传热学-微尺度流动与换热
传热学-微尺度流动与换热共27页

6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
西安交通大学《传热学》第六章期末考试拓展学习8

西交《传热学》第六章单相对流传热的关联式前言各位同学,以下是西交《传热学》第六章单相对流传热的关联式的,单相对流传热试验关联式,这个标题提醒了我们这一章的主要学习内容:单相状态,对流传热,试验,关联式。
单相是指没有相变的发生,怎么理解呢,就是在传热过程中传热的双方的状态没有变化,比如说在一块冰融化的过程中就存在状态的变化。
试验,每一个理论的产生和技术的应用都要经过研究人员在大量试验的基础上加以总结,因此试验是一种的重要的研究手段,从实验中可以推算出该项试验现象遵循的试验方程式即试验关联式。
主要介绍单相对流传热的实验结果,本章将按内部流动、外部流动、大空间自然对流及有限空间自然对流的顺序展开讨论。
为了通过有限次数的实验测定而得出具有一定通用性的换热规律,在进行实验以及整理实验数据时,都必须遵循一定的原则,即相似原理。
本章将先对相似原理进行较深入的介绍基础上,再逐一介绍各类具体的实验关联式。
一、微细尺度通道内的流动与换热及纳米流体换热简介产生背景:20世纪80年代初期由于高新科学技术的发展在机械、电子、控制与能源领域,一门新兴交叉学科-微机电系统(micro-electro-mechanical system-MEMS)迅速崛起。
这里的所谓“微”是指工作部件的特征尺度在1毫米(10-3 m)到微米(10-6 m)的尺度范围。
目前微型热交换器、微尺度作用器、微尺度控制器件、微尺度生物芯片等不少已经成为商业产品。
在这样微细尺度的通道内,流体的流动与热交换出现了许多与常规尺度通道中的流动与传热过程不同的特点(统称为尺度效应,size effects)。
微细尺度传热学的研究也成为传热学研究的一个前沿重要分支领域。
气体在微细尺度通道中流动时,气体分子的平均自由程λ与通道的特征尺度L(对圆管取为直径)之比称为Knudsen(努森)数,是表征流动区域的重要参数:KnLλ=根据Kn数大小的不同,可以将气体的流动划分为以下四个区域连续介质区(continuum region):0.001Kn≤根据Kn数大小的不同,可以将气体的流动划分为以下四个区域连续介质区(continuum region):0.001Kn≤速度滑移与温度跳跃区(velocity slip and temperature jump r egion):0.0010.1Kn<<过渡区(transition region): 0.110Kn <<自由分子区(free-molecular region): 10Kn ≥Navier -Stokes 方程与能量方程以及无速度滑移(即固体壁面上流体速度等于当地的固体表面速度)与无温度跳跃即(固体壁面上流体的温度等于当地的固体表面的温度)边界条件仅适用于Knudsen 数小于 的连续介质区;在 0.0010.1Kn <<的范围内,上述控制方程仍然适用,但必须采用速度滑移与温度跳跃的条件;在过渡区与自由分子区基于连续介质假定而导出的Navier -Stokes 方程与能量方程不再适用,对流动与传热过程的数学描述需要采用基于分子动力论的有关原理与方程。
微尺度

微通道换热器传热系数的 限制因素
• 1.通道尺寸的减少伴随着更高压力降的 产生。 • 2.
纳米流体想法的产生
• 引子:1873年,麦克斯韦最早提出用金 属颗粒来增加流体的传热性能。 • 产生:纳米流体介质,是指把金属或非 金属纳米粉体分散到水、醇、油等传统 换热介质中,制备成均匀、稳定、高导热 的新型换热介质。 • 结果:其传热特性远远高于普通流体。
微通道换热器的传热和对流
诸葛一然 11121505
微通道换热器原理
• 原理:利用传热学将热量从热流体传给 冷流体,冷热流体分别在固体壁面的两 侧流过,热流体的热量以对流和传导的 方式传给冷流体。
微通道换热器的制造
• 采用拉丝或光刻等技术在金属、玻璃等 基材上刻出几十至几百微米的细微槽道 来构成换热器的壁面,再采用焊接或胶 粘等方式形成封闭腔体来进行冷热流体 的热交换,达到制冷的目的。
对流的参数测量
流量
摩擦系数
对流参数
压强
粘度
布朗运动(Brownian motion )
• 定义:悬浮在流体中的微粒受到流体分 子与粒子的碰撞而发生的不停息的随机 运动 。
• 应用:纳米流体中的纳米颗粒发生碰撞 从一处运动到另一处传输热量,增加了 道换热器
大尺度微通道换热器
微通道换热器的制作
• 焊接要求: • 1.设计专用的工艺装置来保证槽道边缘 的对称。 • 2.保证基片在焊接时不被氧化。 • 探索结果:把待焊接片防在专门的密闭 腔体中并抽真空来进行焊接,可采用扩 散焊的方式。
传热的参数测量
温差
传热参数
热导率
热流
微尺度传热ppt

• 气体稀薄效应
通常用努曾数来表示气体稀薄的程度
当kn《1,连续介质区;0.01<kn<0.1, 滑移区; 0.1<kn<1,过渡 区, kn》1,自由分子流区;气体的稀薄性一般导致气体流动阻 力降低和换热减弱。
微喷管:缝宽19微米, 微喷管:缝宽19微米, 19微米 308微米 深308微米 图2 微喷管
2、微尺度流动和对流换热
• 流动阻力规律与常规尺寸条件下的不同 • 充分发展通道流的阻力因子与雷诺数的乘积不再是常数, 而应是雷诺数的函数。 • 微细通道湍流的 Nu比常规情况高 • 微细通道流传热数据很分散 • 微细通道层流向湍流过渡的雷诺数减小
影响微细流动与传热现象的某些因素:
• 流体的压缩性
由于微细通道内压力降很大,导致流体密度沿程有明显的变化,所 以必须考虑流体的压缩性,它不仅会形成加速压降,而且还将改变速 度剖面。
• 界面效应
在微细管道中液体表面张力将起更为重要的影响,此外,由于固壁 有时带静电,液体可以有极性 ,静电场的存在会阻碍液体中离子的运 动,从而使液体流动阻力增加,同时对微细管道中传热也会有重要影 响。
三、微尺度传热研究的主要问题
• • • • 微尺度导热 微尺度流动和对流换热 微尺度热辐射 微尺度的相变传热
1、的物理机制来自于两个方面:一是与导热问 题中的特征长度有关;另一方面导热能力与材料中晶粒大小有关,当 尺寸减小时,晶粒尺寸会随之减小,由于晶粒界面增大,所以输运能 力减弱,导热系数降低。
图3
图3示出了系统水平上的热耗散与系统体积之间的关系图;从图可见, 所有气冷系统数据均范入图3中的两条平行线之间的带内,由此带的斜率 看出,气冷系统中的体积热耗散密度几乎独立于系统尺寸,其范围大约在 3000W/m3—7000w/m3之间,其中笔记本电脑中的体积热耗散密度最 高,达7000W/m3。如此高密度的热量输运是一个富有挑战性的课题。 冷却微小系统的困难在于:首先,冷却空气速率不能太高,以尽可能减小 声学噪音;其次,器件结构紧凑性要求仅允许保留有限的冷却流体空间; 第三.同样的要求不允许在模块上安装大容量热沉(扩展表面);第四,低 造价的原则要求尽可能地采用塑料封装;露片,而这又会增大芯片与模块 表面之间的导热热阻,于是热量将主要聚集在基底材料上、所以,针对各 类电子器件中相当高的热源密度(图4),寻找具有高效热输运效能的微槽传 热方法多年来一直是人们探索的主题。
最新微尺度传热ppt

图3
图3示出了系统水平上的热耗散与系统体积之间的关系图;从图可见, 所有气冷系统数据均范入图3中的两条平行线之间的带内,由此带的斜率 看出,气冷系统中的体积热耗散密度几乎独立于系统尺寸,其范围大约在 3000W/m3—7000w/m3之间,其中笔记本电脑中的体积热耗散密度最 高,达7000W/m3。如此高密度的热量输运是一个富有挑战性的课题。 冷却微小系统的困难在于:首先,冷却空气速率不能太高,以尽可能减小
• 另一类是当容器或通道尺寸缩小至与核的临界直径具有同 一量级时,相变及其换热规律必会发生变化。
四、微尺度传热的主要应用领域
1、薄膜中的热传导
1987年 ,瑞士科学家发现 YBa2Cu3O7陶瓷在温度35 K以上具有超 导电性即高温超导性。人们第一次认识到自然界存在一个超导体及半 导体均可工作的温度范围 ,于是一种集超导体-半导体于一身的功能 强大的复合器件应运而生。这类器件的基本单元是一种沉积在硅或镓 砷化物基底上的高温超导薄膜,其内外的传热问题与超导的研究和应 用密切相关 ,因而对薄膜热物性及其热输运规律进行研究自然就成为 提高仪器性能的关键所在。
• 导热的辐射效应
电子器件和电子封装中的介电薄膜材料的导热行为可能产生异常 情况,当膜厚很小时,可以用辐射传递问题来分析和讨论晶格振动。
2、微尺度流动和对流换热
• 流动阻力规律与常规尺寸条件下的不同 • 充分发展通道流的阻力因子与雷诺数的乘积不再是常数,
而应是雷诺数的函数。 • 微细通道湍流的 Nu比常规情况高 • 微细通道流传热数据很分散 • 微细通道层流向湍流过渡的雷诺数减小
微流动与传热研究

1、流型
表征着两相系统中的流动结构,它受力学 因素所制约。但反过来极大地影响传热, 两相系统中的压降、传热系数、CI-IF等均 两相系统中的压降、传热系数、CI-IF等均 与流型息息相关。对于大通道中的流型已 进行了深入的实验及理论研究,但对于直 径在2mm以下的毛细管及更小尺寸的微通 径在2mm以下的毛细管及更小尺寸的微通 道中的流型研究相当少 随着当量直径的减小,表面张力的作用越 来越显著,从而导致了流型出现一些新的 特点。然而,到目前为止,在受热通道中 两相流流型的研究方面却非常少。
国内外研究现状
1、单相流体的流动与传热特性 2、流体相变的流动与传热特性 (1、流型 2、压降 3、传热 系数)
单相流体的流动与传热特性
对于充分发展的紊流(Re>10000): 对于充分发展的紊流(Re>10000): Nu=0.023Re0.8Pr0.4 对于充分发展的层流(Re<2200): 对于充分发展的层流(Re<2200): Nu=1.86(RePr)0.33(d/L)0.33(µf/µw)0.14 对于过渡区域(Re=2200到10000): 对于过渡区域(Re=2200到10000): Nu=0.116(Re2/3-125)Pr1/3(1+(d/ (1+(d/ L))2/3(µf/µw)0.14 其中d为管径,L为管长度,u 其中d为管径,L为管长度,uf为流体粘度
2、压降
压降对于微换热器的设计具有重要意义,它决定 了液体循环系统所需的压头。减小通道的尺寸可 以获得很高的传热系数,但与此同时却使得压降 增加、压力脉动增大。对于大通道中的两相压降, 采用现有的模型或关联式来进行预测,其误差为 ±30%左右。而将其用于微通道时,其误差则更 30%左右。而将其用于微通道时,其误差则更 大。由于两相流的复杂性及考虑到工业应用的方 便,通常采用半理论的关联式来对两相压降进行 估计。这些关联式的共同特点是所有的变量均采 用其时均值,假设总压降由摩擦压降、加速压降 和重位压降三部分组成,并将两相压降表示成单 相摩擦压降与两相倍率乘积的形式。从而将两相 压降的问题转化为确定两相倍率的问题
最新微尺度传热ppt

图1 多尺度的客观世界
微尺度的流动和传热与常规尺度的流动和传热的 不同的原因:
(1)当物体的特征尺寸缩小至与载体粒子的平均自由程同一量级时, 基于连续介质概念的一些宏观概念和规律就不再适用,粘性系数、导 热系数等概念要重新讨论 , N-S方程和导热方程等也不再适用。
微细尺度传热是近些年形成的一个新的学科分支,主要研究空间尺度和时 间尺度微细情况下的传热学规律。当尺度微细化后,其动和传热的规律已明显 不同于常规尺度条件下的流动和传热现象,换言之,当研究对象微细到一定程 度以后 ,出现了流动和传热的尺度效应。“微细”只是一个相对的概念 ,而不是 指某一特定尺度。不同的场合会有不同的定义。所谓“微尺度”并没有严格的 界定,只是一个相对大小的概念,它不仅包括空间尺度,还包括时间尺度。随着 研究对象的不同,出现微尺度效应的时空尺度范围也不相同。通常所指的空间微 尺度是跨越微米到原子尺度的宽广范围:
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长
传热学 微尺度ppt

二、一些典型微热器件及其相应的热现象
所以,针对各类电子器件中相当高的热源密度 (图1.4),寻求具有高效热输运效能的微槽传热方法 多年来一直是人们探索的主题。
图1.4 模板上各类热源的几 何结构及其设置
二、一些典型微热器件及其相应的热现象
• 5、微型换热器 如上所述,微型换热器最实际的应用是在微电 子器件的冷却上。现代微制造技术的进展已经使得 加工由多个水力学直径在10到10³μm之间的微型管道 组成的换热器成为可能。这类流动槽道或交错肋片 通常制作在硅、金属或其他合适材料的薄片上,每 一薄片既可单独组成一个平板换热器,也可堆叠和 焊接在一起以形成平行的顺流或逆流换热器(见图1.5 及图1.6)。
二、一些典型微热器件及其相应的热现象
图1.7 微热管运行示意图
二、一些典型微热器件及其相应的热现象
• 6、微型燃气透平用燃烧室 Waitz等新近发展了一个针对微燃气透平的燃 烧室,如图1.8
图1.8 微型燃气透平发电机
二、一些典型微热器件及其相应的热现象
微型和常规器件在设计上的差别大多是由于尺 寸缩小引起的,但它也受燃烧室与发动机的相对尺 寸、周期压比、材料温度极限等影响。微型燃烧室 的一些特别之处在于: (1) 具有更短的用于混合和燃烧的停留时间; (2) 附加的能量损失主要由较高的比表面积决定; (3) 采用了难熔的结构陶瓷。 微机电技术是在一些难熔结构陶瓷的微加工成 为可能后才得以实现的,这些材料具有适应恶劣环境 的优异的机械、热学及化学性质。它们已经成为制造 某些大尺度器件的着眼点。
微米/纳米尺度传热学
第一章 绪论
西安电子科技大学
第一章 绪论
一 、导言 二、一些典型微热器件及其相应的热现象 三、微器件中传热问题的尺寸效应 四、微尺度传热学中的一些分析方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
(3)换热器:尺度已经跨越3个数量级
图7 换热器的多尺度范围
22
4 微尺度流动与换热基本特点 (1)面积与体积之比大大增加 常规尺度的物体,例如1米立方的体积,其表
面积为6米平方,面积/体积之比,
A/V=6m-1
将该物体分为尺度为1微米的 1018 小立方体,
侧面积与体积之比为
A/V=6 106 m-1
图12 二维微肋管
27
图13 三维微肋管
28
在微尺度系统中作用在流体上的体积力与表面
力的相对重要性发生了巨大的变化:表面力的地位
上升: 随着尺度减小,粘性力相对作用增强,惯 性力作用变小,越靠近壁面这种规律越明显。 (2)对气体可压缩性大大增加,引起稀薄效应
对气体在微细通道中的受迫对流,由于单位
通道长度流体压降很大,沿通道长度流体密度发 生显著变化。
性,电渗,电泳。
(4)固体表面的绝对粗糙度在微尺度通道中影响更 加明显
常规尺度通道 同样的绝对粗糙度
微细尺度通道
对内径8毫米的
管子在壁面上产生
0.1 微米厚的凝结 液体大约需要6百万 个分子。
图8 管内凝结的 分子动力学模拟 预测
17
(a) 日立Thermoexcel-E
(b) Wieland GEWA-TW
尽管通道进口当地Ma数很小,但是出口处, Ma可以很大;必须考虑可压缩性;同时流体沿通道
剧烈加速,稀薄性影响逐渐显露。
气体的稀薄性用无量纲数Kn(Knudsen)数
表示:
Kn
L
为气体分子平均自由程;
L 为通道特征尺度。
气体流动按Kn数大小的分类(钱学森,1946):
Kn 0.001
(1)微喷管内的流动 图4 微喷管系 统示例
10 12
微喷管
15 12
加热器 喷嘴
70°
0.1
0.92 0.2
1.2
隔板
4.5
0.3
0.1 0.3
0.42
2.42 7
基座
工质
图5 微喷嘴加热系统
5
微喷管: 缝宽19微米, 深308微米 图6 微喷管
6
微喷管用于自由分子微电阻加热推力器中,可为 微型航天器姿态控制提供动力。其工作原理是采用薄
微尺度流动与换热
1 微尺度流动与换热的一般概念
大千世界的物体 尺度变化跨三十余个
数量级,近10余年来
科学技术发展的重要 方向之一是微型化。
图1 多尺度的客观世界
爱因斯坦曾经预言: “未来科学的发展无非是继续向宏观世界和微观世界 进军” ;
1959,美国物理学家、诺贝尔奖获得者理查德· 弗曼在美国西海岸会议上宣读了一篇经典论文
“There is plenty of room at bottom”,首次提出
纳米技术的预言。
1962年,第一个硅微型压力传感器问世,其后
开发出尺寸为50-500mm的齿轮、齿轮泵、气动涡
轮及联结件等微机械 (里程碑 )。
1989年,在美国盐湖城会议上,首次提出
MEMS概念:Micro-Electro-Mechanical
(2)燃料电池流场板内的流动 燃料电池流场板内的流动燃料电池等温地将化学
能转换成为电能,不需要经过热机过程,效率不受卡
诺循环地限制,转化效率可达40-60%;环境友好,
几乎不排放氮氧化合物与硫化物,二氧化碳地排放过
量也必火电厂减少40% 以上被认为是21世纪很有希 望的高效、洁净能源。
图7 PEMFC的电化学反应示意图
Systems,这是指特征尺度在 1mm-1 μm 之间 集电子、机械于一身的器件。在这样的器件中有气体 或者液体作为工作介质,其内部的流动与换热就是一 般的微尺度流动与换热。
2 热流现象的尺度范围
图2 热流科学研究对象的时间尺度
20
图3 热流科学研究对象的空间尺度 21
3 微尺度流动与换热举例
(c) Wolverine-Turbo-B
(d) Wielad GEWA-SE
(e) Trent 弯翅管
(f) 烧结表面
图9 部分商用沸腾换热强化表面结构示意图
24
图10 双侧强化管C 26
Hitachi Review, 1975, 24(8):329-334
-连续介质区
0.001 Kn 0.1 -速度滑移、温度跳跃区 0.1 Kn 10 Kn>10
-过渡区 -自由分子流
当气体流动的Kn数大于0.001以后连续介质 的假定失效,流动与换热呈现出许多新的特点。
(3)对液体,由于面体比的变化使固体表面的界面 效应明显:双电层(Electric Double Layer),电粘
膜电阻做加热器,通过推进剂分子(水蒸气或氩气)
与加热器壁面的碰撞,将能量传递给推进剂,再经过 喷管喷出,产生推力。推力器尺寸很小(通道宽度 1~100μm)。它要求加热元件与出口缝隙之间的空 间等于气体的平均自由程,从而减少分子之间的碰撞,
保证喷出气体的分子动能等于加热器的温度(系统内
最高温度),提高总效率,从而获得最高的比冲(单 位质量推进剂所产生的冲量称为比冲量) 。