高中数学必修一111第1课时
高中数学课本全套pdf

高中数学课本全套pdf篇一:人教版必修1高一数学全套打包,150页)人教版高中数学必修1精品教案(整套)课题:集合的含义与表示(1)课型:新授课教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的“属于”和“不属于”关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生,在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而1不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程x2?1?0的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。
2对学生的解答予以讨论、点评,进而讲解下面的问题。
4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)

5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
人教版高中数学必修一:1.1.1教学设计

数学学科课时教学设计检查结果及修改意见:合格[ ] 不合格[ ]组长(签字):检查日期:年月日精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
高中数学 111集合的含义和表示(二)课件 湘教版必修1

( ).
• A.5
B.6
C.7
D.8
• 解析 {x|1≤x≤6,x∈N}={1,2,3,4,5,6}.
• 答案 B
2.
3. • 将集合{x|2≤x≤8}表示成区间为____________.
• 答案 [2,8]
• 能被3整除的正整数的集合,用描述法可表示为 4. ________.
• 答案 {x|x=3n,n∈N+}
名师点睛
1. • 在用列举法表示集合时应注意以下四点: • (1)元素间用“,”分隔; • (2)元素不重复; • (3)不考虑元素顺序; • (4)对于含有较多元素的集合,如果构成该集合的元素 有明显规律,可用列举法,但是必须把元素间的规律显 示清楚后方能用省略号.
2. • 使用描述法时应注意以下四点: • (1)写清楚该集合中元素的一般属性或形式(字母或用字 母表示的元素符号); • (2)说明该集合中元素的特征; • (3)不能出现未被说明的字母; • (4)用于描述的语句力求简明、确切.
(2)使 y=x2+1x-6有意义的实数 x 的集合; (3)在坐标平面中第一、三象限上点的集合.
解 (1){x∈R|x2-2=0}.
(2)要使 y=x2+1x-6有意义,须 x2+x-6≠0,即 x≠2 且 x ≠-3,故可表示成{x|x≠2 且 x≠-3,x∈R}. • (3)第一、三象限上的点的特征是纵横坐标符号相同,
• 提示 集合①{x|y=x2+1}的代表元素是x, • 满足条件y=x2+1中的x∈R, • ∴实质上{x|y=x2+1}=R. • 集合②{y|y=x2+1}的代表元素是y, • 满足条件y=x2+1中的y的取值范围是y≥1, • ∴实质上{y|y=x2+1}={y|y≥1}. • 集合③{(x,y)|y=x2+1}的代表元素是(x,y), • 满足条件y=x2+1的(x,y)的集合是抛物线, • ∴实质上{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}. • 由以上可知它们不是相同的集合.
高中数学第一章集合与函数概念1.3.2奇偶性第一课时函数奇偶性的定义与判定课件新人教A版必修1

目标导航
课标要求
1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图象的特征. 3.掌握判断函数奇偶性的方法.
通过本节内容的学习,使学生学会利用图象理解和研究 素养达成
函数性质,提高学生直观想象、逻辑推理的能力.
新知探求 课堂探究
新知探求·素养养成
x 1
规 得x范2=解1答,即:(x2=)由±1.1x2
x2 1
0, 0
因此函数的定义域为{-1,1},关于原点对称. ……………………4分
又f(1)=f(-1)=-f(-1)=0,所以f(x)既是奇函数又是偶函数. …6分
(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞), …………………7分 不关于原点对称,所以f(x)既不是奇函数也不是偶函数. ………9分
所以 f(x)为奇函数. ………………………………………………12 分
变式探究:本例中函数 f(x)= 1 x2 + x2 1 可化简为 f(x)=0,则该函数既是奇 函数又是偶函数,若将函数变形为 f(x)= x 1 + 1 x ,则函数的奇偶性如何?
解:由于
x 1 1 x
0, 0,
则
x=1,故
【情境导学】 导入 函数①f(x)=x2-1,②f(x)=- 1 ,③f(x)=2x的图象分别如图所示.
x
想一想 1:(1)导入中三个函数的定义域分别是什么?它们有什么共同特点?
(R;(-∞,0)∪(0,+∞);R.关于原点对称) (2)对于导入中的三个函数计算f(-x),视察对定义域内每个x,f(-x)与f(x) 有怎样的关系? (①f(-x)=x2-1,f(-x)=f(x).
高中数学人教B版必修第一册课件:1.1.1集合及其表示方法

①π∈R;② 3∉Q;③0∈N*;④|-4|∉N*.
A.1
B.2
C.3
D.4
四、集合的表示
(1)自然语言表示法
1~20以内的质数组成的集合
(2)列举法 把集合中的元素一一列举出来,以逗号隔开,并用
花括号“{}”括起来的表示集合的方法叫做列举法.
{2,3,5,7,11,13,17,19}
例:地球上四大洋组成的集合: {太平洋,大西洋,印度洋,北冰洋}
四、集合的表示
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程 x2=x 的所有实数根组成的集合; (3)由1~20以内既能被2整除,又能被3整除的所有自 然数组成的集合.
解:(1)设小于10的所有自然数组成的集合为A, 则 A={0,1,2,3,4,5,6,7,8,9}
二、集合中元素的特性
先思考以下两个问题:
① 高一级身高较高的同学,能否构成集合?
否
② 高一级身高160cm以上的同学,能否构成集合? 能 ③ 2, 4, 2 这三个数能否组成一个集合? 否
②互异性:集合中的元素是互异的。即集合元素是没 有重复现象的。 (互不相同)
二、集合中元素的特性
先思考以下两个问题:
有限集
②到直线 l 的距离等于定长 d 的所有的点;
③全体自然数;
无限集
④方程 x2+3x+2=0 的所有实数根;
分别归纳概括出它们具有什么共同特征?
一般地,我们把研究的对象统称为元素,把一些元 素组成的总体叫做集合(简称为集).
一、集合的含义
一般地,我们把研究的对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
当 a=-32时,经检验,符合题意.故 a=-32.
对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册

)
(1)A已.知cab0.3a0.4 ,A.b cB.lobga34ab,cc lBo.g0.a3 4C,b.则b(c a c )C. b Da.bc c a D.b c a
A. c b a B. a b c
C.b a c
D.b c a
例题讲练
(2)设 a log3 , b log2 3 , c log3 2 ,则(
x lxogaloyg(a ya ( 0a且 a0 且 1a),1x),也是x 也以是y以为自y 为变自量变的量函的数函(数其(中其y 中 0y, 0x , Rx ),R ), 根据根我据们我的们认的知认习知惯习,惯我,们我把们x 把 lxogaloyg中a 字y 中母字x 母, xy,对调y 对,调, 写成写y成 lyogaloxg(a 其x (中其x 中 0x, 0y, Ry ).R ).
例题讲练
【练习习 55】】
((11))已已知知ff((xx))的的定定义义域域为为[0[,10],1,] ,则函则数函数f [lof g[l1o(g31(3x)] 的x)定] 的义定域义为域___为____________._____.
22
例题讲练
(2)已知函数 y f [lg(x 1)] 的定义域为 (0,99] ,则函数 y f [log2 (x 2)] 的定义域为__________.
§4.4 对数函数及其性质 (第一课时)
人教版高中数学必修一
课堂引入:
通过前面的学习我们知道,某细胞经过 x 次分裂后,变成的细胞个数 y 2x ,
得由到一由y 个y2指x 数2x函x数x.lo由gglo22gyyy2y2对x 于对任于x意任的意lo细的g2胞细y个胞,数个对数y于,任y 我,意们我的都们细可都胞以可个通以数过通y对过,数对我运数们算运都算可 得到以得唯通到一唯过的一对的数x 与运x 之与算对之得应对到,应唯所,一以所的细以x胞细与分胞之裂分对次裂应数次,所数x以也x细可也胞以可分看以裂出看次以出数细以x胞细也个胞可数个以数y看为y成自为以变自细变胞个 量的数量函的y数函为.数自.变量的函数. 同样同地样,地根,据根指据数指与数对与数对的数关的系关,系由,y由 ayx(aax ( 0a且 a0 且 1a)可1)以可得以到得:到:
01-第一节 函数的概念及其表示-课时1 函数的概念高中数学必修一人教A版

【解析】 令 = 4 − , ∈ [1,3],满足定义域和值域均为[1,3].(注:其他
满足题意的函数均可.)
18.已知 =
1
(
1+
∈ ,且 ≠ −1), = 2 + 2 ∈ .
(1)求 2 , 2 的值;
A.①③
B.①②
C.③④
D.②④
【解析】 对应关系若能构成从到的函数,须满足:对中的任意一个
数,通过对应关系在中都有唯一的数与之对应.对于①, =
1
2
1
,当
=2
时, = ∉ ,故①不满足题意;对于②, = + 1,当 = −1时,
= −1 + 1 = 0 ∉ ,故②不满足题意;对于③, = ,当 = ±1时,
【解析】 2 =11来自2=1,
3
2 = 22 + 2 = 6.
(2)求 2 的值;
【解析】 2
= 6 =
1
1+6
=
1
.
7
(3)求 , 的值域.
【解析】 因为 =
1
的定义域为{|
+1
≠ −1},
所以 的值域是 −∞, 0 ∪ 0, +∞ .
因为 = 2 + 2的定义域为,且 2 + 2 ≥ 2,所以 的值域是
3
B √ = 3 + 2 = + 2,与 = + 2的定义域相同,对应关系相同.
C × =
2
+ 2的定义域为{| ≠ 0},与 = + 2的定义域不同.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 1.1 1.1.1 第1课时
1.下列各组对象中不能构成集合的是()
A.2010年参展上海世博会的所有展馆
B.北京大学2011级的新生
C.2012年伦敦奥运会的所有参赛运动员
D.美国NBA的篮球明星
解析:选项A、B、C的对象都是确定的,而且是不同的,因而能构成集合;而选项D 中“明星”标准不明确,不满足确定性,不能构成集合.
答案:D
2.设集合A只含一个元素a,则下列各式正确的是()
A.0∈A B.a∉A
C.a∈A D.a=A
解析:由已知条件知,a是集合A中的一个元素,因此选用符号∈.故选C.
答案:C
3.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是() A.1 B.-2
C.6D.2
解析:验证,看每个选项是否符合元素的互异性.
答案:C
4.若a∈N,但a∉N*,则a=________.
解析:N表示的是自然数集,N*表示的是正整数集.
答案:0
5.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.解析:方程x2-5x+6=0的解是2,3;方程x2-x-2=0的解是-1,2.由集合元素的互异性知,以这两个方程的解为元素的集合中共有3个元素.
答案:3
6.设A是满足x<6的所有自然数组成的集合,若a∈A,且3a∈A,求a的值.
解:∵a∈A且3a∈A,∴a<6且3a<6,∴a<2,
又a是自然数,∴a=0或1.
(时间:60分钟满分:60分)
知识点及角度
难易度及题号
基础中档稍难
集合的概念110
集合中元素的特性4,5,89
元素与集合的关系2,36,7
1.下列几组对象可以构成集合的是()
A.充分接近π的实数的全体
B.善良的人
C.某校高一所有聪明的同学
D.某单位所有身高在1.7 m以上的人
解析:A、B、C中标准不明确,故选D.
答案:D
2.下面有四个语句:
①集合N*中最小的数是0;②-a∉N则a∈N;③a∈N,b∈N,则a+b的最小值是2;
④x2+1=2x的解集中含有2个元素.
其中正确语句的个数是()
A.0 B.1
C.2D.3
解析:N*是不含0的自然数,所以①错;
取a=2,则-2∉N,2∉N,所以②错;
对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错;对于④,解集中只含有元素1,故④错.
答案:A
3.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为()
A.2 B.2或4
C.4 D.0
解析:若a=2∈A,则6-a=4∈A;或a=4∈A,则6-a=2∈A;若a=6∈A,则6
-a=0∉A.故选B.
答案:B
4.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是() A.锐角三角形B.直角三角形
C.钝角三角形D.等腰三角形
解析:△ABC的三边长两两不等,故选D.
答案:D
二、填空题(每小题4分,共12分)
5.已知集合A中只含有1、a2两个元素,则实数a不能取的值为________.
解析:由a2≠1,得a≠±1.
答案:±1
6.由实数x,-x,x2,-3
x3所组成的集合中最多有________个元素.
解析:因为x2=|x|,-3x3=-x,所以当x=0时,这几个实数均为0;当x>0时,它们分别是x,-x,x,-x;当x<0时,它们分别是x,-x.-x,-x,均最多表示两个不同的数,故集合中的元素最多为2个.
答案:2
7.设集合M={平行四边形},p表示某个矩形,q表示某个梯形,则p________M,q________M.
解析:矩形是平行四边形,梯形不是平行四边形,故p∈M,q∉M.
答案:∈∉
三、解答题(共32分)
8.(10分)已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,求x.
解:当3x2+3x-4=2时,
即x2+x-2=0,则x=-2或x=1.
经检验,x=-2,和x=1均不合题意.
当x2+x-4=2时,即x2+x-6=0,
则x=-3或x=2.
经检验,x=-3和x=2均合题意.
∴x=-3或x=2.
9.(10分)设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三
个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?
解:∵当a =0时,b 依次取1,2,6, 得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6, 得a +b 的值分别为3,4,8;
当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11. ∴由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.
10.(12分)定义满足“如果a ∈A ,b ∈A ,那么a ±b ∈A ,且ab ∈A ,且a
b (b ≠0)∈A ”的
集合A 为“闭集”.试问数集N 、Z 、Q 、R 是否分别为“闭集”?若是,请说明理由;若不是,请举反例说明.
解:数集N ,Z 不是“闭集”,数集Q ,R 是“闭集”. 例如,3∈N,2∈N ,而3
2
=1.5∉N ;
3∈Z ,-2∈Z ,而3
-2=-1.5∉Z ,故N 、Z 不是闭集.由于两个有理数a 与b 的和、
差、积、商,即a ±b ,ab ,a
b
(b ≠0)仍是有理数,故Q 是闭集.同理R 是闭集.。