人工智能第三章

合集下载

人工智能第三章

人工智能第三章
人工智能原理
Artificial Intelligence Principle
信息工程学院
张永梅
第三章 搜索推理技术
3.1 图搜索策略 3.2 盲目搜索 3.3 启发式搜索 3.4 产生式系统 3.5 不确定推理 3.6 非单调推理
第三章 搜索推理技术
作业: 作业: 3-8,3-9,3-15 , ,
3.1 图搜索策略 搜索算法的输入是给定的问题, 搜索算法的输入是给定的问题,输出时表 示为动作序列的方案。 示为动作序列的方案。 一旦有了方案, 一旦有了方案,就可以执行该方案所给出 的动作了。(执行阶段) 。(执行阶段 的动作了。(执行阶段) 求解问题包括: 求解问题包括:
目标表示 搜索 执行
其中,初始 其中, 状态集合和 操作符集合 定义了问题 的搜索空间。 的搜索空间。
3.1 图搜索策略
搜索问题包括: 搜索问题包括:
搜索什么(目标) 搜索什么(目标) 在哪里搜索(搜索空间) 在哪里搜索(搜索空间)
搜索分成: 搜索分成:
状态空间的生成阶段 在该状态空间中对所求问题状态的搜索
搜索可以根据是否使用启发式信息分为: 搜索可以根据是否使用启发式信息分为:
无向图中, 无向图中,顶点的度为与每个顶点相连的边数 有向图中, 有向图中,顶点的度分成入度与出度 入度: 入度:以该顶点为头的弧的数目 出度: 出度:以该顶点为尾的弧的数目
路径——路径是顶点的序列 路径是顶点的序列V={Vi0,Vi1,……Vin},满足 路径 路径是顶点的序列 , (Vij-1,Vij)∈E 或 <Vij-1,Vij>∈E,(1<j≤n) ∈ ∈ ≤
最优性: 最优性:
如果存在不同的几个解答, 如果存在不同的几个解答,该策略是否可以发现最高质量 的解答? 的解答?

人工智能 chapter3

人工智能 chapter3

29
● 启发式搜索策略
假设初始状态、算符和目标状态的定义都是完全确定的,然后决定一
个搜索空间。因此,问题就在于如何有效地搜索这个给定空间。 启发信息按其用途可分为下列3种: (1) 用于决定要扩展的下一个节点,以免像在宽度优先或深度优先搜索 中那样盲目地扩展。 (2) 在扩展一个节点的过程中,用于决定要生成哪一个或哪几个后继节 点,以免盲目地同时生成所有可能的节点。
22ห้องสมุดไป่ตู้
有深度界限的深度优先搜索算法如下: (1) 把起始节点S放到未扩展节点OPEN表中。如果此节点为一目标节点,则得 到一个解。 (2) 如果OPEN为一空表,则失败退出。 (3) 把第一个节点(节点n)从OPEN表移到CLOSED表。 (4) 如果节点n的深度等于最大深度,则转向(2)。 (5) 扩展节点n,产生其全部后裔,并把它们放入OPEN表的前头。如果没有后 裔,则转向(2)。 (6) 如果后继节点中有任一个为目标节点,则求得一个解,成功退出;否则,
度依次扩展节点的,那么这种搜索就叫做宽度优先搜索(breadth-first search)。
从图可见,这种搜索是逐层进行的;在对下一层的任一节点进行搜索之前,必 须搜索完本层的所有节点。
14
宽度优先搜索算法如下: (1) 把起始节点放到OPEN表中(如果该起始节点为一目标节点,则求得 一个解答)。 (2) 如果OPEN是个空表,则没有解,失败退出;否则继续。 (3) 把第一个节点(节点n)从OPEN表移出,并把它放入CLOSED扩展节
1
状态图的例子:
设有三枚钱币,其排列处在“正,正,反”状态,现允许每次 可翻动其中任意一个钱币,问只允许操作三次的情况下,如何 翻动钱币使其变成“正,正,正”或“反,反,反”状态。 若“正面”用“1”表示,“反面”用“0”表示,则问题化成求 解从初始状态(1,1,0)到目标状态(1,1,1)或(0,0,0)的路 径问题,且该路径的长度为3。 (1,1,0)--------->(1,1,1)或(1,1,0)--------->(0,0,0)

人工智能 第3章(确定性推理3-与或树搜索)

人工智能 第3章(确定性推理3-与或树搜索)
常用启发式函数
包括基于距离的启发式函数、基于成本的启发式函数、基于规则的启发式函数等。
节点排序和选择策略
节点排序的目的和意义
节点排序是为了在扩展节点时,按照一定的顺序选择下一个要扩展的节点,以优化搜索过程。
常用节点排序策略
包括最佳优先搜索、广度优先搜索、深度优先搜索等。最佳优先搜索根据启发式函数的值来选择最优节点; 广度优先搜索按照节点的层次顺序进行扩展;深度优先搜索则尽可能深地扩展节点。
盲目搜索方法比较与选择
• 宽度优先搜索、深度优先搜索和迭代加深搜索都是盲目搜索方法,它们在不同的场景下有不同的应用。 • 宽度优先搜索适用于问题空间较大、解存在于较浅层次的情况,因为它可以逐层遍历整个问题空间,找到最短
路径。 • 深度优先搜索适用于问题空间较小、解存在于较深层次的情况,因为它可以尽可能深地搜索树的分支,找到更
启发式信息获取途径
01
02
03
问题自身的特性
通过分析问题的性质、结 构、约束条件等,提取出 对搜索过程有指导意义的 启发式信息。
领域知识
利用领域内的经验、规则、 常识等,为搜索过程提供 有价值的启发式信息。
搜索过程中的信息
在搜索过程中,通过评估 当前状态、已搜索路径、 未搜索路径等,动态地获 取启发式信息。
04 与或树搜索优化技术
剪枝策略
01
剪枝的定义和目的
剪枝是在搜索过程中,通过某些评估标准,提前终止对某些无意义或低
效的节点的扩展,以减少搜索空间,提高搜索效率。
02 03
常用剪枝策略
包括限界剪枝、启发式剪枝、概率剪枝等。限界剪枝通过设置上下界来 限制搜索范围;启发式剪枝利用启发式函数来评估节点的重要性;概率 剪枝则根据节点的概率分布来进行剪枝。

人工智能第三版课件第3章搜索的基本策略

人工智能第三版课件第3章搜索的基本策略

人工智能第三版课件第3章搜索的基本策略搜索引擎是当今互联网时代不可或缺的工具,而人工智能技术在搜索引擎中起着举足轻重的作用。

本文将介绍《人工智能第三版课件》中第3章的内容,讨论搜索的基本策略。

基于这些策略,搜索引擎能够更加高效、准确地满足用户的信息需求。

1. 初始搜索空间在进行搜索之前,需要建立一个初始的搜索空间,即包含可能相关信息的一组文档或网页。

这个搜索空间的建立可以通过爬虫程序和抓取技术来收集网络上的信息,并将其存储在搜索引擎的数据库中。

2. 关键词匹配搜索引擎通过用户输入的关键词与搜索空间中的文档进行匹配,以找到与用户需求相关的内容。

关键词匹配可以使用词频、倒排索引等算法来实现。

其中,词频是指对于一个给定的关键词,在搜索空间中出现的频率;倒排索引则是一种将关键词与对应的文档进行关联的索引结构。

3. 分析用户意图搜索引擎还需要通过分析用户的搜索历史、点击行为等数据来了解用户的真实意图。

这可以通过机器学习算法来实现,例如基于用户行为的推荐系统。

通过了解用户的意图,搜索引擎可以更加准确地推荐相关内容。

4. 搜索结果排序搜索引擎会对匹配到的文档进行排序,以便将最相关的结果显示在前面。

排序算法通常通过计算文档与用户查询的相似度来实现。

相似度计算可以使用向量空间模型、BM25等算法。

5. 反馈与迭代搜索引擎不断根据用户的反馈进行迭代,以提供更好的搜索结果。

用户的反馈可以包括点击率、停留时间等指标,这些指标可以通过机器学习算法来进行分析和预测。

搜索引擎可以根据用户的反馈来调整排序算法,从而不断改进搜索结果的准确性和相关性。

综上所述,搜索引擎的基本策略包括建立初始搜索空间、关键词匹配、分析用户意图、搜索结果排序以及反馈与迭代。

这些策略通过人工智能技术的应用,使得搜索引擎能够更加智能化地满足用户的信息需求。

未来随着人工智能技术的不断发展,搜索引擎将会变得更加准确、个性化,并为用户提供更多智能化的服务。

人工智能第三章

人工智能第三章
3.10 小结
《人工智能导论》 浙江科技学院 信息学院 计算机系 程志刚2006s2
NOTE
§ 教学内容:本章在上一章知识表示的基础上研究问题求 解的方法,是人工智能研究的又一核心问题。内容包括 早期搜索推理技术,如图搜索策略和消解原理;以及高 级搜索推理技术,如规则演绎系统、产生式系统、系统 组织技术、不确定性推理和非单调推理。
§ 教学重点:图搜索策略、消解原理、规则演绎系统、产 生式系统。
§ 教学难点:启发式搜索、规则双向演绎系统等。 § 教学要求:重点掌握一般图搜索策略和消解原理,掌握
各种搜索方法和产生式系统原理,了解规则演绎系统的 基本原理,对系统组织技术、不确定性推理和非单调推 理等高级推理技术作一般性了解。
《人工智能导论》 浙江科技学院 信息学院 计算机系 程志刚2006s2
《人工智能导论》 浙江科技学院 信息学院 计算机系 程志刚2006s2
3.6 产生式系统
§ 定义
• 在基于规则系统中,每个if可能与某断言(assertion)集中 的一个或多个断言匹配,then部分用于规定放入工作内存 的新断言。当then部分用于规定动作时,称这种基于规则 的系统为反应式系统(reaction system)或产生式系统 (production system)。
3.1 图搜索策略
§ 图搜索控制策略
• 一种在图中寻找路径的方法。 • 图中每个节点对应一个状态,每条连线代表一个操作符。
这些节点与连线(状态与操作符)分别由产生式系统的 数据库和规则来标记。初始节点和目标节点分别代表初 始数据库和满足终止条件的数据库。求得把一个数据库 变换为另一数据库的规则序列问题就等价于求得图中的 一条路径问题。
• 从表示目标的谓词或命题出发,使用一组产生式规则证明 事实谓词或命题成立,即首先提出一批假设目标,然后 逐一验证这些假设。

人工智能第三章

人工智能第三章
(3)’’’ W3 已合一
σ3= {a/z,f(a)/x,g(y)/u} 便是F1和F2的mgu。 算法的第(4)步,当不存在vk或不存在tk或出现差异
集为{x,f(x)},都会导致不可合一。此时,算法 返回失败。
《人工智能》第三章 谓词逻辑与归结原理
第21页,共80页。
最一般合一(mgu)
谓词逻辑的归结方法和命题逻辑基本相同,但 在进行归结之前,应采用最一般合一方法对待归 结的一对子句进行置换。然后再判断是否可以进 行归结。
则SG 与 S1 U S2 U S3 U …U Sn在不可满足的 意义上是一致的。即SG 不可满足 <=> S1 U S2 U S3 U …U Sn不可满足。
可以对一个复杂的谓词公式分而治之。
《人工智能》第三章 谓词逻辑与归结原理
第10页,共80页。
求取子句集例(1)
例:对所有的x,y,z来说,如果y是x的父亲,z又是y的父
第12页,共80页。
置换与合一
• 一阶谓词逻辑得归结比命题逻辑的归 结要复杂的多,其中一个原因就是谓 词逻辑公式中含有个体变量与函数。
• 如P(x) ∨ Q(y)与~P(a) ∨ R(z)
• 所以要考虑置换与合一。即对变量作
适当的替换。
《人工智能》第三章 谓词逻辑与归结原理
第13页,共80页。
置换
量词消去原则: • 存在量词。将该量词约束的变量用任意
常量(a,b等)或任意变量的函数( f(x),g(y)等)代替。 • 左边有任意量词的存在量词,消去时该 变量改写成为任意量词的函数;如没有 ,改写成为常量。 • 任意量词。简单地省略掉该量词。
《人工智能》第三章 谓词逻辑与归结原理
第2页,共80页。

人工智能第3章选讲.ppt

人工智能第3章选讲.ppt

点上。接着,程序试图选择一个时刻,使之适合于所有参
加者。在他们的工作时间表中,通常白天的会议时刻可能
第 在除14∶00外的任意时刻,所以选择14∶00作为开会时 三 间,至于在哪一天倒没关系。然而,程序发现在星期三无
章 房间可供开会使用。所以它回溯穿过结点(假设星期三的
高 结点),并改在另一天,比如星期二。现在就必须复制导
推 理
是定义特定的非经典逻辑(如缺省推理和自认识逻辑)。

级 人
3.1.1 缺省推理



很少有能在处理过程中拥有它所需要
的一切信息的系统。但当缺乏信息时,只
第 要不出现相反的证据,就可以作一些有益
三 章
的猜想。构造这种猜想称为缺省推理
高 (default reasoning)。







级 人
第 信息),因为用这种方式推导出来的命题是依赖于在某个命题
三 中缺少某种信念,即如果前面那些缺省的命题一旦加入系统, 章 就必须消除用缺省推理产生的命题。这样一来,如果你拿着
高 级
花走到门口时,你的主人立刻打喷嚏,你就应取消以前的信
知 念——你的主人喜欢花。当然,你也必须取消建立在已被取
识 消的信念基础上的任何信念。
推 并有可供开会的房间。

高 级 人 工 智 能
第 三 章
高 级 知 识 与 推 理


求解该问题时,系统必须试图在一个时刻满足一个约
人 束。最初,几乎没有根据可以肯定哪个时间最好,所以随
工 智
意确定为星期三。于是产生一个新的约束,解的其余部分
能 必须满足会议在星期三举行的假设,且存放在所产生的结

人工智能 第三章43页

人工智能 第三章43页
• IF v-1≧1 THEN Buv︰=Bu(v-1)∧Bu(v-1)=0 • 搜索策略:
• 不在位将牌个数:当前状态与目标状态对应位 置逐一比较后有差异的将牌个数。
• 我们定义一个描述状态的函数-W(n),其中,n 表示任一状态,W(n)的值为不在位将牌个数。
• 初始状态的函数值为-4,目标状态的函数值为0。 爬山法选取规则的原则:选取使用规则后生成
• 递归过程BACKTRACK(DATA)
• IF TERM(DATA), RETURN NIL; TERM取真 即找到目标,则过程返回空表NIL。
• IF DEADEND(DATA), RETURN FAIL; DEADEND取真,即该状态不合法,则过程返回 FAIL,必须回溯。
• RULES:=APPRULES(DATA); APPRULES计 算DATA的可应用规则集,依某种原则(任意排 列或按启发式准则)排列后赋给RULES。
• 综合数据库是一个最多为四个元素的表DATA, 每个元素为一个两位的数字,其中十位表示棋子 所在的行,个位表示棋子所在的列。
• 规则集:{ Rij1i4,1j4} • Rij:if 1 i 4 and Length (DATA) =i1 • Then APPEND (DATA , (ij))
• 爬山法就是利用高度随位置变化的函数 引导爬山。
• 爬山法只有在登单峰的山时才有效,如 遇到多峰、山脊或平顶时,并不总是有 效。
• 我们以八数码游戏为例加以说明。
• 在3×3的棋盘上,有八个将牌和一个空格, 每一个将牌都标有1—8中的某一个数码, 空格周围的将牌可向空格移动,求解的问 题是:有一个初始布局和一个目标布局, 问如何移动将牌,从初始布局达到目标。
83 214 765
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档