西邮MATLAB光的圆孔衍射实验报告

合集下载

Matlab数字衍射光学实验(二).

Matlab数字衍射光学实验(二).

clear;close all;lamda=0.6328;%入射光波长,单位umz=200.0e3;%传播距离,单位umh=2e3;w=2e3;%模拟光波的大小,单位umdx=10.0;dy=10.0;%抽样间隔,单位umM=h/dx;N=w/dy;%抽样点数a0=1;%初始振幅大小为 1x0=0;y0=0;%模拟光源位于坐标原点k=2*pi/lamda;%波数%---------球面波表示-------%[x,y]=meshgrid(-M/2*dx:(M-1)/2*dx,-N/2*dy:(N-1)/2*dy);%M个点,两点之间的距离为dxSphFunct=a0/z.*exp(i*k*z).*exp(i*pi/(lamda*z).*((x-x0).^2+(y-y 0).^2));%球面波I=abs(SphFunct).^2;%光强度I1=I./max(max(I));%归一化强度,二维所以求两次max()Ph=angle(SphFunct);%相位,函数angle()表示取相位figure(1);imagesc(I1);%做出球面波的强度分布图,没有强度变化,均匀光斑,这里做了彩图figure(2);P=(Ph+pi)/(2*pi);%归一化相位imshow(P);%画出球面波的相位分布图figure(3);imagesc(P);%画出球面波相位分布的彩图clear;close all;lamda=0.6328;%入射光波长umh=2e3;w=2e3;%模拟光波的大小um dx=10.0;dy=10.0;%抽样间隔umM=h/dx;N=w/dy;%抽样点数A=1;%振幅为 1k=2*pi/lamda;%波数theta=pi/6;%设定theta为30度a=pi/2-theta;%波矢与x轴夹角b=pi/2;%波矢与y轴夹角c=theta;%波矢与z轴夹角z=0;%-----------平面波----------%[x,y]=meshgrid(-M/2*dx:(M-1)/2*dx,-N/2*dy:(N-1)/2*dy);%抽样网格pingmianbo=A.*exp(i*k.*(x.*cos(a)+y.*cos(b)+z.*cos(c)));%平面波公式I=abs(pingmianbo).^2;%光强度I1=I./max(max(I));%归一化强度Ph=angle(pingmianbo);%相位figure(1);imshow(I1)%做出强度分布图,没有强度变化,均匀光斑figure(2);imagesc(I1);%画出强度分布彩图figure(3);P=(Ph+pi)/(2*pi);%归一化相位imshow(P);%画出相位分布图像figure(4);imagesc(P);%做出相位分布彩图clear;close all;lamda=0.6328;%入射光波长umz=100.0e3;%传播距离umh=2e3;w=2e3;%模拟光波的大小umdx=10.0;dy=10.0;%抽样间隔umM=h/dx;N=w/dy;%抽样点数a0=1;%设定振幅x1=-0.2e3;y1=0;%相当于将上图逆时针旋转90度后的S1,距原点0.2mmx2=0.2e3;y2=0;%相当于将上图逆时针旋转90度后的S2,距原点0.2mmk=2*pi/lamda;%波数%---------球面波---------%[x,y]=meshgrid(-M/2*dx:(M-1)/2*dx,-N/2*dy:(N-1)/2*dy);%抽样网格wave1=a0/z.*exp(i*k*z).*exp(i*pi/(lamda*z).*((x-x1).^2+(y-y1).^2));%第一束球面波wave2=a0/z.*exp(i*k*z).*exp(i*pi/(lamda*z).*((x-x2).^2+(y-y2).^2));%第二束球面波wave=wave1+wave2;%两束球面波相遇,即为两者复振幅之和I=abs(wave).^2;%光强度I1=I./max(max(I));%归一化强度Ph=angle(wave);%相位函数angle()表示取相位figure(1);imshow(I1);%画出球面波的强度分布图,没有强度变化,均匀光斑figure(2);P=(Ph+pi)/(2*pi);%归一化相位imshow(P);%画出球面波的相位分布图figure(3);imagesc(P);%画出球面波的相位分布彩图clear;close all;lamda=0.6328;%入射光波长umh=2e3;w=2e3;%模拟光波的大小umdx=10.0;dy=10.0;%抽样间隔umM=h/dx;N=w/dy;%抽样点数A=1;%设定振幅为 1k=2*pi/lamda;%波数theta1=-0.25*pi/180;%第一束平面波与z轴夹角theta2=0.25*pi/180;%第二束平面波与z轴夹角a1=pi/2-theta1;%波矢与x轴夹角b1=pi/2;%波矢与y轴夹角c1=theta1;%波矢与z轴夹角a2=pi/2-theta2;%波矢与x轴夹角b2=pi/2;%波矢与y轴夹角c2=theta2;%波矢与z轴夹角z=0e3;%----------平面波表示----------%[x,y]=meshgrid(-M/2*dx:(M-1)/2*dx,-N/2*dy:(N-1)/2*dy);%二维抽样网格wave1=A.*exp(i*k.*(x.*cos(a1)+y.*cos(b1)+z.*cos(c1)));%第一束平面波wave2=A.*exp(i*k.*(x.*cos(a2)+y.*cos(b2)+z.*cos(c2)));%第二束平面波wave=wave1+wave2;%两束光相遇I=abs(wave).^2;%光强度I1=I./max(max(I));%归一化强度Ph=angle(wave);%相位figure(1);imshow(I1);%画出强度分布图figure(2);imagesc(I1);%画出强度分布彩图figure(3);P=(Ph+pi)/(2*pi);%归一化强度imshow(P);%做出相位分布图figure(4);imagesc(P);%做出相位分布彩图。

光的圆孔衍射实验报告包含流程图

光的圆孔衍射实验报告包含流程图

光的圆孔衍射实验报告包含流程图
报告标题:光的圆孔衍射实验报告
一、实验目的
通过实验,探究光的圆孔衍射现象,并研究影响衍射现象的因素。

二、实验器材
光源、圆孔、光屏、尺子、卡尺、光学平台等。

三、实验流程
1. 准备器材,将圆孔固定在光学平台上,并将光屏放置在离圆孔一定距离处;
2. 开始实验前,先关闭其他的灯光,确保实验室内光线较暗,开启光源,并调节光源的亮度;
3. 在圆孔照射下,观察光屏上形成的光斑,可根据距离和光斑大小计算光的波长;
4. 更换不同大小的圆孔,继续观察光屏上的光斑大小变化,探究孔径对衍射图案的影响;
5. 更换不同大小的光屏,观察光斑在不同距离处的直径变化,探究距离对衍射图案的影响。

四、实验结果及分析
1. 随着圆孔孔径的减小,衍射光斑的直径变大,并且衍射条纹逐渐变模糊,说明孔径大小对衍射现象有较大的影响;
2. 在同一距离处,光斑大小随距离的增加而变小,并且衍射的条纹变得更加清晰,证明距离的变化也对衍射现象有影响;
3. 根据光斑的大小和距离,可计算出光的波长,实验结果与理论值较为接近,证明实验的可靠性。

五、实验结论
光的圆孔衍射现象受圆孔孔径和观察距离影响,通过实验可计算出光的波长。

该实验有助于深入理解光的物理性质及其在各种实际应用中的重要作用。

六、实验思考
1. 在实验中,如何避免环境光的干扰对衍射实验结果的影响?
2. 制作圆孔时,如何保证孔径大小的精度?
3. 如何利用衍射现象进行精密测量?。

西安邮电大学光学实验matlab仿真结果分析与程序

西安邮电大学光学实验matlab仿真结果分析与程序

光学实验实验报告课程名称:光学实验*名:***学院:电子工程学院系部:光电子技术系专业:电子科学与技术年级:科技1201学号:********指导教师:**2014年12 月24 日光波在介质中界面上的反射及透射特性一.实验目的:1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律; 3.掌握布儒斯特角和全反射临界角的概念。

二.实验原理:1 反射定律和折射定律光由一种介质入射到另一种介质时,在界面上将产生反射和折射。

现假设二介质为均匀、透明、各向同性介质,分界面为无穷大的平面,入射、反射和折射光均为平面光波,其电场表示式为)(0r k t i l l l l e E E ⋅--=ω l =i, r, t式中,脚标i 、r 、t 分别代表入射光、反射光和折射光;r 是界面上任意点的矢径,在图2-1所示的坐标情况下,有r=ix+jy图2-1 平面光波在界面上的反射和折射 图2-2 k i 、k r 、k t 三波矢关系根据电磁场的边界条件,可以得到如下关系)(0)(t i r i tr i =⋅-=⋅-==r k k r k k ωωω 这些关系表明:①入射光、反射光和折射光具有相同的频率;②入射光、反射光和折射光均在入射面内,k i 、k r 和k t 波矢关系如图2-2所示。

进一步可得tt i i r r i i sin sin sin sin θθθθk k k k == 或tt i i r r i i sin sin sin sin θθθθn n n n ==即介质界面上的反射定律和折射定律,它们给出了反射光、折射光的方向。

折射定律又称为斯涅耳(Snell)定律。

2 菲涅耳公式 s 分量和p 分量通常把垂直于入射面振动的分量称做s 分量,把平行于入射面振动的分量称做p 分量。

为讨论方便起见,规定s 分量和p 分量的正方向如图2-3所示。

图2-3 s 分量和p 分量的正方向反射系数和透射系数 假设介质中的电场矢量为)(i 0e r k t l l l E E ⋅--=ω l =i, r, t其s 分量和p 分量表示式为)(i 0e r k t lm lm l E E ⋅--=ω m =s,p则定义s 分量、p 分量的反射系数、透射系数分别为tmtm m im rmm E E t E E r 0000==菲涅耳公式假设界面上的入射光、反射光和折射光同相位,根据电磁场的边界条件及s 分量、p 分量的正方向规定,可得ts rs s E E E i =+和2tp 1rp 1ip cos cos cos θθθH H H =-利用E H εμ=,上式变为22ts 11rs is cos cos )(θθn E n E E =-再利用折射定律,消去E ts ,经整理可得)sin()sin(1212is rs θθθθ+-=E E 根据反射系数定义,得到)sin()sin(2121θθθθ+--=s r221111cos cos cos 2θθθn n n t s +=将所得到的表示式写成一个方程组,就是著名的菲涅耳公式:212122112*********tan tan tan tan cos cos cos cos )sin()sin(θθθθθθθθθθθθ+--=+-=+--==n n n n E E r is rs s 2121211221122121002sin 2sin 2sin 2sin cos cos cos cos )tan()tan(θθθθθθθθθθθθ+-=+-=+-==n n n n E E r iprp p 21121121112100221111212100cos cos cos 2)cos()sin(sin cos 2cos cos cos 2)sin(sin cos 2θθθθθθθθθθθθθθθθn n n E E t n n n E E t iptp p is ts s +=-+==+=+==这些系数首先是由菲涅耳用弹性波理论得到的,所以又叫做菲涅耳系数。

实验7 衍射的Matlab模拟

实验7 衍射的Matlab模拟

实验7衍射的Matlab模拟一、实验目的:掌握衍射的matlab模拟。

二、实验内容:1)单个圆孔夫朗和费衍射的matlab模拟2)双圆孔夫朗和费衍射的matlab模拟3)同一波长,狭缝数量分别为1、2、3、6、9、10时候的夫朗和费衍射的matlab模拟4)对4个不同波长的光照射时,狭缝数量分别为1、3时候的夫朗和费衍射的matlab 模拟5)单个圆孔菲涅尔衍射的matlab模拟6)模拟圆孔(或者单缝)衍射时,衍射屏到接收屏距离不同的时候衍射的图样1)clearclclam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;hh=(2*BESSELJ(1,x)).^2./x.^2;b(:,i)=(hh)'.*5000;B=b/max(b);endimage(xs,ys,b);colormap(gray(n));figure;plot(xs,B);colormap(green);-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-3-3-2-10123x 10-300.10.20.30.40.50.60.70.80.912)%双圆孔夫琅禾费衍射clear all close all clc %lam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:m r=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;h=(2*BESSELJ(1,x)).^2./x.^2;d=10*a;deltaphi=2*pi*d*xs(i)/lam;hh=4*h*(cos(deltaphi/2))^2;b(:,i)=(hh)'.*5000;end image(xs,ys,b);colormap(gray(n));-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-33)lamda=500e-9;%波长N=[1236910];for j=1:6a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(j)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure(j);subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);plot(B1,ys,'k');end-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为2-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为3-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为9狭缝数为6-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.0254)lamda=400e-9:100e-9:700e-9;%波长N=[13];a=2e-4;D=5;d=5*a;for j=1:4ym=2*lamda(j)*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for k=1:2for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda(j);beta=pi*d*sinphi/lamda(j);B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(k)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);狭缝数为10plot(B1,ys,'k');end end-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02Lamda=400nm,N=1-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025Lamda=400nm,N=3Lamda=500nm,N=1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03Lamda=500nm,N=3Lamda=600nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04Lamda=600nm,N=3Lamda=700nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.045)clearclcN=300;r=15;a=1;b=1;I=zeros(N,N);[m,n]=meshgrid(linspace(-N/2,N/2-1,N));D=((m-a).^2+(n-b).^2).^(1/2);i=find(D<=r);I(i)=1;subplot(2,2,1);imagesc(I)colormap([000;111])axis imagetitle('衍射前的图样')L=300;M=300;[x,y]=meshgrid(linspace(-L/2,L/2,M));lamda=632.8e-6;k=2*pi/lamda;z=1000000;Lamda=700nm,N=3h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z); H=fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%圆孔频谱G=H.*B;U=fftshift(ifft2(G));Br=(U/max(U));subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)%figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U));subplot(2,2,4);plot(abs(Br))6)lamda=500e-9;%波长N=1;%缝数,可以随意更改变换a=2e-4;D=3:7;d=5*a;for j=1:5ym=2*lamda*D(j)/a;xs=ym;%屏幕上y的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D(j);alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2)plot(B1,ys,'k');end-0.4-0.200.20.4-0.015-0.01-0.00500.0050.010.01500.51-0.015-0.01-0.0050.0050.010.015D=3m-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025D=5m D=4m-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04D=7m D=6m。

基于MATLAB的矩孔、单缝、圆孔夫琅和费衍射概诉

基于MATLAB的矩孔、单缝、圆孔夫琅和费衍射概诉

课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 夫琅和费矩孔、单缝、圆孔衍射图样一、设计目的了解MA TLAB软件的基本知识,基本的程序设计,软件在高等数学和工程数学中的应用,学会使用软件进行数值计算和控制工程中的应用。

二、设计内容和要求1.绘制弗朗禾费矩孔、单缝和圆孔衍射图样,可以是二维的或三维的,也可以两种都有。

改变矩孔、单缝和圆孔的参数,比较衍射条纹的变化。

2. 学习Matlab语言的概况和Matlab语言的基本知识。

3.学习Matlab语言的程序设计。

三、初始条件计算机;Matlab软件。

四、时间安排1、2015年01月19日,任务安排,课设具体实施计划与课程设计报告格式的要求说明。

2、2015年01月20日,查阅相关资料,学习Matlab语言的基本知识,学习MATLAB语言的应用环境、调试命令,绘图功能函数等。

3、2015年01月21日至2015年01月22日,Matlab课程设计制作和设计说明书撰写。

4、2015年01月23日,上交课程设计成果及报告,同时进行答辩。

指导教师签名:2015年01 月19日系主任(或负责教师)签名:2015年01 月19日目录摘要 (I)1.设计的内容及要求 (1)1.1设计的目的 (1)1.2设计任务要求 (1)2.设计原理及设计思路 (1)2.1夫琅和费干涉理论 (1)2.1.1夫琅和费圆孔衍射 (2)2.1.2夫琅和费矩孔衍射 (2)2.1.3夫琅和费单缝衍射 (2)2.2设计思路 (3)3.仿真及分析 (4)4.心得和体会 (8)参考文献 (8)摘要物理光学理论较为复杂抽象,实验现象的演示对条件要求高。

采用MATLAB7.0强大的函数作图功能对矩孔、单缝、圆孔的夫琅和费衍射进行模拟,建立直观形象并且精确完整的理论模型,并附上程序代码,将干涉理论联系起来,分析衍射和干涉的本质。

从而加深对夫琅和费原理、概念、和图像的理解。

通过使用MATLAB编写程序,不仅理解了物理思想,而且了解了运用软件解决物理问题的方法。

圆孔矩孔的菲涅尔衍射模拟(matlab实现)-工程光学

圆孔矩孔的菲涅尔衍射模拟(matlab实现)-工程光学

工程光学综合练习-----圆孔、矩孔的菲涅尔衍射模拟圆孔和矩孔的菲涅尔衍射模拟一、原理由惠更斯-菲涅尔原理可知接收屏上的P点的复振幅可以表示为其中为衍射屏上的复振幅分布,为倾斜因子。

根据基尔霍夫对此公式的完善,有设衍射屏上点的坐标为(x1, y1),接收屏上点的坐标为(x, y),衍射屏与接收屏间距离为z1,当满足菲涅尔近似条件时,即此时可得到菲涅尔衍射的计算公式把上式指数项中的二次项展开,并改写成傅里叶变换的形式,可以写成上式为菲涅尔衍射的傅里叶变换表达式,它表明除了积分号前面的一个与x1、y1无关的振幅和相位因子外,菲涅尔衍射的复振幅分布是孔径平面的复振幅分布和一个二次相位因子乘积的傅里叶变换。

相对于夫琅和费衍射而言,菲涅尔衍射的观察屏距衍射屏不太远。

在菲涅尔衍射中,输入变量和输出变量分别为衍射孔径平面的光场分布和观察平面的光场以及光强分布,考虑到这三个量都是二维分布,而且Matlab主要应用于矩阵数值运算,所以本程序选择用二维矩阵来存储衍射孔径平面和观察平面的场分布,并分别以矩阵的列数和行数来对应平面的直角坐标值(x, y)以及(x1, y1)。

二、圆孔菲涅尔衍射用MATLAB分别构造表示衍射屏和接收屏的二维矩阵。

注意使两矩阵阶次相同,考虑到运算量的要求,采样点数不能过多,所以每个屏的x和y方向各取200到300点进行运算。

根据式(4),选取合适的衍射屏和接收屏尺寸和相距的距离,模拟结果如下:取典型的He-Ne激光器波长λ=632.8nm,固定衍射屏和接收屏尺寸和相距的距离,分别取不同的圆孔半径,得到以下三组衍射图样,其圆孔半径分别为12mm,20mm,50mm图1(r=12mm)图2(r=20mm)图3(r=50mm) 三、矩孔的菲涅尔衍射步骤与上述相同,仅需改变与衍射屏形状对应的矩阵。

这里选择矩孔的长宽相等,分别为15mm,20mm,30mm,其衍射图样及强度分布如图4、5、6图4(a=b=15mm)图5(a=b=20mm)图 6(a=b=30mm)四、MATLAB 程序%所有长度单位为毫米lamda=632.8e-6; k=2*pi/lamda;z=1000000;%先确定衍射屏N=300; %圆屏采样点数a=15;b=15;[m,n]=meshgrid(linspace(-N/2,N/2-1,N));I=rect(m/(2*a)).*rect(n/(2*b));q=exp(j*k*(m.^2+n.^2)/2/z);subplot(2,2,1); %圆孔图像画在2行2列的第一个位置 imagesc(I) %画衍射屏的形状colormap([0 0 0; 1 1 1]) %颜色以黑白区分axis imagetitle('衍射屏形状')L=300;M=300; %取相同点数用于矩阵运算若为圆孔,方框内替换为以下程序 r=12;a=1;b=1; I=zeros(N,N); [m,n]=meshgrid(linspace(-N/2,N/2-1,N)); D=((m-a).^2+(n-b).^2).^(1/2); i=find(D<=r); I(i)=1; %孔半径范围内透射系数为1[x,y]=meshgrid(linspace(-L/2,L/2,M));h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z);%接收屏H =fftshift(fft2(h));B=fftshift(fft2(I)); %圆孔频谱G=H.*B; %公式中为卷积,空间域中相卷相当于频域中相乘U= fftshift(ifft2(G)); %求逆变换,得到复振幅分布矩阵Br=(U/max(U)); %归一化subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)% figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U)); %画三维图形subplot(2,2,4);plot(abs(Br))。

matlab数字衍射光学实验讲义(二)

matlab数字衍射光学实验讲义(二)

实验注意事项(必读)1.没有弄清楚实验内容者,禁止接触实验仪器。

2.注意激光安全。

绝对不可用眼直视激光束,或借助有聚光性的光学组件观察激光束,以免损伤眼睛。

3.注意用电安全。

He-Ne激光器电源有高压输出,严禁接触电源输出和激光头的输入端,避免触电。

4.注意保持卫生。

严禁用手或其他物品接触所有光学元件(透镜、反射镜、分光镜等)的光学表面;特别是在调整光路中,要避免手指碰到光学表面。

5.光学支架上的调整螺丝,只可微量调整。

过度的调整,不仅损坏器材,且使防震功能大减。

6.实验完成后,将实验所用仪器摆放整齐,清理一下卫生。

Matlab数字衍射光学实验二计算机仿真过程是以仿真程序的运行来实现的。

仿真程序运行时,首先要对描述系统特性的模型设置一定的参数值,并让模型中的某些变量在指定的范围内变化,通过计算可以求得这种变量在不断变化的过程中,系统运动的具体情况及结果。

仿真程序在运行过程中具有以下多种功能:1)计算机可以显示出系统运动时的整个过程和在这个过程中所产生的各种现象和状态。

具有观测方便,过程可控制等优点;2)可减少系统外界条件对实验本身的限制,方便地设置不同的系统参数,便于研究和发现系统运动的特性;3)借助计算机的高速运算能力,可以反复改变输入的实验条件、系统参数,大大提高实验效率。

因此.计算机仿真具有良好的可控制性(参数可根据需要调整)、无破坏性(不会因为设计上的不合理导致器件的损坏或事故的发生)、可复现性(排除多种随机因素的影响,如温度、湿度等)、易观察性(能够观察某些在实际实验当中无法或者难以观察的现象和难以实现的测量,捕捉稍纵即逝的物理现象,可以记录物理过程的每一个细节)和经济性(不需要贵重的仪器设备)等特点。

Matlab是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件。

它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便、界面友好的用户环境。

它还包括了ToolBox(工具箱)的各类问题的求解工具,可用来求解特定学科的问题。

圆孔衍射相对光强分布实验报告完整版

圆孔衍射相对光强分布实验报告完整版
4.据已知波长(λ=632.8nm)、衍射小孔半径a和物镜焦距f(或用小孔到光屏的距离代替),验证艾里斑半径公式。
[实验数据处理与分析]
1.菲涅尔圆孔衍射实验数据与分析
表1实验中所测数据
序号
1
2
3
亮斑位置
90cm
32cm
18cm
暗斑位置
45cm25Leabharlann m16cm图1半波带法
表2亮暗斑的理论计算区间
K
5
[实验思考题]
1.在满足远场条件下,本实验中,并没有使用透镜而获得夫琅禾费衍射图样。请简述远场条件。
答:本实验中,采用激光作为光源,因激光束的发散角很小( ),单缝的宽度a也很小,所以采用激光束直接照射狭缝,可认为是平行光入射。[1]
图2远场条件图示
参考文献:
[1]刘希,任天航,白翠琴,马世红.夫琅禾费衍射光强的反常分布和Matlab模拟[J],物理实验Vol.33,No.8,2013
8.5
根据艾里斑直径计算公式: ,得到艾里斑直径的理论值:
表4艾里斑直径的理论值
f=74cm
孔径(mm)
0.5
0.3
0.15
艾里斑直径(mm)
2.28
3.8
7.6
f=92cm
孔径(mm)
0.5
0.3
0.15
艾里斑直径(mm)
2.8
4.8
9.4
表5相对误差分析
f=74cm
孔径(mm)
0.5
0.3
0.15
基础物理实验(Ⅱ)课程实验报告
实验2.9圆孔衍射相对光强分布
(2)实验步骤
1.参照图沿平台放置个光学元件,如果没有透镜,也可以不用透镜,调节共轴,获得衍射图样。注意检查扩束后是否为平行光。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学仿真课程设计实验报告
课程名称:光学仿真课程设计
姓名:
学院:电子工程学院
系部:光电子技术系
专业:
年级:
学号:
指导教师:***
职称:讲师
时间:2013-11-18至2013-11-29
光的圆孔衍射
一、实验目的
利用基尔霍夫衍射公式对圆孔衍射进行计算。

1.改变光源位置及观察屏位置,观察远场衍射图案及艾里斑;2.近场观察距离改变衍射图案的变化;对仿真结果进行总结分析。

二、实验原理
基尔霍夫衍射定理从微分波动方程出发,利用场理论中格林定理将空间P 点的光场与其周围任一封闭封闭曲面上的个点光场建立起了联系。

对于小孔衍射问题,有一无限大不透明平面屏,其上有一开孔∑,用点光源照明,围绕P 点作一闭合曲面,闭合曲面由三部分组成:开孔∑,不透明屏部分背照面∑1,以P 为中心、R 为半径的大球部分球面∑2。

此时P 点光场幅振幅为:
E (P )=1/4π
∬[∂E ∂n (e −ikr r )−E ∂∂n (e −ikr
r
)]dσ∑=∑1+∑2
(1)在∑上,E 和∂E
∂n 的值由入射光波决定:
E =
A l
e −ikl
∂E ∂n =cos (n,l )(ik −1l )A
l
e −ikl A 是离点光源单位距离处的振幅,cos(n,l)表示外向法线n 和从S 到∑上某点Q 的矢量l 之间夹角余弦。

(2)在不透明屏背照面∑1上,E=0,∂E
∂n =0。

(3)对于∑2面,r=R ,cos(n,R)=1,且有
∂∂n (e −ikR R )=(ik −1R )e −ikR R R≫1⇒ ik e −ikR R
所以在∑2面上的积分为
14π∬e −ikR R ∑2
(∂E ∂n −ikE)dσ= 14π∬e −ikR R Ω
(∂E ∂n
−ikE)R 2dω 式中,Ω是∑2对P 点所张立体角,dω是立体角元,在辐射场中,
lim R→∞
(
∂E
∂n
−ikE)R =0 综上所述,只需考虑对孔径面∑的积分,即
E (P )=−i λ∬E (l )e −ikr r [cos (n,r )−cos (n,l)
2
]dσ∑
此事为菲涅尔-基尔霍夫衍射公式。

E(Q)=E(l)=A
l
e−ikl
K(θ)=cos(n,r)−cos (n,l)
2
C=−
i
λ
其中P点光场是∑上无穷多次波源产生的,次波源的幅振幅与入射波在该点的幅振幅E(Q)成正比,与波长λ成反比;因子(-i)表明次波源的振动相位超前于入射波π/2,;倾斜因子K(θ)表示次波的振幅在各个方向上是不同的。

三、实验流程及程序
程序:
clear all;
lamd=500e-9;
E0=10;
k=2*pi/lamd;
a=1e-3;
z1=5;
m=100;
x=linspace(-a*5,a*5,m);
y=x;
E=zeros(m,m);
for i=1:m
for j=1:m
Y=0;
for x1=linspace(-a,a,m)
X=0;
for y1=linspace(-sqrt(a^2-x1^2),sqrt(a^2-x1^2),m)
r=sqrt(z1^2+(x(i)-x1)^2+(y(j)-y1)^2);
F=(-sqrt(-1)/lamd)*E0.*exp(sqrt(-1)*k.*r)./r.*
((1+z1./r)/2)*(2*a/m)*(2*sqrt(a^2-x1^2)/m);
X=X+F;
end
Y=Y+X;
end
E(i,j)=Y;
end
end
E=abs(E).^2;
subplot(1,3,3)
imagesc(E);
subplot(1,3,1);
mesh(x,y,E);
subplot(1,3,2);
plot(x,E);
四、实验结果及结果分析
图(4)
结果分析:
1.光的衍射的特点是什么?
答:光的衍射是指光波在传播过程中遇到障碍物时,所发生的偏离直线传播的现象。

光的衍射,也叫光的绕射,即光可绕过障碍物,床波到障碍物的几何阴影区域中,并在障碍物后的观察屏上呈现出光强的不均匀分布。

2.基尔霍夫衍射积分公式与惠更斯-菲涅尔衍射积分公式的区别?
答:基尔霍夫的研究弥补了菲涅尔理论的不足,他从微分波动方程出发,利用场论中的格林定理,给出了惠更斯-菲涅尔原理较完善的数学表达式,将空间P点的光场与其周围任一封闭曲面上各点的光场建立起了联系,得到了菲涅尔理论中没有确定的倾斜因子K(θ)的具体表达式,建立起了光的衍射理论。

这个理论将光场当作标量来处理,只考虑电场或磁场的一个横向分量的标量振幅,而假定其它有关分量也可以用同样的方法独立处理,完全忽略了电磁场矢量分量间的耦合特性,因此称为标量衍射理论。

3.如何区分直线传播、菲涅尔衍射和夫琅禾费衍射?
答:根据采用的距离近似的不同,衍射区还有另一种划分方法:衍射效应可以忽略的几何投影区,衍射效应不能忽略的菲涅尔衍射区(包括在几何投影区以后的所有区域),以及衍射图样基本形状保持不变的夫琅禾费区。

这种衍射区的划分
方法认为,夫琅禾费衍射只是菲涅尔衍射的特殊情况。

菲涅尔衍射和夫琅禾费衍射是傍轴近似下的两种衍射情况,二者的区别条件是观察屏到衍射屏的距离z1与衍射孔的线度(x1,y1)之间的相对大小。

4.何为旁轴近似?
答:在一般光学系统中,对成像起主要作用的是那些与光学系统光轴夹角极小的傍轴光线。

对于傍轴光线,开孔Σ的线度和观察屏上的考察范围都远小于开孔到观察屏的距离,因此以下两个公示成立:
1)cos(n,r)≈1,于是K(θ)≈1;
2)r≈z1
这个实验在之前我们认为是难度最大的一个,本来在学到这块地方时我们对于书本上的知识也没有搞太懂,尝试做了几次试验也没有成功,我们一起分析讨论后觉得应该先掌握好最基础,最理论的东西,于是我们看了书本,不懂的地方也向老师进行了提问,在搞懂后,只是用了几个小时就完成本次实验,这次经历再次让我明白了磨刀不误砍柴工这个道理,这次实验对于我们在以后面对问题时思考的角度,着手点都有着教育意义的,我认为这次试验教会了我们以后解决问题的一种方法,对我们的帮助很大。

相关文档
最新文档