 1 0故 AN ( ,, ), AC (0,2,0), CN (1, 2, ), CM (0,1, 2),2 2 设 m (x ,y ,z )为平面 ANC 的一个法向量,则 m m A C AN0 0,得 m (1,0,2),同理可得平面 MNC 的一个法向量为 n (3,2,2),设二面角 MCNA 的平面角为 ,cos m,n mnmn332155,15cos cos m,n5,15所以,二面角M CN A的余弦值为515.919.解:(Ⅰ)x450.08550.2650.32750.2850.12950.0868.2(Ⅱ)0.0080.012105010.10.9974(Ⅲ)P3X3=0.9974,则P X900.0013.20.00132000026.所以该市前26名的学生听写考试成绩在90分以上.上述50名考生成绩中90分以上的有0.08504人.随机变量X0,1,2.于是C12X6, P0==C3210C C811P X1==,64C15210C22P X2==.4C15210X的分布列:X012P 13815215182 4E X012.315155数学期望20.解:(Ⅰ)由已知,动点M到点P (1,0),Q(1,0)的距离之和为22,且PQ 22,所以动点M的轨迹为椭圆,而a 2,c 1,所以b 1,所以,动点M的轨迹E的方程:x22y21.(Ⅱ)设A(x,y),B(x,y),则C(x ,y),由已知得直线l的斜率存在,设斜率为k,则直11221110线l 的方程为: y k (x 1)y k (x 1)由2xy 122 得 (1 2k 2 )x 2 4k 2 x 2k 220, 所以4k2xx12212k,2k 22x x1 2212k ,y yy y x yx y直线 BC 的方程为:21() y xy yx x ,所以211 22 122xxxxxx212121 ,x y x y2kx x k (xx ) 2x x(xx )令 y 0 ,则 x 1 22 11 2121 2122yyk (x x ) 2k(xx ) 2211 212,所以直线 BC 与 x 轴交于定点 D (2, 0) . 21. 解:(Ⅰ)因为 g (x )ax1所以 h (x ) e x ax1,由 h (x )0对任意的 xR 恒成立,即 h x ,( ) 0min由 h (x ) e x a , (1)当 a 0 时, h (x ) e x a0 , h (x )的单调递增区间为,,所以 x(,0) 时, h (x ) h (0) 0 ,所以不满足题意. (2)当 a 0 时,由 h(x ) e x a0 ,得 x ln axa 时, h (x ) 0 , x (ln a,) 时, h (x ) 0 ,( ,ln )所以 h (x ) 在区间(,ln a ) 上单调递减,在区间 (ln a ,) 上单调递增,所以h(x)的最小值为h(ln a)a a ln a1.设(a)a a ln a1,所以(a)0,①因为(a)ln a令(a)ln a0得a1,所以(a)在区间(0,1)上单调递增,在区间(1,)上单调递减,所以(a)(1)0,②11由①②得(a)0,则a 1. (Ⅱ)由(Ⅰ)知e x x10,即1x e x,令xk kk (n N*,k0,1,2,,n1)则01 e,n n nkk所以(1)n(e n)n e k,nni12n1n所以()n()n()n()n()n e(n1)e(n2)e2e11 n n n nn i11e1e1n12,1e1e e1e111ni,所以()2nni1又(1)3(2)3(3)3 1,333所以m的最小值为2.第22、23题中任选一题做答,如果多做,则按所做的第一题记分.22.解:(Ⅰ)设M(,)是圆上任意一点,如图,连接OC,并延长与圆C交于点A,当点M异于O,A时,连接OM、MA,直角△MOA中,OM OA cos MOA,即4cos4cos(),66当点M与O,A重合时,也满足上式,所求圆C的极坐标方程为4cos().6(Ⅱ)直线l的普通方程为3x y80,圆心C(3,1)到直线l的距离为d,3318d3r,所以直线l与圆C相离,2故切线长的最小值为32225.23.解:(Ⅰ)由f(x)x2x33可化为:12xx 3 3 2或 x 2 x 3 3 x 2 x 3 3x 2或x 2 x 3 3 解得:x或 2 x 2 或 x2 ,所以,不等式解集为2,.(Ⅱ)因为 f (x )x 2x 3(x 2) (x 3)5所以 5 f (x ) 5,即 f (x ) 的最小值为 5 , 要不等式 f (x ) a 2 6a 解集非空,需 f (x )a 2 6a ,min从而 a 26a 5 0 ,解得 a1或 a 5 ,所以 a的取值范围为,1U5,.13昆明一中全国联考第一期参考答案参考答案(理科数学)命题、审题组教师 杨昆华 李文清 孙思应 梁云虹 王在方 卢碧如 凹婷波 吕文芬 陈泳序一、选择题 题号 1 2 3 4 5 6 7 8 9 10 1112答案BCCA B BA CDCB B 24. 解析:集合 A,1U3,, B0,1, 2, 3, 4, 5,所以 A I B0,1, 4, 5,选 B.25. 解析:设正方形边长为 2 ,则圆半径为 1.此时正方形面积为 2 2 4 .图中黑色部分面积为 2 .则此点取自黑色部分的概率为 2 ,选 C.4 81 iz i26. 解析:因为1 i,所以 1 z 2 ,选 C. 27. 解析:12 a1 所以 a 3 ,选 A.r15 55r1 r r15 528. 解析:通项TC x xC xr0 ,所以 r3 ,所以常1 ,令rr2 2 r 155x22数项为C,选 B.33511029. 解析:据题意得 22 3 12Sa ,当 n1时, 2S2 3a ,所以 a;当 n 2 时,nn113 3 3 3 a S Saaaa ,即1 1nnn 1nn 1n n 122 2 21 3 a a a ,即 3 n2,所以nnn 122an 1数列S5,a是首项a ,公比q 3的等比数列,所以12n a 1q 21355 24211q 13选B.30.解析:模拟执行如图所示的程序框图知,该程序的功能是计算S 12L 945,选A.31.解析:可令3x 4y t,则x logt,3y log t,由3x py得4p3log t3log43,选C.t3log46l og233log t log34t132.解析:将三视图还原可得右图,所以S 5224252142045,选D.3333.解析:f x sin x cos x3sin x223得,由f()03Z,即3k 1,由0知的最小值是2,当取得最小值时,kk333sin2f x x.由f3sin23sin33121232可得出:函数f(x)的图象关于直线x对称,A为真;12由f3sin20663可得出:x是函数f(x)的一个零点,B为真;6将函数g x 3sin2x的图象向左平移6个单位得到3sin2f x x的图象,所以3C为假;由复合函数单调性可得f(x)在0,12上是增函数,所以D为真,选C.A4334.解析:由已知B为AF的三等分点,作BH l于H(如图),则BH FK ,所以424BF BH333,所以AF 3BF 4,选B.H21B35. 解析:由 Sa 有 28 24 1 2 124 1 2 a,故aa a ,解得a 22a 1 4 ,K22O F又2 21 4 1 4 a2 2a 1 2 a12a ,因此aSS a a ,于是nnnnnnnnn1数列aa 是以,12a 2 2a 14 为首项,公比为 2 的等比数列.得n 1 n 1 aannn n12 4 2 2aa于是 11, 因 此 数列nn22nnan2n 是 以 1为 首 项 , 1为 公 差 的 等 差 数 列 , 解得a nn21 n1n , an 2n .所以na ,选B.1249152二、填空题36. 解析:因为 a b 5 2 ,所以2a b50 ,即2 2 2a b2ab 505 b20 50 ,所以所以 b 5 .37. 解析:如图, x y 在点 A (4, 5) 处取得最大值9 .x -y +1=0yxy2 2 221,由已知得: FMb ,所abx +3y-3=0 32 12x-y -3=038. 解析:设双曲线 C 的方程为:–6 –5 –4 –3 –2 O–1–11 x23456–2 –315以24b4 ,而 3 a 2 ba 24 b 2 ,所以b 23 , a 2 1,所以双曲线C 的方程:y2x 21 339. 设 BC 3k ,则 R 2kk0,因为体积为18 3 的正三棱锥 A BCD 的每个顶点都在半1 3径为 R 的球O 的球面上,所以 9k 2h18 3 ,得 34h24R 2h R3k ,.由22k2得 k 2 或 k 3 24 (舍),所以 R 4 .由题意知点 E 为线段 BD 的中点,从而在△ODB 中,OD OB , DB 6 ,解得OE 16 9 7 .所以当截面垂直于OE 时,截面圆的半径4为 16 73,故截面圆面积最小值为9 .三、解答题 40. 解:(Ⅰ)由cos Ba 2 c 2b 2 3ac 3得 出 : 2ac 2ac 2B, (2)分 6由3a 2b 及正弦定理可得出:3sin A 2sin B ,所以 21sin A sin ,………4分3 6 3 再由3a2b 知 a b ,所以 A 为锐角, cos1 12 2 A, ………6分9 3所以 sinsinsin sin coscos sin CA BA BA BAB3 26………8分(Ⅱ)由b 6 及3a 2b 可得出 a 4 , 所以113 2 2S ab sin C462 3 2 2 .2 2 6………12分41. 解:(Ⅰ)证明:连接 A B , BC 1 ,点 M , N 分别为 A 1C 1 ,A 1B1的中点,所以 MN 为△ A BC 的一条中位线, MN //BC ,111MN平面 BB C C , 1 1BC平面1BB C C ,1 1所以 MN // 平面 BB C C .………6分1 1162a 2a 2 4 8(Ⅱ)设 AA 1a ,则1CM, MN 1,2a244220CN5 , 2a a 244由CMMN ,得CM 2 MN 2 CN 2 ,解得 a 2 ,由题意以点 A 为坐标原点, AB 为 x 轴, AC 为 y 轴,AA 为 z 轴建立空间直角坐标系.12可得 A (0,0,0) ,C (0, 2,0) , N (1,0, ) , M (0,1, 2) ,22 2故 AN ( ,, ), AC (0,2,0), CN (1, 2, ), CM (0,1, 2),1 02 2 设 m (x ,y ,z )为平面 ANC 的一个法向量,则m m A C AN0 0,得 m (1,0,2),同理可得平面 MNC 的一个法向量为 n (3,2,2),设二面角 M CNA 的平面角为 ,cos m , nmnmn3 3 0 2 15 5,15cos cos m , n5,15所以,二面角 M CNA 的余弦值为5 15. ………12分42. 解 : ( Ⅰ )x 45 0.08 55 0.2 65 0.32 75 0.2 85 0.12 95 0.08 68.2 ………4分(Ⅱ) 0.008 0.012105010 .………6分1 0.9974(Ⅲ)P 3 X3=0.9974 ,则P X 900.0013 .2 0.0013 20000 26 .所以该市前26名的学生听写考试成绩在90分以上.上述50名考生成绩中90分以上的有0.08504人.随机变量X0,1,2.于是C126, P X0==C321017C C118, P X1=64=C15210C224.P X2==C15210X的分布列:X012P138152151824数学期望E X12. ………12分31515543.解:(Ⅰ)由已知,动点M到点P (1,0),Q(1,0)的距离之和为22,且PQ 22,所以动点M的轨迹为椭圆,而a 2,c 1,所以b 1,所以,动点M的轨迹E的方程:x22y2 1. (5)分(Ⅱ)设A(x,y),B(x,y),则C(x ,y),由已知得直线l的斜率存在,设斜率为k,112211则直线l的方程为:y k(x 1)(1)y k x由2xy122得(12k2)x24k2x 2k220,所以4k2x x12212k,2k22x x12212k,………8分y y y y x yx y直线BC的方程为:y y 21(x x),所以y 21x 122122x x x x x x212121,x y x y2kx x k(x x)2x x (xx)令y 0,则122112121212x2y y k(x x)2k(x x)2211212,所以直线BC与x轴交于定点D (2,0) (12)分44.解:(Ⅰ)因为g(x)ax 1所以h(x)e x ax 1,由h(x)0对任意的x R恒成立,即h x ,()0min18由h(x)e x a,(1)当a0时,h(x)e x a0,h(x)的单调递增区间为,,所以x(,0)时,h(x)h(0)0,所以不满足题意.(2)当a0时,由h(x)e x a0,得x ln ax a时,h(x)0,x(ln a,)时,h(x)0,(,ln)所以h(x)在区间(,ln a)上单调递减,在区间(ln a,)上单调递增,所以h(x)的最小值为h(ln a)a a ln a1.设(a)a a ln a1,所以(a)0,①因为(a)ln a令(a)ln a0得a1,所以(a)在区间(0,1)上单调递增,在区间(1,)上单调递减,所以(a)(1)0,②由①②得(a)0,则a 1. ………6分(Ⅱ)由(Ⅰ)知e x x10,即1x e x,令xk kk (n N*,k0,1,2,,n1)则01 e,n n nkk所以(1)(e)en n n k,nn i12n1n所以()n()n()n()n()n e(n1)e(n2)e2e11 n n n nn i11e1e1n12,1e1e e1e111ni,所以()n2ni1又(1)3(2)3(3)3 1,333所以m的最小值为2. ………12分19第 22、23 题中任选一题做答,如果多做,则按所做的第一题记分. 45. 解:(Ⅰ)设 M (,) 是圆上任意一点,如图,连接OC ,并延长与圆C 交于点 A , 当点 M 异于O , A 时,连接OM 、 MA , 直角△ MOA 中,OM OAcos MOA ,即4 cos4 cos() ,66当点 M 与O , A 重合时,也满足上式,所求圆C 的极坐标方程为4 cos() .………5分6(Ⅱ)直线l 的普通方程为 3x y 8 0 ,圆心C ( 3,1) 到直线l 的距离为 d ,3 318d3 r ,所以直线l 与圆C 相离,2故切线长的最小值为 32225 .………10分46. 解:(Ⅰ)由 f (x ) x 2 x 3 3 可化为:x 33 x 2或x 2 x 3 3 x 2 x 3 3x 2或 x 2 x 3 3 解得:x 或 2 x 2 或 x2 ,所以,不等式解集为2,. ………5分(Ⅱ)因为 f (x )x 2x 3(x 2) (x 3)5所以 5 f (x ) 5,即 f (x ) 的最小值为 5 , 要不等式 f (x ) a 2 6a 解集非空,需 f (x )a 2 6a ,min从而 a 26a 5 0 ,解得 a1或 a 5 ,所以 a的取值范围为,1U5,.………10分20。
2017-2018学年云南省昆明一中高三(上)第一次双基检测数学试卷(理科) Word版含解析

2017-2018学年云南省昆明一中高三(上)第一次双基检测数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2﹣x≤0},B={x|﹣2≤x≤0},则A∩∁R B=()A.∅B.{x∈R|x≠0} C.{x|0<x≤1} D.R2.复数(i是虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r34.已知双曲线﹣=1的一条渐近线与直线l:2x+y+2=0垂直,则此双曲线的离心率是()A.B.C.D.45.有以下四个p1:∃x0∈(﹣∞,0),4<5,p2:在锐角三角形ABC中,若tanA>tanB,则A>B;p3:∃x∈R,cosx0≥1;p4:∀x∈R,x2﹣x+1>0其中假是()A.p1B.p2C.p3D.p46.设x,y满足,则z=x+2y的最小值等于()A.﹣3 B.3 C.6 D.127.已知数列{lg(a n+1)}为等差数列,且a1=9,a4=9999,则数列{a n}的前3项和S3=()A.1113 B.1110 C.1107 D.9998.一个组合体的三视图如图所示,则该几何体的体积为()A.16 B.20 C.D.9.执行如图所示的程序框图,若输出y=2,则输出的x的取值范围是()A.B.(12,25]C.(14,26]D.10.已知四面体ABCD的棱长均为,则下列结论中错误的是()A.AC⊥BDB.若该四面体的各顶点在同一球面上,则该球的体积为3πC.直线AB与平面BCD所成的角的余弦值为D.该四面体的体积为11.已知函数f(x)=|2x﹣2|,若m≠n,且f(m)=f(n),则m+n的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,1)D.(﹣∞,2)12.在△ABC中,D为BC边中点,O为△ABC内一点,且=2+,则=()A.B.C.2 D.1二、填空题(共4小题,每小题5分,满分20分)13.已知函数f(x)=Asin(x+φ)(A>0,|φ|<),当x=π时,f(x)取最大值,则φ=.14.现有5人坐成一排,任选其中3人相互调整位置(着3人中任何一人不能做回原来的位置),其余2人位置不变,则不同的调整的方案的种数有.15.已知抛物线y2=2x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为.16.已知数列{a n}满足a1=2,a n+1=a n+n(n∈N*),则a n的最小值是.三、解答题(共6小题,解答时应写出必要的文字说明,证明过程或演算步骤)17.在△ABC中,已知BC=2,=,sinC=,求BC边上的中线AD的长.18.已知数列{a n}的前n项和S n=2a n﹣2(n∈N*),数列{b n}的前n项和为T n,且b n=2n+1.(1)求出数列{a n}的通项a n和数列{b n}的前n项和T n;(2)求数列{}的前n项和G n.19.有A,B,C,D,E五位同学参加英语口语竞赛培训,现分别从A,B二人在培训期间参加的若干次预赛成绩中随机抽取8次得到的两组数据,这两组数据的样本茎叶图如图所示.(1)现要从A,B中选派一人参加英语口语竞赛,从平均水平个方差的角度考虑,你认为派哪位同学参加较合适?请说明理由;(2)若从参加培训的5位同学中任选二人参加英语口语竞赛,求A,B二人都没有参加竞赛的概率.20.在三棱锥A﹣BCD中,底面BCD是正三角形,AC=BD=2,AB=AD=,O为BC的中点.(1)求证:AO⊥平面BCD;(2)求二面角A﹣DC﹣B的余弦值.21.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率为.(1)求椭圆C的方程;(2)设点F为椭圆C的右焦点,过点F的直线交该椭圆于P,Q两点(P,Q不是长轴的端点),线段PQ的垂直平分线交y轴于点M(0,y0),求y0的取值范围.22.已知函数f(x)=lnx+ax2﹣(2a+1)x﹣1(a为常数,且a≠0).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,e]时,f(x)≤0,求实数a的取值范围.2014-2015学年云南省昆明一中高三(上)第一次双基检测数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2﹣x≤0},B={x|﹣2≤x≤0},则A∩∁R B=()A.∅B.{x∈R|x≠0} C.{x|0<x≤1} D.R考点:交、并、补集的混合运算.专题:集合.分析:分别求出关于集合A,集合B的补集,再取交集即可.解答:解:∵集合A={x|x2﹣x≤0}={x|0≤x≤1},B={x|﹣2≤x≤0},∁R B=(0,+∞)∪(﹣∞,﹣2),则A∩∁R B={x|0<x≤1},故选:C.点评:本题考查了集合的交、补集的混合运算,是一道基础题.2.复数(i是虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:计算题.分析:将复数的分子分母同乘以1+i,利用多项式的乘法分子展开,求出对应的点的坐标,判断出所在的象限即可.解答:解:由题,所以在复平面上对应的点位于第一象限.故选A.点评:本题主要考查了复数代数形式的乘除运算,复数的除法运算法则:分子、分母同乘以分母的共轭复数,属于基础题.3.对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3考点:相关系数.专题:概率与统计.分析:根据题目给出的散点图,先判断是正相关还是负相关,然后根据点的集中程度分析相关系数的大小.解答:解:由给出的四组数据的散点图可以看出,图1和图3是正相关,相关系数大于0,图2和图4是负相关,相关系数小于0,图1和图2的点相对更加集中,所以相关性要强,所以r1接近于1,r2接近于﹣1,由此可得r2<r4<r3<r1.故选:A点评:本题考查了两个变量的线性相关,考查了相关系数,散点分布在左下角至右上角,说明两个变量正相关;分布在左上角至右下角,说明两个变量负相关,散点越集中在一条直线附近,相关系数越接近于1(或﹣1),此题是基础题.4.已知双曲线﹣=1的一条渐近线与直线l:2x+y+2=0垂直,则此双曲线的离心率是()A.B.C.D.4考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由双曲线的渐近线斜率即可计算该双曲线的离心率,本题中已知渐近线与直线2x+y+2=0垂直,故=,再利用c2=a2+b2,e=即可得双曲线的离心率.解答:解:双曲线﹣=1的一条渐近线方程为y=±x,∵渐近线与直线2x+y+2=0垂直,故渐近线的斜率为,∴=,即a2=4b2=4(c2﹣a2),即5a2=4c2,e2=双曲线的离心率e==故选:B.点评:本题考考查了双曲线的标准方程及其几何性质,双曲线渐近线与离心率间的关系,求双曲线离心率的一般方法.5.有以下四个p1:∃x0∈(﹣∞,0),4<5,p2:在锐角三角形ABC中,若tanA>tanB,则A>B;p3:∃x∈R,cosx0≥1;p4:∀x∈R,x2﹣x+1>0其中假是()A.p1B.p2C.p3D.p4考点:的真假判断与应用.专题:简易逻辑.分析:根据全称和特称的性质分别进行判断即可.解答:解:p1:当x0∈(﹣∞,0),幂函数f(x)=x在(0,+∞)上为减函数,∴4>5,错误.为假p2:在锐角三角形ABC中,函数y=tanx为增函数,若tanA>tanB,则A>B;正确,为真.p3:∃x=2kπ,k∈Z,有cosx0≥1成立;正确,为真.p4:∀x∈R,x2﹣x+1=(x﹣)2+>0,正确,为真.故p1是假,故选:A点评:本题主要考查的真假判断,根据全称和特称的性质是解决本题的关键.6.设x,y满足,则z=x+2y的最小值等于()A.﹣3 B.3 C.6 D.12考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义即可得到结论.解答:解:作出不等式组对应的平面区域,由z=x+2y,得y=,平移直线y=,由图象可知当直线经过点C时,直线y=的截距最小,此时z最小,由,得,即C(1,1)此时z=1+2×1=3.故选:B.点评:本题主要考查线性规划的应用,利用图象平行求得目标函数的最小值,利用数形结合是解决线性规划问题中的基本方法.7.已知数列{lg(a n+1)}为等差数列,且a1=9,a4=9999,则数列{a n}的前3项和S3=()A.1113 B.1110 C.1107 D.999考点:等差数列的前n项和.专题:等差数列与等比数列.分析:根据等差数列的通项公式进行求解即可.解答:解:∵数列{lg(a n+1)}为等差数列,∴设数列{lg(a n+1)}为等差数列的公差为d,则lg(a4+1)=lg(a1+1)+3d,即lg10000=lg10+3d,则4=1+3d,解得d=1,则lg(a n+1)=lg10+n﹣1=1+n﹣1=n,则a n+1=10n,则a n=10n﹣1,则数列{a n}的前3项和S3=10﹣1+102﹣1+103﹣1=1110﹣3=1107,故选:C点评:本题主要考查数列求和的计算,根据等差数列求出数列的通项公式是解决本题的关键.8.一个组合体的三视图如图所示,则该几何体的体积为()A.16 B.20 C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的三视图,可知该几何体是以俯视图为底面的四棱锥和四棱柱的组合体,求出它们的体积,相加可得答案.解答:解:由已知中的三视图,可知该几何体是以俯视图为底面的四棱锥和四棱柱的组合体,其底面面积S=2×2=4,棱柱的高h=4,棱锥的高h=5﹣4=1,∴棱柱的体积为4×4=16,棱锥体积为×4×1=,故组合体的体积V=16+=,故选:C点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.9.执行如图所示的程序框图,若输出y=2,则输出的x的取值范围是()A.B.(12,25]C.(14,26]D.考点:程序框图.专题:图表型;算法和程序框图.分析:由框图知,此程序输出的y是循环次数,循环退出的条件是x>51,由此关系得出不等式,求出x的取值范围即可.解答:解:当输出y=2时,应满足,得12<x≤25.故选:B.点评:本题考查循环结构,解题的关键是根据框图得出其运算律,从而得到x所满足的不等式,解不等式求出要求的范围,由运算规则得出不等式组是本题的难点.10.已知四面体ABCD的棱长均为,则下列结论中错误的是()A.AC⊥BDB.若该四面体的各顶点在同一球面上,则该球的体积为3πC.直线AB与平面BCD所成的角的余弦值为D.该四面体的体积为考点:棱锥的结构特征.专题:空间位置关系与距离.分析:分别对A、B、C、D各个选项进行判断即可.解答:解:对于A,如图②:在等边三角形BCD中,BM为CD边上的高,再在四面体ABCD中,过A作AH⊥平面BCD 于点H,则H为底面正三角形BCD的重心,∴DB⊥AH,BD垂直于过CH的直线,CH、AH交于H,∴BD⊥平面ACH,∴BD⊥AC,故A正确;对于选项B,如图①:,将四面体补成正方体,则正方体的棱长是1,正方体的对角线长为:,则此球的体积为:π×()3=π,故B错误;对于选项C,如图②:在等边三角形BCD中,BM为CD边上的高,再在四面体ABCD中,过A作AH⊥平面BCD 于点H,则H为底面正三角形BCD的重心,则∠ABH=α,就是AB在平面BCD所成角,棱长为,由BM为CD边上的高,则BM=,在Rt△ABH中,则BH=BM=×=,∴cosα===,故C正确;对于D,如图②:由选项C得:AH==,S△BCD=×BM×DC=××=,V A﹣BCD=××=,故D正确;故选:B.点评:本题是中档题,考查空间想象能力,考查四面体的体积公式,选项B的判断较难,正四面体的外接球转化为正方体外接球,使得问题的难度得到降低,问题得到解决,注意正方体的对角线就是球的直径,也是比较重要的,选项D和选项C联合判断即可.11.已知函数f(x)=|2x﹣2|,若m≠n,且f(m)=f(n),则m+n的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,1)D.(﹣∞,2)考点:指数函数的图像变换.专题:函数的性质及应用;不等式的解法及应用.分析:由题意f(x)=|2x﹣2|,由f(m)=f(n),可得2﹣2m=2n﹣2,故2m+2n=4,再利用基本不等式求解.解答:解:不妨设m<n,由f(m)=f(n),可得2﹣2m=2n﹣2,∴2m+2n=4,∴4=2m+2n=≥,当且仅当2m=2n时,即m=n时取等号,而m≠n,故上述等号不成立,∴2m+n<4,∴m+n<2∴m+n的取值范围是(﹣∞,2)故选:D.点评:此题考查了利用绝对值的性质脱去绝对值,同时考查基本不等式的应用,注意,利用基本不等式要验证等号成立的条件.12.在△ABC中,D为BC边中点,O为△ABC内一点,且=2+,则=()A.B.C.2 D.1考点:向量在几何中的应用;向量加减混合运算及其几何意义.专题:平面向量及应用.分析:先根据所给的式子进行变形,再由题意和向量加法的四边形法则,得到,即:.结合三角形的面积关系判断四个小三角形的面积都相等即可.解答:解:由=2+,得﹣=2,即,∵D为BC边中点,∴,则,即O是AD的中点,则S△AOB=S△ODB,S△AOC=S△ODC,S△OBD=S△ODC,即四个小三角形的面积都相等,则=1,故选:D点评:本题主要考查向量在几何中的应用,根据向量的加法法则,求出O是AD的中点是解决本题的关键.二、填空题(共4小题,每小题5分,满分20分)13.已知函数f(x)=Asin(x+φ)(A>0,|φ|<),当x=π时,f(x)取最大值,则φ=﹣.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:由题意可得+φ=2kπ+,k∈Z,再结合|φ|<,可得φ的值.解答:解:由题意可得+φ=2kπ+,k∈Z,即φ=2kπ﹣,再结合|φ|<,可得φ=﹣,故答案为:﹣.点评:本题主要考查正弦函数的最值,属于基础题.14.现有5人坐成一排,任选其中3人相互调整位置(着3人中任何一人不能做回原来的位置),其余2人位置不变,则不同的调整的方案的种数有20.考点:计数原理的应用.专题:排列组合.分析:先考虑从5人中任选3人的方法数,再考虑3人位置全调的方法数,利用分步计数原理可求.解答:解:从5人中任选3人有C53种,3人位置全调,由于不能是自己原来的位置,因此有A22种,故有C53A22=20种.故答案为:20.点评:本题主要考查排列组合知识,关键是问题的等价转化.15.已知抛物线y2=2x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为1.考点: 抛物线的简单性质. 专题: 圆锥曲线的定义、性质与方程. 分析: 求得抛物线的焦点和准线方程,由抛物线的定义,可得|AC|+|BD|=|AF|+|BF|﹣1=|AB|﹣1,求得|AB|的最小值即可.解答: 解:抛物线y 2=2x 的焦点F (,0),准线方程为x=﹣,由抛物线的定义可得,|AF|=|AC|+,|BF|=|BD|+, 即有|AC|+|BD|=|AF|+|BF|﹣1 =|AB|﹣1,当直线AB ⊥x 轴时,|AB|最小. 令x=,则y 2=1,解得y=±1,即有|AB|min =2,则|AC|+|BD|的最小值为1. 故答案为:1. 点评: 本题考查抛物线的定义、方程和性质,主要考查定义法及运算能力,属于中档题.16.已知数列{a n }满足a 1=2,a n+1=a n +n (n ∈N *),则a n 的最小值是 2 .考点: 数列递推式. 专题: 点列、递归数列与数学归纳法. 分析: 通过a n+1=a n +n 可知数列{a n }是递增数列,进而可得结论. 解答: 解:∵a n+1=a n +n ,∴a n+1﹣a n =n >0, ∴数列{a n }是递增数列, ∴a n 的最小值即为a 1=2, 故答案为:2. 点评: 本题考查数列的简单性质,注意解题方法的积累,属于基础题.三、解答题(共6小题,解答时应写出必要的文字说明,证明过程或演算步骤) 17.在△ABC 中,已知BC=2,=,sinC=,求BC 边上的中线AD 的长.考点: 解三角形. 专题: 解三角形.分析: 首先利用余弦定理求出AC 和AB 的长度,然后在△ACD 中利用余弦定理求出AD 的长度. 解答: 解:因为sinC=,C 是三角形的内角,所以cosC=,设AB=3x ,AC=4x ,3x+4x>2,则<x <2,所以由余弦定理得到16x2+4﹣16x×=9x2,解得x=1或x=,所以AB=3,AC=4或者AB=,AC=;当AC=4时,在△ACD中,AD2=AC2+CD2﹣2AC×CDcosC=16+1﹣=,所以AD=;当AC=时,在△ACD中,AD2=AC2+CD2﹣2AC×CDcosC==,所以AD=.点评:本题主要考查了余弦定理在解三角形中的应用,关键是熟练运用余弦定理.18.已知数列{a n}的前n项和S n=2a n﹣2(n∈N*),数列{b n}的前n项和为T n,且b n=2n+1.(1)求出数列{a n}的通项a n和数列{b n}的前n项和T n;(2)求数列{}的前n项和G n.考点:数列的求和.专题:等差数列与等比数列.分析:(1)通过S n=2a n﹣2与S n+1=2a n+1﹣2作差、整理得a n+1=2a n,进而可知数列{a n}的通项a n=2n;利用等差数列的求和公式计算可得T n=n(n+2);(2)通过(1)、裂项可知=(﹣),并项相加即得结论.解答:解:(1)∵S n=2a n﹣2(n∈N*),∴S n+1=2a n+1﹣2,两式相减得:a n+1=2a n+1﹣2a n,整理得:a n+1=2a n,又∵a1=2a1﹣2,即a1=2,∴a n=2•2n﹣1=2n;∵b n=2n+1,∴T n==n(n+2);(2)由(1)得==(﹣),∴G n=(1﹣+﹣+﹣+…+﹣)=(1+﹣﹣)=﹣.点评:本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.19.有A,B,C,D,E五位同学参加英语口语竞赛培训,现分别从A,B二人在培训期间参加的若干次预赛成绩中随机抽取8次得到的两组数据,这两组数据的样本茎叶图如图所示.(1)现要从A,B中选派一人参加英语口语竞赛,从平均水平个方差的角度考虑,你认为派哪位同学参加较合适?请说明理由;(2)若从参加培训的5位同学中任选二人参加英语口语竞赛,求A,B二人都没有参加竞赛的概率.考点:列举法计算基本事件数及事件发生的概率;茎叶图.专题:概率与统计.分析:(1)根据所给的数据做出两个人的平均数和方差,把平均数和方差进行比较,得到两个人的平均数相等,然后根据方差是反映稳定程度的,比较方差,越小说明越稳定;(2)从5人中任意派两人的可能情况有10种,每种结果出现的可能性相同,记“A,B二人都没有参加竞赛”为事件M,则M包含的结果有3种,由等可能事件的概率可求.解答:解:(1)派B参加比较合适.理由如下:=(75+80+80+83+85+90+92+95)=85,=(78+79+80+83+85+90+92+95)=85,S2A==41;S2B==35.5∵=,S2B<S2A,∴B的成绩较稳定,派B参加比较合适.(2)从参加培训的5位同学中任派两个共有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10种情况;A、B两人都不参加(C,D),(C,E),(D,E)有3种.所以A,B二人都没有参加竞赛的概率P=点评:对于两组数据,通常要求的是这组数据的方差和平均数,用这两个特征数来表示分别表示两组数据的特征,即平均水平和稳定程度.20.在三棱锥A﹣BCD中,底面BCD是正三角形,AC=BD=2,AB=AD=,O为BC的中点.(1)求证:AO⊥平面BCD;(2)求二面角A﹣DC﹣B的余弦值.考点:直线与平面垂直的判定;棱锥的结构特征.专题:空间位置关系与距离;空间角.分析:(1)由已知得AO⊥BD,AO⊥CO,由此能证明AO⊥平面BCD.(2)以O为原点,OB为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣DC﹣B的余弦值.解答:解:(1)证明:∵在三棱锥A﹣BCD中,底面BCD是正三角形,O为BD的中点,∴AO⊥BD,连结CO,∵AC=BD=2,AB=AD=,∴AO==1,CO=,∴AO2+CO2=AC2,∴AO⊥CO,又BD∩CO=O,∴AO⊥平面BCD.(2)解:以O为原点,OB为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,A(0,0,1),D(﹣2,0,0),C(0,,0),B(1,0,0),=(﹣2,0,﹣1),=(0,,﹣1),设平面ADC的法向量=(x,y,z),则,取x=1,得=(1,﹣,﹣2),平面BDC的法向量=(0,0,1),cos<,>==﹣,∵二面角A﹣DC﹣B是锐二面角,∴二面角A﹣DC﹣B的余弦值为.点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要注意向量法的合理运用,属于中档题.21.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率为.(1)求椭圆C的方程;(2)设点F为椭圆C的右焦点,过点F的直线交该椭圆于P,Q两点(P,Q不是长轴的端点),线段PQ的垂直平分线交y轴于点M(0,y0),求y0的取值范围.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由题意可得b=,e==,a2﹣b2=c2,解方程可得a=2,进而得到椭圆方程;(2)分类讨论,设直线MN的方程为y=k(x﹣1)(k≠0),代入椭圆方程,求出线段MN的垂直平分线方程,令x=0,得y0==,利用基本不等式,即可求y的取值范围.解答:解:(1)由短轴长为2,且离心率为.可得b=,e==,a2﹣b2=c2,解得a=2,c=1.则椭圆的方程为+=1;(2)当PQ⊥x轴时,显然y0=0.当PQ与x轴不垂直时,可设直线PQ的方程为y=k(x﹣1)(k≠0).由消去y整理得(3+4k2)x2﹣8k2x+4(k2﹣3)=0.设P(x1,y1),Q(x2,y2),线段PQ的中点为D(x3,y3),则x1+x2=.所以x3==,y3=k(x3﹣1)=,线段PQ的垂直平分线方程为y+=﹣(x﹣),在上述方程中令x=0,得y0==当k<0时,+4k≤﹣4;当k>0时,+4k≥4.所以﹣≤y0<0,或0<y0≤.综上y0的取值范围是.点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查基本不等式的运用,确定线段MN的垂直平分线方程是关键.22.已知函数f(x)=lnx+ax2﹣(2a+1)x﹣1(a为常数,且a≠0).(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当x∈(0,e]时,f(x)≤0,求实数a的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)把a=1代入函数解析式,求其导函数,由导函数的符号确定原函数的单调区间;(Ⅱ)求出原函数的导函数,得到导函数的零点1和,然后分多种情况进行讨论,求出函数在(0,e]上的最大值,由最大值小于等于0求得a的范围,最后去并集得答案.解答:解:(Ⅰ)当a=1时,f(x)=lnx+x2﹣3x﹣1,=(x>0),当x,(1,+∞)时,f′(x)>0,当x时,f′(x)<0.∴f(x)在上为增函数;在上为减函数;(Ⅱ)由f(x)=lnx+ax2﹣(2a+1)x﹣1,得==.令g(x)=(x﹣1)(2ax﹣1),当a=0时,x∈(0,1)时,f′(x)>0.x∈(1,e)时f′(x)<0,∴函数f(x)在(0,e]上有最大值为f(1)=﹣a﹣2.由﹣a﹣2≤0,得a≥﹣2,∴a=0;当,即时,g(x)≥0,f′(x)≥0,函数f(x)在(0,e]上得到递增,当x=e时函数有最大值为lne+ae2﹣(2a+1)e﹣1=ae2﹣2ae ﹣e,由ae2﹣2ae﹣e≤0,得a.∴;当<0,即a<0时,若x∈(0,1),f′(x)>0,x∈(1,e),f′(x)<0,∴在(0,e]上有最大值为f(1)=ln1+a﹣2a﹣1﹣1=﹣a﹣2.由﹣a﹣2≤0,得a≥﹣2.∴﹣2≤a<0;当0<<1,即a时,x∈(0,),(1,e)时,f′(x)>0.x∈时f′(x)<0,∴函数f(x)在(0,e]上有最大值为f()与f(e)的最大者,=.f(e)=ae2﹣2ae﹣e,f(e)>,∴函数f(x)在(0,e]上有最大值为ae2﹣2ae﹣e,由ae2﹣2ae﹣e≤0,得a.∴;当1<<e,即<a<时,x∈(0,1),(,e)时,f′(x)>0.x∈时f′(x)<0,∴函数f(x)在(0,e]上有最大值为f(1)与f(e)的最大者,f(1)=ln1+a﹣2a﹣1﹣1=﹣a﹣2,f(e)=ae2﹣2ae﹣e,由,解得:,∴;当≥e,即0时,x∈(0,1)时,f′(x)>0.x∈(1,e)时f′(x)<0,∴函数f(x)在(0,e]上有最大值为f(1)=﹣a﹣2.由﹣a﹣2≤0,得a≥﹣2,∴0.综上,实数a的取值范围是.点评:本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了学生的计算能力,正确分类是解答该题的关键,属于难度较大的题目.。
2018年云南高考理科试卷全套(精校Word版含答案)语文理科数学英语理综试卷

2018年普通高等学校招生全国统一考试(云南卷)真题理科全套试题及答案汇总目录2018年普通高等学校招生全国统一考试云南语文试题................ 2018年普通高等学校招生全国统一考试云南语文试题答案............ 2018年普通高等学校招生全国统一考试云南理科数学................ 2018年普通高等学校招生全国统一考试云南理科数学答案............ 2018年普通高等学校招生全国统一考试云南英语试题................ 2018年普通高等学校招生全国统一考试云南英语试题答案............ 2018年普通高等学校招生全国统一考试云南理科综合试题............ 2018年普通高等学校招生全国统一考试云南理科综合试题答案........绝密★启用前2018年普通高等学校招生全国统一考试语文试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
对城市而言,文明弹性是一个城市体在生存、创新、适应、应变等方面的综合状态、综合能力,是公共性与私人性之间、多样性与共同性之间、稳定性与变迁性之间、柔性与刚性之间的动态和谐,过于绵柔、松散,或者过于刚硬、密集,都是弹性不足或丧失的表现,是城市体出现危机的表征。
当代城市社会,尤其需要关注以下文明弹性问题。
其一,空间弹性。
城市具有良好空间弹性的一个重要表现,是空间的私人性与公共性关系能够得到较为合理的处理。
任何城市空间都是私人性与公共性的统一,空间弹性的核心问题,就是如何实现空间的公共性与私人性的有机统一、具体转换。
2018届云南省昆明市高三上学期摸底调研测试理科数学试题及答案 精品

昆明市2018届高三摸底调研测试理科数学试卷第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设全集U=R,集合A={x| x(x -3)>0},则C A=(A) [0,3] (B)(0,3)(C) (-∞,0) (3,+ ∞) (D) (-∞,0][3,+ ∞)(2) 设复数z满足(13)3,i z i z-=+=则(A)一i (B) i (C) 3455i-(D) 3455i+(3)设命题p:∀x∈R ,2x>0,则⌝p为(A) ∀x∈R, 2x<0(B) ∀x∈R, 2x<0(C) ∃xo∈R, 2 xo <0 (D)∃3xo∈R, 2xo <0(4) 一个几何体的三视图如图所示,则该几何体的体积等于(A) 8+4π(B) 8+2π(C) 8+43π(D) 8+23π(5)设a ,b ∈N*,记R(a\b)为a 除以b 所得的余数.执行 如图所示的程序框图,若输入a= 243,b=45,则输 出的值等于 (A) 0 (B) 1 (C) 9 (D) 18(6)已知ω>0,在函数y=sin ωx 与y=cos ωx 的图像的交点中,相邻两个交点的横坐标之差为1,则ω=(A)1 (B)2 (C)π (D) 2π(7)己知四边形ABCD 为正方形,3BP CP =,AP 与CD 交于点E ,若PE mCP nPD =+ 则m-n= (A)一23(B)23(C) —13(D) 13(8)己知a ∈(0,2π),cos(a +4π)= 一35,则tan a =(A) 17(B) 7 (C) 34(D) 43(9)四人进行一项游戏,他们约定:在一轮游戏中,每人掷一枚质地均匀的骰子1次,若某人掷出的点数为5或6,则此人游戏成功,否则游戏失败.在一轮游戏中,至少有2 人游戏成功的概率为(A) 127 (B) 827(C) 1127(D)89(10)已知F1,F2为双曲线C的左,右焦点,过F1的直线分别交C的左,右两支于A,B两点,若△AF2B为等腰直角三角形,且∠AF2B=90°,那么C的离心率为(11)已知曲线f(x)=e2x- 2e x+ax -1存在两条斜率为3的切线,则实数a的取值范围为(A)(3,+∞) (B) [3,72] (C) (一∞,72](D)(0,3)(12)棱长为a的正方体可任意摆放,则其在水平平面上投影面积的最大值为2:22 (D) 2a2第II卷本卷包括必考题和选考题两部分。
2018年云南省高考数学一模试卷

2018年云南省高考数学一模试卷(理科)一选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设,P Q 是两个集合,定义集合{}|,P Q x x P x Q -=∈∉为,P Q 的差集.已知{}2|10,|21P x Q x xx ⎧⎫=-<=-<⎨⎬⎩⎭,那么Q P -等于 A.{}|01x x <<B.{}|01x x <≤C.{}|12x x ≤< D.{}|23x x ≤<2.已知()22a i i -=-,其中i 是虚数单位,是实数,则ai = A. 2 B. 1 C. 1- D.2- 3.同时具有性质:①图象的相邻两条对称轴间的距离为2π;②在,63ππ⎡⎤-⎢⎥⎣⎦上是增函数的一个函数为 A.sin 26x y π⎛⎫=+ ⎪⎝⎭B.cos 23y x π⎛⎫=+ ⎪⎝⎭ C.sin 26y x π⎛⎫=+ ⎪⎝⎭ D.cos 26x y π⎛⎫=- ⎪⎝⎭4.若向量()()()1,2,2,1,4,2a b c =-==--,则下列说法正确的个数使①a b ⊥;②向量a 与向量c 的夹角为90;③对同一平面内的向量d 都存在一对实数12,k k ,使得12.d k b k c =+A. 3B. 2C. 1D. 05.已知函数()()1,321,3xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪+<⎩,则()2log 3f 的值为 A.13 B. 16 C. 112 D.1246.直线(:l y k x =+与曲线()22:10C x y x +=<相交于P,Q 两点,则直线l 的倾斜角的取值范围是A. 3,,4224ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B. 3,44ππ⎛⎫ ⎪⎝⎭C. 0,,22πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭D.()0,π7. 执行如图1所示的程序框图,若输入的,a b 分别为36,28,则输出a = A. 4 B. 8 C. 12 D. 208.某几何体的三视图如图2所示,且其俯视图是一个等边三角形,则这个几何体的表面积为A.(82π+ B.(86π+C.42π++D.382++9.图3所示的阴影部分由坐标轴、直线1x =及曲线ln x y e e =-围成,现向矩形区域OABC 内随机投掷一点,则该点落在非阴影区域的概率是A. 1eB. 11e -C. 11e- D. 111e --10.设ABC ∆的三个内角A,B,C 的对边分别为,,,a b c 若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,那么ABC ∆的外接圆面积与内切圆面积比值为A. 4B. 2C.D. 111.已知A 是抛物线()2:20M y px p =>与圆C 在第一象限内的公共点,其中圆心()0,4C ,点A 到M 的焦点F 的距离与C 的半径相等,M 上一动点到其准线与到点C 的距离之和的最小值的等于C 的直径,O 为坐标原点,则直线OA 被圆C 所截得的弦长为A. 2B.C. 6D.312.已知函数()21cos 2f x x t x =-,若其导函数()f x '在R 上单调递增,则实数t 的取值范围是A. 11,3⎡⎤--⎢⎥⎣⎦ B.11,33⎡⎤-⎢⎥⎣⎦C. []1,1-D. 11,3⎡⎤-⎢⎥⎣⎦二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f(x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n 都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省2016年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.2018年云南省高考数学一模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为325人.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】利用正态分布曲线的对称性结合已知求得P(X≤70),乘以1000得答案.【解答】解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为[,+∞).【考点】双曲线的简单性质.【分析】设出双曲线的右焦点和渐近线方程,令x=c,联立方程求出A,B,C,D的坐标,结合距离关系和条件,运用离心率公式和a,b,c的关系,进行求解即可.【解答】解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.计算=(用数字作答)【考点】三角函数的化简求值.【分析】利用诱导公式化简cos(﹣100°)=﹣sin10°,同角三角函数关系式1﹣sin10°=sin25°+cos25°﹣2sin5°cos5°代入化简.根据两角和与差的公式可得答案.【解答】解:由===.故答案为:.16.已知f(x)=,若f(x﹣1)<f(2x+1),则x的取值范围为{x|x>0,或x<﹣2 } .【考点】奇偶性与单调性的综合.【分析】由题意可得f(x)为偶函数,f(x)在[0,+∞)上单调递增.由不等式f(x﹣1)<f(2x+1),可得|x﹣1|<|2x+1|,由此求得x的范围.【解答】解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n 都成立?若存在,求k的取值范围,若不存在,请说明理由.【考点】数列与不等式的综合;数列递推式.【分析】(1)由数列的性质对其经行变形整理出可以判断数列为等差数列的形式即可,求出S n,再根据a n=S n﹣S n﹣1,即可求出数列的通项公式,(2)先构造函数f(n)并判断其单调性,然后再由函数的单调性解决函数恒成立的,求出参数k的取值范围.【解答】解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.云南省2016年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;茎叶图;离散型随机变量及其分布列.【分析】(1)利用频率分布直方图的性质可得x,进而定点甲校的合格率.由茎叶图可得乙校的合格率.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.利用P(X=k)=,即可得出.【解答】解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)= =,P(X=3)==.∴X的分布列为:E(X)=0+1×+2×+3×=.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系;平面与平面垂直的性质.【分析】(1)推导出SM⊥BC,SM⊥AM,由勾股定理得AM⊥DM,从而AM⊥平面DMS,由此能证明AM⊥SD.(2)以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,利用向量法能求出四棱锥S﹣ABCD的体积.【解答】证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:===.V S﹣ABCD20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.【考点】直线与椭圆的位置关系.(1)由题意可知:设椭圆的标准方程,c=a,则利用椭圆的定义m+n=2a,【分析】勾股定理n2+(2c)2=m2,及向量数量积,即可求得a和b的值,求得椭圆方程;(2)假设存在直线l,设出方程与椭圆方程联立,利用韦达定理,结合根的判别式,即可得到结论.【解答】解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;(2)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(3)设F(x)=e x﹣x﹣1,求出函数的导数,问题转化为x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,根据函数的单调性确定a的范围即可.【解答】解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.【考点】简单曲线的极坐标方程.【分析】(Ⅰ)利用三种方程的转化方法,即可写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,利用正弦函数的单调性即可得出最值.【解答】解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y ﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)当a=5,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得B⊆A,区间B的端点在集合A中,由此求得a的范围.【解答】解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].。
云南省昆明市2018届高三数学第一次摸底测试试题文.pdf

3
y
t8
2
23. 选修 4-5 :不等式选讲
已知函数 f ( x) x 2 x 3 .
(1)求不等式 f (x) 3 的解集;
(2)若不等式 f ( x) a2 6a 解集非空,求实数 a 的取值范围 .
昆明一中全国联考第一期参考答案
5
1
为 1,则 C 的方程为( )
A. x 2 y2 1
B
. x2 y2 1
C.
2
x2 y 2 1
23
x2 y2
D.
1
33
6. 用一个平面去截正方体,则截面不可能是(
)
A.等边三角形
B .直角三角形
C.
正方形
D .正六边形
x y1 7. 若 x, y 满足约束条件 x y 1 ,则目标函数 z x 2 y 的最小值为( )
A1C1, AB1 的中点 .
3
(1)证明: MN // 平面 BB1C1C ;
(2)若 CM MN ,求三棱锥 M NAC 的体积 ..
19. 某市为了解本市 2 万名学生的汉字书写水平, 在全市范围内进行了汉字听写考试, 现从
某校随机抽取了 50 名学生,将所得成绩整理后,发现其成绩全部介于
[40,100] 之间,将其
[80,100] 的人数 .
4
20. 已知中心在原点 O ,焦点在 x 轴上的椭圆 E 过点 C (0,1) ,离心率为
2
.
2
(1)求椭圆 E 的方程;
(2)直线 l 过椭圆 E 的左焦点 F ,且与椭圆 E 交于 A, B 两点,若 直线 l 的方程 .
OAB 的面积为 2 ,求 3
21. 已知函数 f ( x) ex , g (x)