抛物线试题及答案

合集下载

双曲线、抛物线测试题(含答案)

双曲线、抛物线测试题(含答案)

双曲线、抛物线测试题 (每小题5分,共120分)1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)抛物线y 2=4x 的焦点到准线的距离是4.( )(2)抛物线既是中心对称图形,又是轴对称图形.( )(3)平面内到点F 1(0,3),F 2(0,-3)距离之差的绝对值等于6的点的轨迹是双曲线.( )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( )(5)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )答案:(1)× (2)× (3)× (4)√ (5)×2.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|=( )A .1或5B .6C .7D .9 答案: C3.已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2B .62C .52D .1 答案: D 4.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等 答案: (1)D5.双曲线y 216-x 2m=1的离心率e =2,则双曲线的渐近线方程为( )A .y =±xB .y =±33x C .y =±2x D .y =±12x答案: B6.焦点为(0,6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A .x 212-y 224=1B .y 212-x 224=1C .y 224-x 212=1D .x 224-y 212=1 答案: B7.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的两个焦点分别为F 1,F 2,以线段F 1F 2为直径的圆与双曲线渐近线的一个交点是(4,3).则此双曲线的方程为( )A .y 29-x 216=1B .y 24-x 23=1C .y 216-x 29=1D .y 23-x 24=1答案: A8.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12答案: C9.坐标平面内到定点F (-1,0)的距离和到定直线l :x =1的距离相等的点的轨迹方程是( )A .y 2=2xB .y 2=-2xC .y 2=4xD .y 2=-4x 答案: D10.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2B .x =-1 D .x =-2 答案: A11.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为( )A .y 2=4xB .y 2=6xC .y 2=8xD .y 2=10x 答案: C12.已知O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .22C .2 3D .4 答案: 2 313.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8 答案: A14.抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线方程为( )A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x答案: B 15.设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.答案:x 23-y 212=1 y =±2x 16.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.答案: 617.顶点在原点,对称轴是y 轴,并且经过点P (-4,-2)的抛物线方程是____________.答案: x 2=-8y18.两个正数a ,b 的等差中项是52,等比中项是6,且a >b ,则双曲线x 2a 2-y 2b 2=1的离心率e =________. 答案: 133 19.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为______.答案: 2 320.若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为________.答案:x 264-y 236=1或y 264-x 236=1 21.设点P 在双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上,双曲线的左、右焦点分别为F 1,F 2,若|PF 1|=4|PF 2|,则双曲线离心率的取值范围是________.答案: ⎝ ⎛⎦⎥⎤1,5322.已知双曲线的渐近线方程为y =±23x ,且过点M ⎝ ⎛⎭⎪⎫92,-1,则双曲线的标准方程为________.答案:x 218-y 28=1 23.F 是抛物线y 2=2x 的焦点,A ,B 是抛物线上的两点,|AF|+|BF|=6,则线段AB 的中点到y 轴的距离为________.答案: 5224.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,则d 1+d 2的最小值为________.答案: 32-1。

高中抛物线试题及答案

高中抛物线试题及答案

高中抛物线试题及答案一、选择题1. 抛物线的标准方程为 \( y = ax^2 + bx + c \),其中 \( a \)、\( b \)、\( c \) 是常数,且 \( a \neq 0 \)。

下列哪个选项不是抛物线的标准形式?A. \( y = 3x^2 - 4x + 5 \)B. \( y = -2x^2 + 3 \)C. \( x = 4y^2 - 6y + 7 \)D. \( y = 0 \)答案:D2. 对于抛物线 \( y = ax^2 + bx + c \),如果 \( a > 0 \),抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A3. 抛物线 \( y = x^2 \) 的焦点坐标是:A. (0, 0)B. (0, 1/4)C. (0, -1/4)D. (1/4, 0)答案:B二、填空题4. 抛物线 \( y = 2x^2 - 4x + 3 \) 的顶点坐标是 _________ 。

答案:(1, 1)5. 抛物线 \( y = -3x^2 + 6x - 5 \) 的对称轴方程是 _________ 。

答案:x = 1三、解答题6. 已知抛物线 \( y = ax^2 + bx + c \) 经过点 (1, 2) 和 (-1, 6),求抛物线的方程。

解:将点 (1, 2) 代入方程得 \( 2 = a(1)^2 + b(1) + c \),即\( a + b + c = 2 \)。

将点 (-1, 6) 代入方程得 \( 6 = a(-1)^2 + b(-1) + c \),即\( a - b + c = 6 \)。

解得 \( b = -2 \),\( a + c = 4 \)。

假设 \( a = 1 \),则 \( c = 3 \),抛物线方程为 \( y = x^2- 2x + 3 \)。

7. 已知抛物线 \( y = x^2 + 4x + 5 \),求其焦点坐标。

高二数学抛物线试题答案及解析

高二数学抛物线试题答案及解析

高二数学抛物线试题答案及解析1.已知点,直线,动点到点的距离等于它到直线的距离.(Ⅰ)求点的轨迹的方程;(Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?【答案】(1);(2)即【解析】(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数,只需一个条件就可以确定抛物线的标准方程,或根据定义来求抛物线方程.(2)在解决与抛物线性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此;(3)求双曲线的标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即先确定双曲线标准方程的形式,求出的值.试题解析:(Ⅰ)因点到点的距离等于它到直线的距离,所以点的轨迹是以为焦点、直线为准线的抛物线,其方程为.(Ⅱ)解法一:假设存在满足题设的直线.设直线与轨迹交于,依题意,得.①当直线的斜率不存在时,不合题意.②当直线的斜率存在时,设直线的方程为,联立方程组,消去,得,(*)∴,解得.此时,方程(*)为,其判别式大于零,∴存在满足题设的直线且直线的方程为:即.解法二:假设存在满足题设的直线.设直线与轨迹交于,依题意,得.∵在轨迹上,∴有,将,得.当时,弦的中点不是,不合题意,∴,即直线的斜率,注意到点在曲线的张口内(或:经检验,直线与轨迹相交)∴存在满足题设的直线且直线的方程为:即.【考点】(1)抛物线的标准方程;(2)直线与抛物线的综合问题.2.如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的标准方程及其准线方程;(2)当直线与的斜率存在且倾斜角互补时,求的值及直线的斜率.【答案】(1)所求抛物线的方程是,准线方程是.(2).且由①-②得直线AB的斜率为-1.【解析】(1)设出抛物线的方程,把点P代入抛物线求得p,即求出抛物线的方程,进而求得抛物线的准线方程;(2)设直线的斜率为,直线的斜率为,则可分别表示、,根据倾斜角互补可得,进而得出与之间的等式关系,最后把点A、B代入抛物线的方程并将两式相减后即可求得直线AB的斜率.试题解析:(1)由已知条件,可设抛物线的方程为.因为点P(1,2)在抛物线上,所以,解得.故所求抛物线的方程是,准线方程是.(2)设直线的斜率为,直线的斜率为,则,.因为与的斜率存在且倾斜角互补,所以.又由,均在抛物线上,得①②所以,所以.且由①-②得直线AB的斜率为-1.【考点】抛物线的应用.3.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点上,且灯的深度等于灯口直径,且为64 ,则光源安装的位置到灯的顶端的距离为____________.【答案】.【解析】先以反射镜定点为原点,以顶点和焦点所在直线为轴,建立直角坐标系.设抛物线方程为,依题意可点在抛物线上,代入抛物线方程得,求得,进而可求得焦距为,即为所求.【考点】抛物线的应用.4.已知抛物线上的任意一点到该抛物线焦点的距离比该点到轴的距离多1.(1)求的值;(2)如图所示,过定点(2,0)且互相垂直的两条直线、分别与该抛物线分别交于、、、四点.(i)求四边形面积的最小值;(ii)设线段、的中点分别为、两点,试问:直线是否过定点?若是,求出定点坐标;若不是,请说明理由.【答案】(1)(2)(i)四边形面积的最小值是48(ii)【解析】(1)直接利用抛物线的定义(2)(i)S四边形ABCD,,利用弦长公式,以及基本不等式,二次函数在闭区间上的最值问题的解法求解(ii)恒过定点问题的常规解法试题解析:(1)由已知∴(2)(i)由题意可设直线的方程为(),代入得设则,∴6分同理可得 7分S四边形ABCD8分设则∴S四边形ABCD∵函数在上是增函数∴S四边形ABCD ,当且仅当即即时取等号∴四边形面积的最小值是48. 9分(ii)由①得∴∴∴, 11分同理得 12分∴直线的方程可表示为即当时得∴直线过定点(4,0). 14分注:第(2)中的第(i)问:S四边形ABCD(当且仅当时取等号)也可.【考点】本题主要考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系,弦长公式,基本不等式,二次函数在闭区间上的最值问题等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.5.已知过曲线上任意一点作直线的垂线,垂足为,且.⑴求曲线的方程;⑵设、是曲线上两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.【答案】⑴⑵当时,直线恒过定点,当时直线恒过定点.【解析】⑴要求曲线方程,但是不知道是哪种曲线,所以只能设点.根据,转化为求曲线方程即可;⑵要证明直线恒过定点,必须得有直线方程,所以首先设出直线方程.又因为两个角是直线和的倾斜角,所以点也得设出来.利用韦达定理,然后讨论的范围变化,证明并得出定点坐标. 试题解析:⑴设,则,由得,;即;所以轨迹方程为;⑵设,由题意得(否则)且,所以直线的斜率存在,设其方程为,因为在抛物线上,所以,将与联立消去,得;由韦达定理知①;(1)当时,即时,,所以,,所以.由①知:,所以因此直线的方程可表示为,即.所以直线恒过定点(2)当时,由,得==将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点;所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点. 12分【考点】相关点法求曲线方程;分类讨论.6.抛物线的准线方程是()A.B.C.D.【答案】C【解析】由抛物线方程可知,,焦点在轴正半轴,所以其准线方程为。

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.过抛物线的焦点作直线与此抛物线相交于、两点,是坐标原点,当时,直线的斜率的取值范围是()A.B.C.D.【答案】D【解析】由题可知,点的横坐标时,满足,此时,故直线(即直线)的斜率的取值范围是.故选D.【考点】抛物线的几何性质以及直线与抛物线的位置关系.2.抛物线y=2ax2(a≠0)的焦点是( )A.(,0)B.(,0)或(-,0)C.(0,)D.(0,)或(0,-)【答案】C【解析】将方程改写为,可知2p=,当a>0时,焦点为(0,),即(0,);当a<0时,焦点为(0,-),即(0,);综合得,焦点为(0,),选C考点:抛物线的基本概念3.设F(1,0),M点在x轴上,P点在y轴上,且=2,⊥,当点P在y轴上运动时,点N的轨迹方程为()A.y2=2x B.y2=4xC.y2=x D.y2=x【答案】B【解析】设M(x0,0),P(0,y),N(x,y),∵⊥,=(x0,-y),=(1,-y0),∴(x0,-y)·(1,-y)=0,∴x0+y2=0.由=2,得(x-x0,y)=2(-x,y),∴即∴-x+=0,即y2=4x.故所求的点N的轨迹方程是y2=4x.故选B.4.已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.【答案】(1)x2-x+y2=4(2)存在,(1,-2)和(1,2)【解析】(1)连接CP、OP,由·=0,知AC⊥BC,∴|CP|=|AP|=|BP|=|AB|.由垂径定理知|OP|2+|AP|2=|OA|2,即|OP|2+|CP|2=9.设点P(x,y),有(x2+y2)+[(x-1)2+y2]=9,化简,得到x2-x+y2=4.(2)根据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px上,其中=1,∴p=2,故抛物线方程为y2=4x.由方程组,得x2+3x-4=0,解得x1=1,x2=-4,由于x≥0,故取x=1,此时y=±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).5.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【答案】D【解析】由题意可知:直线AB的方程为,代入抛物线的方程可得:,设A、B,则所求三角形的面积为=,故选D.【考点】本小题主要考查直线与抛物线的位置关系,考查两点间距离公式等基础知识,考查同学们分析问题与解决问题的能力.6.若,则称点在抛物线C:外.已知点在抛物线C:外,则直线与抛物线C的位置关系是()A.相交B.相切C.相离D.不能确定【答案】A【解析】因为点在抛物线C:外,所以由与联立方程组消得:因此,所以直线与抛物线相交.【考点】直线与抛物线位置关系7.已知直线:与抛物线:交于两点,与轴交于,若,则_______.[【答案】【解析】解方程组得或,由得:.【考点】1、直线与圆锥曲线的关系;2、向量的运算.8.过抛物线焦点F的直线交抛物线于A、B两点,若A、B在抛物线准线上的射影分别为,则()A.B.C.D.【答案】D【解析】由抛物线的定义得,,,故,,故,,又,故,从而.【考点】抛物线定义.9.已知直线交抛物线于两点.若该抛物线上存在点,使得为直角,则的取值范围为________.【答案】【解析】根据题意不妨设,则⊥∴∵为直角,点C与点A不同,∴∴∵∴10.如图,设抛物线的顶点为A,与x 轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点P,则点P落在AOB内的概率是( )A.B.C.D.【答案】C【解析】解:设抛物线与轴正半轴及轴的正半轴所围成的区域的面积为则设事件“随机往M内投一点P,则点P落在AOB内”则,故选:C.【考点】1、定积分;2、几何概型.11.已知抛物线C:,点A、B在抛物线C上.(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.【答案】(1);(2)过定点【解析】(1)当直线斜率不存在时方程为,与的交点分别为M,N ,弦长。

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.设双曲线的离心率为2,且一个焦点与抛物线的焦点相同,则此双曲线的方程为__________.【答案】.【解析】抛物线的焦点坐标为(0,2),所以双曲线的焦点在y轴上且c=2,所以双曲线的方程为,即a2=n>0,b2=-m>0,所以a=,又e=,解得n=1,所以b2=c2-a2=4-1=3,即-m=3,m=-3,所以双曲线的方程为,故答案为:.【考点】1.抛物线的简单性质;2.双曲线的简单性质.2.已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(1)证明: 为定值;(2)若△POM的面积为,求向量与的夹角;(3)证明直线PQ恒过一个定点.【答案】(1)见解析; (2) ;(3)直线PQ过定点E(1,-4).【解析】(1)设点根据、M、A三点共线,得计算得到=5;(2)设∠POM=α,可得结合三角形面积公式可得tanα="1."根据角的范围,即得所求.(3)设点、B、Q三点共线,据此确定进一步确定的方程,化简为得出结论.试题解析:(1)设点、M、A三点共线,2分5分(2)设∠POM=α,则由此可得tanα=1. 8分又 10分(3)设点、B、Q三点共线,即 12分即 13分由(*)式,代入上式,得由此可知直线PQ过定点E(1,-4). 14分【考点】抛物线及其几何性质,直线方程,直线与抛物线的位置关系,转化与化归思想.3.已知抛物线C: y2 =2px(p>0)的准线L,过M(l,0)且斜率为的直线与L相交于A,与C的一个交点为B,若,则p=____ 。

【答案】2【解析】由题意可得,抛物线的焦点为,准线为.,为AB的中点.直线方程为,由题意可得,故由中点公式可得,把点B的坐标代入抛物线可得,解得.【考点】直线与抛物线的位置关系4.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).(1)求双曲线C的方程;(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.【答案】(1)-y2=1(2)(-1,-)∪(,1)【解析】(1)设双曲线C的方程为-=1(a>0,b>0).由已知得a=,c=2,再由c2=a2+b2得b2=1,所以双曲线C的方程为-y2=1.(2)将y=kx+代入-y2=1中,整理得(1-3k2)x2-6kx-9=0,由题意得,故k2≠且k2<1①.设A(xA ,yA),B(xB,yB),则xA+xB=,xAxB=,由·>2得xA xB+yAyB>2,x A xB+yAyB=xAxB+(kxA+)(kxB+)=(k2+1)xAxB+k(xA+xB)+2=(k2+1)·+k·+2=,于是>2,即>0,解得<k2<3②.由①②得<k2<1,所以k的取值范围为(-1,-)∪(,1).5.已知圆P:x2+y2=4y及抛物线S:x2=8y,过圆心P作直线l,此直线与上述两曲线的四个交点,自左向右顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线l的斜率为( )A.B.C.D.【答案】A【解析】圆的方程为,则其直径长圆心为,设的方程为,代入抛物线方程得:设,有∴线段的长按此顺序构成一个等差数列,,即,解得,故选A.【考点】1.抛物线的几何性质;2.直线与抛物线相交问题.6.已知F是抛物线的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()A.B.1C.D.【答案】C【解析】过A,B及线段AB的中点C向抛物线的准线作垂线,垂足分别为M,N,Q,CQ交y轴于T,由抛物线的定义知|AM|+|BN|=|AF|+|BF|=3,因为CQ是直角梯形AMNB的中位线所以CQ|=(|AM|+|BN)=,所以|CT|=|CQ|-|TQ|=-=7.已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.(1)求抛物线E的方程;(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.【答案】(1)y2=4x;(2)点N坐标为或.【解析】本题主要考查抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,利用抛物线的准线,得到M点的坐标,利用圆的方程得到圆心C的坐标,在中,可求出,在中,利用相似三角形进行角的转换,得到的长,而,从而解出P的值,即得到抛物线的标准方程;第二问,设出N点的坐标,利用N、C点坐标写出圆C的方程,利用点C的坐标写出圆C的方程,两方程联立,由于P、Q是两圆的公共点,所以联立得到的方程即为直线PQ的方程,而O点在直线上,代入点O的坐标,即可得到s、t的值,即得到N点坐标.试题解析:(1)由已知得,C(2,0).设AB与x轴交于点R,由圆的对称性可知,.于是,所以,即,p=2.故抛物线E的方程为y2=4x. 5分(2)设N(s,t).P,Q是NC为直径的圆D与圆C的两交点.圆D方程为,即x2+y2-(s+2)x-ty+2s=0.①又圆C方程为x2+y2-4x+3=0.②②-①得(s-2)x+ty+3-2s=0.③ 9分P,Q两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ的方程.因为直线PQ经过点O,所以3-2s=0,.故点N坐标为或. 12分【考点】抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质.8.如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.(1)若直线PQ过定点,求点A的坐标;(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.【答案】(1),(2)一个【解析】(1)确定抛物线标准方程只需一个独立条件,本题条件为已知通径长所以抛物线的方程为.直线过定点问题,实际是一个等式恒成立问题.解决问题的核心是建立变量的一个等式.可以考虑将直线的斜率列为变量,为避开讨论,可设的方程为,与联立消得,则,设点坐标为,则有,代入化简得:因此,点坐标为,(2)若三角形APQ为等腰直角三角形,则的中点与点A连线垂直于.先求出的中点坐标为,再讨论方程解的个数,这就转化为研究函数增减性,并利用零点存在定理判断零点有且只有一个.试题解析:(1)设抛物线的方程为,依题意,,则所求抛物线的方程为. (2分)设直线的方程为,点、的坐标分别为.由,消得.由,得,,.∵,∴.设点坐标为,则有.,,∴或.∴或, ∵恒成立. ∴.又直线过定点,即,代入上式得注意到上式对任意都成立,故有,从而点坐标为. (8分)(2)假设存在以为底边的等腰直角三角形,由第(1)问可知,将用代换得直线的方程为.设,由消,得.∴,.∵的中点坐标为,即,∵,∴的中点坐标为.由已知得,即.设,则,在上是增函数.又,,在内有一个零点.函数在上有且只有一个零点,所以满足条件的等腰直角三角形有且只有一个. (12分)【考点】直线与抛物线关系,零点存在定理9.在平面直角坐标系中,已知三点,直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线)的焦点F并且与抛物线交于P、Q两点(P在Y轴左侧).则()A.9B.C.D.【答案】A【解析】由题意得,且.令,,则,所以,且,由此可解得.由抛物线的方程知焦点为,因此设直线的方程为,代入抛物线方程,得,解得或,所以由题意知,.由图形特征根据三角形相似易知.【考点】1、直线的斜率;2、直线方程;3、直线与抛物线的位置关系.10.抛物线y2=-8x的准线方程是________.【答案】x=2【解析】∵2p=8,∴p=4,故所求准线方程为x=2.11.下图是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m.水位下降1m后,水面宽________m.【答案】2【解析】设抛物线的方程为x2=-2py,则点(2,-2)在抛物线上,代入可得p=1,所以x2=-2y.当y=-3时,x2=6,即x=±,所以水面宽为2.12.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y).若点M到该抛物线焦点的距离为3,则|OM|等于()A.2B.2C.4D.2【答案】B【解析】由题意设抛物线方程为y2=2px(p>0),则M到焦点的距离为xM+=2+=3,∴p=2,∴y2=4x. ∴=4×2,∴|OM|===2.故选B.13.已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=.【答案】2【解析】设A(x0,y),由抛物线定义知x+1=2,∴x=1,则直线AB⊥x轴,∴|BF|=|AF|=2.14.已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A、B两点,若·=0,则k等于()(A) (B) (C) (D)2【答案】D【解析】法一设直线方程为y=k(x-2),A(x1,y1)、B(x2,y2),由得k2x2-4(k2+2)x+4k2=0,∴x1+x2=,x 1x2=4,由·=0,得(x1+2,y1-2)·(x2+2,y2-2)=(x1+2)(x2+2)+[k(x1-2)-2][k(x2-2)-2]=0,代入整理得k2-4k+4=0,解得k=2.故选D.法二如图所示,设F为焦点,取AB中点P,过A、B分别作准线的垂线,垂足分别为G、H,连接MF,MP,由·=0,知MA⊥MB,则|MP|=|AB|=(|AG|+|BH|),所以MP为直角梯形BHGA的中位线,所以MP∥AG∥BH,所以∠GAM=∠AMP=∠MAP,又|AG|=|AF|,|AM|=|AM|,所以△AMG≌△AMF,所以∠AFM=∠AGM=90°,则MF⊥AB,所以k=-=2.15.已知F是抛物线y2=4x的焦点,P是圆x2+y2-8x-8y+31=0上的动点,则|FP|的最小值是() A.3B.4C.5D.6【答案】B【解析】圆x2+y2-8x-8y+31=0的圆心C坐标为(4,4),半径为1,∵|PF|≥|CF|-1,∴当P、C、F三点共线时,|PF|取到最小值,由y2=4x知F(1,0),∴|PF|min=-1=4.故选B.16.已知点A(4,4)在抛物线y2=px(p>0)上,该抛物线的焦点为F,过点A作直线l:x=-的垂线,垂足为M,则∠MAF的平分线所在直线的方程为.【答案】x-2y+4=0【解析】点A在抛物线上,所以16=4p,所以p=4,所以抛物线的焦点为F(1,0),准线方程为x=-1,垂足M(-1,4),由抛物线的定义得|AF|=|AM|,所以∠MAF的平分线所在的直线就是线段MF的垂直平分线,kMF==-2,所以∠MAF的平分线所在的直线方程为y-4=(x-4),即x-2y+4=0.17.设M(x0,y)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x的取值范围是()A.(2,+∞)B.(4,+∞) C.(0,2)D.(0,4)【答案】A【解析】∵(x0,y)为抛物线C:y2=8x上一点,∴x≥0,又∵以F为圆心,|FM|为半径的圆和抛物线C的准线相交,∴在水平方向上,点M应在点F的右侧,∴x>2.18.过抛物线y2=2px(p>0)上一定点P(x0,y)(y>0)作两直线分别交抛物线于A(x1,y1),B(x2,y2),当PA与PB的斜率存在且倾斜角互补时,的值为.【答案】-2【解析】设直线PA的斜率为kPA ,PB的斜率为kPB,由=2px1,=2px,得kPA==,同理kPB=,由于PA与PB的斜率存在且倾斜角互补,因此=-,即y1+y2=-2y(y>0),那么=-2.19.若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=()A.B.1C.2D.3【答案】C【解析】由已知(,0)在圆x2+y2+2x-3=0上,所以有+2×-3=0,即p2+4p-12=0,解得p=2或p=-6(舍去).20.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线共有()A.1条B.2条C.3条D.4条【答案】C【解析】作出图形,可知点(0,1)在抛物线y2=4x外.因此,过该点可作抛物线y2=4x的切线有两条,还能作一条与抛物线y2=4x的对称轴平行的直线,因此共有三条直线与抛物线只有一个交点.21.如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(1)求实数b的值.(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.【答案】(1) b=-1 (2) (x-2)2+(y-1)2=4【解析】(1)由得x2-4x-4b=0(*)因为直线l与抛物线C相切,所以Δ=(-4)2-4×(-4b)=0.解得b=-1.(2)由(1)可知b=-1,故方程(*)为x2-4x+4=0.解得x=2,代入x2=4y,得y=1,故点A(2,1).因为圆A与抛物线C的准线相切,所以圆A的半径r就等于圆心A到抛物线的准线y=-1的距离,即r=|1-(-1)|=2,所以圆A的方程为(x-2)2+(y-1)2=4.22.过抛物线焦点的直线交其于,两点,为坐标原点.若,则的面积为()A.B.C.D.2【答案】C【解析】设直线的倾斜角为及,∵,∴点到准线的距离为,∴,则.∴的面积为.故选C.【考点】抛物线的几何性质,直线与抛物线的位置关系.23.如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.(1)求证:MA⊥MB;(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.【答案】(1)见解析(2)【解析】(1)证明:设直线AB的方程为y=kx,A(x1,y1),B(x2,y2),则x2-kx-1=0,所以x1+x2=k,x1x2=-1.又·=(x1,y1+1)·(x2,y2+1)=(k2+1)x1x2+k(x1+x2)+1=-k2-1+k2+1=0,∴MA⊥MB.(2)设直线MA的方程为y=k1x-1,MB的方程为y=k2x-1,k1k2=-1.解得或∴A(k1,-1),同理可得B(k2,-1),∴S1=|MA||MB|=|k1k2|.又解得或∴D ,同理可得E . ∴S 2=|MD||ME|=.=λ==≥.故λ的取值范围是.24. 已知抛物线C :y 2=2px(p>0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP|=|PB|,求△FAB 的面积. 【答案】(1) y 2=8x (2) 24【解析】解:(1)易知直线与抛物线的交点坐标为(8,-8),∴82=2p×8, ∴2p =8,∴抛物线方程为y 2=8x. (2)直线l 2与l 1垂直,故可设l 2:x =y +m ,A(x 1,y 1),B(x 2,y 2),且直线l 2与x 轴的交点为M. 由得y 2-8y -8m =0,Δ=64+32m>0,∴m>-2. y 1+y 2=8,y 1y 2=-8m , ∴ x 1x 2==m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍), ∴l 2:x =y +8,M(8,0).故S △FAB =S △FMB +S △FMA =·|FM|·|y 1-y 2|=3=24.25. 已知抛物线方程为x 2=4y ,过点M (0,m )的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,且x 1x 2=-4,则m 的值为________. 【答案】1【解析】设直线方程为y =kx +m ,代入抛物线方程得x 2-4kx -4m =0,所以x 1x 2=-4m ,所以m =1.26. 抛物线的焦点坐标是( ) A .(2,0) B .(0,2) C .(l ,0) D .(0,1)【答案】D 【解析】因为,所以,因为焦点在的正半轴,所以焦点坐标为即。

高中数学抛物线经典例题(含解析)

高中数学抛物线经典例题(含解析)

抛物线大题一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.抛物线大题参考答案与试题解析一.解答题(共7小题)1.已知P(4,y0)是抛物线C:y2=2px(p>0)上位于第一象限的一点,且P到C的焦点的距离为5.(1)求抛物线C的方程;(2)设O为坐标原点,F为C的焦点,A,B为C上异于P的两点,且直线P A与PB 斜率乘积为﹣4.(i)证明:直线AB过定点;(ii)求|F A|•|FB|的最小值.【分析】(1)由题意,结合所给信息列出等式,求出p的值,进而可得抛物线C的方程;(2)(i)结合(1)中所得信息得到点P的坐标,设出A,B两点的坐标,利用斜率公式得到4(y1+y2)+y1y2+20=0,对直线AB的斜率是否存在进行讨论,进而即可求解;(ii)设出A,B两点的坐标,分别讨论直线AB的斜率是否存在,当直线AB的斜率存在时,设出直线AB的方程,将直线方程与抛物线方程联立,利用韦达定理即可得到|F A|•|FB|的最小值,当直线AB的斜率不存在时,结合抛物线的定义即可得到|F A|•|FB|的最小值,两者比较即可求解.2.已知抛物线C:y2=2px(p>0),其准线方程为x=﹣2.(1)求抛物线C的方程;(2)不过原点O的直线l:y=x+m与抛物线交于不同的两点P,Q,且OP⊥OQ,求m 的值.【分析】(1)由抛物线的准线方程求出p,可得抛物线C的方程;(2)设P(x1,y1),Q(x2,y2),联立直线l和抛物线C的方程,消元写出韦达定理,将OP⊥OQ用坐标表示,代入韦达定理化简计算,可得m的值.3.已知抛物线C的顶点在原点,对称轴为坐标轴,开口向右,且经过点P(1,2).(1)求抛物线C的标准方程;(2)过点M(2,0)且斜率为2的直线与抛物线C相交于A,B两点,求AB的长.【分析】(1)由题意,先设出抛物线C的方程,将点P的坐标代入抛物线方程中,求出p的值,进而可得抛物线C的标准方程;(2)设出直线AB的方程和A,B两点的坐标,将直线AB的方程与抛物线方程联立,求出A,B两点的坐标,进而即可求解.4.在平面直角坐标系xOy中,抛物线y2=2px(p>0)上一点P的横坐标为4,且点P到焦点F的距离为5.(1)求抛物线的方程;(2)若直线l:x=my+t交抛物线于A,B两点(位于对称轴异侧),且,问:直线l是否过定点?若过定点,请求出该定点:若不过,请说明理由.【分析】(1)由题意,结合题目所给信息建立有关p的等式,进而即可求解;(2)设出A,B两点的坐标,将直线l的方程与抛物线方程联立,利用向量的坐标运算以及韦达定理再进行求解即可.5.已知抛物线C:y2=2px(p为常数,p>0)的焦点F与椭圆的右焦点重合,过点F的直线与抛物线交于A,B两点.(1)求抛物线C的标准方程;(2)若直线AB的斜率为1,求|AB|.【分析】(1)由题意,先求出的右焦点,根据抛物线C的焦点F与椭圆的右焦点重合,可得,进而求出抛物线方程;(2)结合(1)中所得信息得到直线AB的方程,将直线AB的方程与抛物线方程联立,利用韦达定理以及弦长公式再进行求解即可.6.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于A,B两点,若OA⊥OB.(1)求抛物线C的方程;(2)若斜率为的直线l过抛物线C的焦点,且与抛物线C交于D,E两点,求|DE|的值.【分析】(1)由题意,得到点A的坐标,代入抛物线方程中进行求解即可;(2)先得到直线l的方程,将直线方程与抛物线方程联立,利用韦达定理以及抛物线的定义再进行求解即可.7.设抛物线C:y2=2px(p>0)的焦点为F,点P(4,m)(m>0)是抛物线C上一点,且|PF|=5.(1)求抛物线C的方程;(2)过点Q(2,0)斜率存在的直线l与C相交于A,B两点,在x轴上是否存在点M 使得∠AMQ=∠BMQ?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)利用|PF|=5,根据抛物线的定义,求出p的值,即可得解;(2)设A(x1,y1),B(x2,y2),M(s,0),直线l的方程为x=ty+2(t≠0),将其与抛物线的方程联立,利用韦达定理,根据k AM=﹣k MB,求出s的值,即可得解.。

高二数学抛物线试题答案及解析

高二数学抛物线试题答案及解析1.抛物线截直线所得弦长等于()A.B.C.D.【答案】A【解析】设直线与抛物线交点坐标分别为,将直线方程代入抛物线方程并化简的,由根与系数的关系可知,由弦长公式可知弦长,答案选A.【考点】直线与抛物线相交弦长公式2.设抛物线的焦点为,经过点的直线交抛物线于、两点,分别过、两点作抛物线的两条切线交于点,则有()A.B.C.D.【答案】A.【解析】设出过点F的直线方程即,联立方程组,化简整理得,设,,则由韦达定理得,.,.由可得,,所以,所以抛物线在A,B两点处的切线的斜率分别为,.所以在点A处的切线方程为,即.同理在点B处的切线方程为.于是解方程组可得,,所以点C的坐标为.所以故答案应选A.【考点】直线与抛物线的位置关系;向量的数量积.3.抛物线()的焦点为,已知点,为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为()A.B.1C.D.2【答案】A.【解析】设,连接AF、BF,由抛物线的定义知,,在梯形ABPQ中,;应用余弦定理得,配方得,又因为,所以,得到.所以,即的最大值为,故选A.【考点】抛物线的简单性质.4.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线焦点的距离为3,则=()A.B.C.4D.【答案】B.【解析】由题意可设抛物线方程为,因为点到该抛物线焦点的距离为3,所以,即,即抛物线方程为,又因为点在抛物线上,所以,所以,故选B.【考点】抛物线的简单性质.5.设抛物线的焦点为,经过点的直线与抛物线相交于两点且点恰为的中点,则【答案】8【解析】设,因为是的中点,所以,由点在抛物线上,所以所以所以答案填:8.【考点】抛物线的定义与标准方程.6.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点上,且灯的深度等于灯口直径,且为64 ,则光源安装的位置到灯的顶端的距离为____________.【答案】.【解析】先以反射镜定点为原点,以顶点和焦点所在直线为轴,建立直角坐标系.设抛物线方程为,依题意可点在抛物线上,代入抛物线方程得,求得,进而可求得焦距为,即为所求.【考点】抛物线的应用.7.已知过抛物线的焦点的直线交抛物线于,两点.求证:(1)为定值;(2) 为定值.【答案】(1);(2).【解析】(1)设过焦点的直线方程与联立,利用韦达定理,即可得出结论;(2)利用,及根与系数的关系即可得出.(1)抛物线的焦点为,设直线的方程为.由消去,得.由根与系数的关系,得(定值).当轴时,,,也成立.(2)由抛物线的定义,知,.(定值).当轴时,,上式仍成立.【考点】抛物线的简单性质.8.已知抛物线过点.(1)求抛物线的方程,并求其准线方程;(2)过焦点且斜率为的直线与抛物线交于两点,求的面积.【答案】(1)抛物线的方程为,准线方程为;(2).【解析】(1)先由抛物线过点得到,进而解出的值,这样即可确定该抛物线的方程,进而再根据抛物线的几何性质得到准线方程;(2)由(1)中抛物线的方程先确定,进而根据点斜式可写出直线的方程,设点,联立直线与抛物线的方程,消去得到,进而根据二次方程根与系数的关系得到,进而可根据弦长计算公式计算出弦长,然后由点到直线的距离公式算出原点到直线的距离,进而可求出的面积.(1)根据抛物线过点可得,解得从而抛物线的方程为,准线方程为 5分(2)抛物线焦点坐标为,所以直线 6分设点联立得:,即 8分则由韦达定理有: 9分则弦长 11分而原点到直线的距离 12分故 13分.【考点】1.抛物线的标准方程及其几何性质;2.直线与抛物线的位置关系;3.点到直线的距离公式.9.抛物线的焦点坐标为()A.B.C.D.【答案】A【解析】根据抛物线的性质可知抛物线的焦点坐标为【考点】抛物线的性质.10.在平面直角坐标系中,已知动点到点的距离为,到轴的距离为,且.(1)求点的轨迹的方程;(2)若直线斜率为1且过点,其与轨迹交于点,求的值.【答案】(1)(2).【解析】(1)方法一:由抛物线的定义直接得到结果;方法二:根据题中所给数据直接列出等式,化简即可得到结果.(2)将直线,与,联立,得,利用弦长公式得,将韦达定理代入即可得到结果.(1)方法一:由抛物线的定义可知,;方法二:,.可得,.(2)直线,联立,得,【考点】1.抛物线的定义;2.直线与抛物线的位置关系.11.点是抛物线上一动点,则点到点的距离与到直线的距离和的最小值是 .【答案】【解析】∵P点到直线x=-1的距离等于P点到抛物线y2=4x焦点F的距离故当P点位于AF上时,点P到点A(0,-1)的距离与到直线x=-1的距离和最小此时|PA|+|PF|=|AF|=.【考点】抛物线的简单性质.12.在平面直角坐标系xOy中,焦点为F(5,0)的抛物线的标准方程是.【答案】y2=20x【解析】焦点为F(5,0),所以抛物线开口向右,标准方程可设为,又所以,抛物线的标准方程是y2=20x【考点】抛物线的焦点坐标与方程关系13.抛物线上的一点M到焦点的距离为1,则点M到y轴的距离是( )A.B.C.1D.【答案】D【解析】抛物线的准线方程为,根据抛物线的定义可知点到准线的距离为1,所以点到的距离为。

高二数学抛物线试题答案及解析

高二数学抛物线试题答案及解析1.设抛物线焦点为F,点P在此抛物线上且横坐标为4,则|PF|等于【答案】6【解析】因为抛物线焦点为F,点P在此抛物线上且横坐标为4,所以由抛物线焦半径公式得|PF|=x+=4+2=6.【考点】本题主要考查抛物线的定义及几何性质。

点评:简单题,抛物线上的点到焦点的距离与到准线的距离相等。

2.过抛物线的焦点作直线交抛物线于两点,线段的中点的纵坐标为2,则线段长为.【答案】【解析】解:抛物线,∴p=.设A、B、M到准线y=-的距离分别为A′、B′、M′,则由抛物线的定义可得AB=AA′+BB′.再由线段AB的中点M的纵坐标为2可得2MM′=AA′+BB′,即 2(2+1 32 )=AA′+BB′=AB,∴AB=,故答案为.3.过抛物线的焦点作倾斜角为的直线,则它被抛物线截得的弦长为 .【答案】16【解析】解:因为设直线方程为y=(x-2)与抛物线方程联立方程组,结合韦达定理,得到弦长公式求解得到为16.或者利用抛物线的定义可知弦长为两个的和加上4得到。

4.抛物线的焦点坐标是()A.(2,0)B.(0,2)C.(1,0)D.(0,1)【答案】D【解析】解:因为根据题意2p=4,焦点在y轴上,因此焦点坐标为(0,1),选D5.抛物线的准线方程为,顶点在原点,抛物线与直线相交所得弦长为, 则的值为 .【答案】1【解析】解:因为抛物线的准线方程为,顶点在原点,抛物线与直线相交所得弦长为,联立方程组得到,所以p=16.设不在轴下方的动点到的距离比到轴的距离大求的轨迹的方程;过做一条直线交轨迹于,两点,过,做切线交于点,再过,做的垂线,垂足为,若,求此时点的坐标.【答案】见解析.【解析】第一问利用设点坐标,结合已知的关系式得到化简得到轨迹方程。

第二问中用直线与抛物线的方程联立所以由(1)知,所以为线段的中点,取线段的中点,∵是抛物线的焦点,∴,∴∴可得到。

……………………6分设N点坐标为(a,b)则…………………………8分由(1)知,所以为线段的中点,取线段的中点,∵是抛物线的焦点,∴,∴,∴,,,∴,…………………………12分即,所以,,∴,∴所求点的坐标为…………………………15分7.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为,则()A.B.C.D.【答案】C.【解析】结合抛物线的对称性可知过抛物线的焦点作直线和,其中有四个交点,那么这四个交点与抛物线的焦点F可构成两个等边三角形.故应选C.8.的焦点坐标为 .【答案】.【解析】抛物线的焦点坐标为.9.设抛物线的准线与x轴的交点为,过点作直线交抛物线于两点.(1)求线段中点的轨迹方程;(2)若线段的垂直平分线交轴于,求证:;(3)若直线的斜率依次取时,线段的垂直平分线与x轴的交点依次为,当时,求的值.【答案】(1)(2)见解析(3)【解析】本试题主要是考查了抛物线方程以及抛物线的性质,以及直线与抛物线的位置关系的综合运用,求解中点轨迹方程。

初三抛物线试题及答案

初三抛物线试题及答案一、选择题1. 抛物线y = ax^2 + bx + c的顶点坐标是什么?A. (-b, c)B. (-b/2a, c - b^2/4a)C. (-b/2a, c + b^2/4a)D. (-b/a, c)答案:B2. 如果抛物线y = x^2 + 2x + 1的对称轴是直线x = -1,那么a的值是多少?A. 1B. -1C. 0D. 2答案:A3. 抛物线y = 2x^2 - 4x + 3的开口方向是:A. 向上B. 向下C. 水平D. 无法确定答案:A二、填空题4. 已知抛物线y = 3x^2 - 6x + 5,求抛物线的顶点坐标。

答案:顶点坐标为(1, 2)5. 抛物线y = -x^2 + 4x - 3的焦点坐标是什么?答案:焦点坐标为(2, -2)三、解答题6. 已知抛物线y = 2x^2 - 8x + 7,求其与x轴的交点。

答案:首先将方程化为标准形式:y = 2(x - 2)^2 - 1。

抛物线与x轴的交点即为y = 0时的x值。

解方程2(x - 2)^2 - 1 = 0,得到x= 2 ± √(1/2),即x = 2 ± √2/2。

7. 已知抛物线y = ax^2 + bx + c经过点(1, 3)和(-1, 1),求a和b 的值。

答案:将点(1, 3)和(-1, 1)代入方程,得到两个方程:3 = a(1)^2 + b(1) + c1 = a(-1)^2 + b(-1) + c解这两个方程,得到a + b + c = 3和a - b + c = 1。

相减消去c,得到2b = 2,即b = 1。

将b的值代入任一方程,得到a + 1 + c = 3,即a + c = 2。

由于c = 3 - a - b = 3 - a - 1 = 2 - a,代入得到a + 2 - a = 2,这是一个恒等式,说明a可以是任意实数。

四、应用题8. 一个物体从地面向上抛,其高度h(米)与时间t(秒)的关系为h = -5t^2 + 20t。

初中抛物线试题及答案

初中抛物线试题及答案
一、选择题
1. 抛物线y = x^2 - 2x + 1的顶点坐标是()。

A. (1, 0)
B. (1, -1)
C. (0, 1)
D. (0, -1)
答案:A
2. 如果抛物线y = ax^2 + bx + c的对称轴是直线x = -2,那么b的值是()。

A. 4a
B. -4a
C. 2a
D. -2a
答案:B
二、填空题
1. 抛物线y = 2x^2 + 4x + 3的顶点坐标是()。

答案:(-1, 1)
2. 抛物线y = -3x^2 + 6x - 2的对称轴方程是()。

答案:x = 1
三、解答题
1. 已知抛物线y = x^2 - 6x + 9,求抛物线与x轴的交点坐标。

答案:抛物线与x轴的交点坐标为(3, 0)。

2. 抛物线y = 2x^2 - 4x + 3,求抛物线的顶点坐标和对称轴。

答案:抛物线的顶点坐标为(1, 1),对称轴为直线x = 1。

四、应用题
1. 一个抛物线形的桥拱,其方程为y = -0.5x^2 + 4x + 1,桥拱的最高点离水面的高度是5米。

求桥拱的跨度。

答案:桥拱的跨度为8米。

2. 一个物体从地面以一定的初速度向上抛,其运动轨迹可以用抛物线y = -5x^2 + 20x + 2描述,其中x表示时间(秒),y表示高度(米)。

求物体达到最高点时的时间。

答案:物体达到最高点时的时间是2秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
()
A. 1 3
B. 2 3
C. 2 2 3
D. 2 2
【答案】C 【解析】
设 B(x, y) ,直线 y k (x 1) 过定点 (1, 0) 在抛物线的上,则由 AM 2 BN 得
A(2x
1,
2
y)
,所以
y 4
2
y
4x 2 4(2
x
x
,解得
1)
y
1 2
2
,k
1 2
2 0 (1)
AF
AB
3p 2
,即
x0
p 2
3p 2
,所以
x0
p

y0
2 p ,所以 AFC 的面积为 1 3 p 2
2 p 3 2 p2 ,所以 ACE 的面积为 2
1 3 2 p2 2 p2 3 2 ,所以 p 2 6 ,即 p 6 ,故应选 A .
32
2
7.若抛物线 x2 4 y 上有一条长为 6 的动弦 AB ,则 AB 的中点到 x 轴的最短距离为
22 3
.故选
C.
3.已知抛物线 C : y2 4x 上一点 A 到焦点 F 的距离与其到对称轴的距离之比为 5:4,
且 AF 2 ,则 A 点到原点的距离为( )
A.3 B. 4 2
【答案】B 【解析】
C.4 D. 4 3
试卷第 1页,总 18页
x 1 5
y2 4
1 5
y 4或y (1 舍 AF>2)
设 Ax1, y1 , Bx2 , y2 ,
y1 y2
因为 tan AMB 4 ,即 x1 1 x2 1 4 ,
3 1 y1 y2
3
x1 1 x2 1
整理得: 2kx1
x2
4 3
x1
1x2
1
4 3
y1 y2

y kx 1与 y 2 4x 联立可得 k 2 x2 2k 2 4 x k 2 0 ,
抛物线试题及答案
一、选择题
1.在 y 2x2 上有一点 P ,它到 A(1, 3) 的距离与它到焦点的距离之和最小,则点 P 的
坐标是( )
A.(-2,1) B.(1,2)
C.(2,1) D.(-1,2)
【答案】B
【解析】由抛物线定义点 P 到焦点的距离为点 P 到抛物线准线 y 1 的距离,可知, 8
9.已知抛物线 : x2 2y ,过点 A(0, 2) 和 B(t, 0) 的直线与抛物线没有公共点,则 实数 t 的取值范围是 . 【答案】 (, 1) (1, )
【解析】显然
t0
,直线

2x ty 2t 0
,由
2x
x
2
ty 2y
2t
0
,消去
y

tx2
S AF BF 1 AB 1 2 ,故选 D.
2
2
二、填空题
8.已知抛物线 y2 4x ,过其焦点 F 作直线 l 交抛物线于 A,B 两点,M 为抛物线的准
线与 x 轴的交点, tan AMB 4 ,则 AB _____. 3
【答案】16
【解析】焦点 F1,0 , M 1,0 设 AB 方程 y kx 1
,点
A
是两曲线的交点,且 AF x 轴,则双曲线的离心率为
5 1
A.
2
B. 2 1
C. 3 1
2 2 1
D.
2
【答案】B 【解析】∵抛物线的焦点和双曲线的焦点相同,∴p=2c ∵A 是它们的一个公共点,且 AF 垂直 x 轴,设 A 点的纵坐标大于 0,
∴|AF|=p,∴A(
p 2
,p),∵点
A
在双曲线上,∴
可得 x1 x2
1, x1
x2
4 k2
2,
y1 y2
4 ,代入①可得,
2k x1
x2
4 3
4 k2

试卷第 3页,总 18页
所以
x1
x2
8 3k 3
,所以
4 k2
2 2
4
8 3k 3
2
,解得
k
3, 3
所以 x1
x2
4 k2
2
14 ,
所以 AB 1 1 196 4 16 ,故填:16. 3
B. 3
C. 5
D. 6
【答案】C
ybx
A( p , p)
【解析】双曲线的渐近线方程为: a ,由题意可求得点 2 代入渐近线得
b a
p p 2
2 (b)2 ,a
4

c
2
a a2
2
4 ,e2
5 ,e
5 ,故选 C.
5.抛物线
y2
4 px( p
0) 与双曲线 x2 a2
y2 b2
1(a
0, b 0) 有相同的焦点 F
4x
4t
0
,由题意
(4)2
16t 2
0
,解得
t 1或t 1.
10.已知抛物线 y2 4x 与经过该抛物线焦点的直线 l 在第一象限的交点为 A, A 在 y 轴
当过点 A 作直线垂直于抛物线的准线时,此时抛物线上点 P 到 A(1, 3) 的距离与它到焦
点的距离之和最小,且点 P 横坐标为1,代入抛物线方程可得 P(1,2) .
2.如图,已知直线 l : y k(x 1)(k 0) 与抛物线 C : y2 4x 相交于 A、B 两点,且
A、B 两点在抛物线 C 准线上的射影分别是 M 、 N ,若| AM | 2 | BN | ,则 k 的值是
()
A. 3 4
B. 3 2
【答案】D
C.1 D.2
【解析】设 A(x1, y1), B(x2 , y2 ) ,抛物线准线 y 1,根据梯形的中位线定理,得所求
的距离为 S y1 y2 y1 1 y2 1 1,由抛物线的定义得 S AF BF 1 ,利
2
2
2
用 两 边 之 和 大 于 第 三 边 且 当 A, B, F 三 点 共 线 时 取 等 号 , 所 以
设 A(x, y) ,则 y 4
y4
,所以 A(4, 4) ,
到原点的距离为 4 2 ,选 B.
4.点
A 是抛物线 C1
:
y2
2 px
p
0 与双曲线 C2
:
x2 a2
y2 b2
1 a
0,b
0
的一条
渐近线的交点,若点 A 到抛物线 C1 的准线的距离为 p ,则双曲线 C2 的离心率等于( )
A. 2
垂足为
B
,设
C
7 2
p,
0

AF
与 BC 相交于点 E ,若 CF
2
AF
,且 ACE 的面


32


p



A. 6 B. 2 C. 3 D. 2
【答案】A
【解析】设点 A (x0 , y0 ) ,则因为 CF
3 p ,所以由 CF
2
AF
可得
AF
3p , 2
试卷第 2页,总 18页
再由抛物线的定义可得:
p2 4a2
p2 b2
1,∵p=2c,b2
c2
a2 ,
∴ c4 6c2a2 a4 0 ,∴ e4 6e2 1 0 ,∵ e2 1,∴ e2 3 2 2 ∴ e 2 1,
6.设抛物线 y2 2 px( p 0) 的焦点为 F ,准线为 l ,过抛物线上一点 A 作 l 的垂线,
相关文档
最新文档