水解酸化—UASB—SBR组合法处理印染废水
“水解酸化+UASB厌氧反应+A-O+混凝沉淀+芬顿反应+终沉池”应用于造纸综合废水处理的研究

“水解酸化+UASB厌氧反应+A-O+混凝沉淀+芬顿反应+终沉池”应用于造纸综合废水处理的研究“水解酸化+UASB厌氧反应+A/O+混凝沉淀+芬顿反应+终沉池”应用于造纸综合废水处理的研究制浆和造纸行业因其高水耗、高能耗和大量废水排放而备受瞩目。
造纸废水中含有大量的有机物质、悬浮物和颜料,不仅污染环境,还对生态系统造成较大的影响。
为了解决这一问题,研究人员着力于开发适用于造纸综合废水处理的高效、经济且环保的技术。
本文将介绍一种包括水解酸化、UASB厌氧反应、A/O工艺、混凝沉淀、芬顿反应和终沉池的废水处理工艺,并探讨其在造纸废水处理中的应用。
水解酸化工艺是造纸废水处理流程的第一步。
在水解酸化池中,通过漏斗分配器将废水均匀分布,并在无氧条件下进行酸化。
酸化的目的是将可溶性有机物转化为可生物降解的有机物,为后续的生物处理提供良好的营养物质。
水解酸化后,废水通过UASB厌氧反应器进行生物净化。
UASB反应器采用固定床填料,废水由底部进入,并与悬浮的生物膜接触,发生厌氧反应。
在反应过程中,有机污染物被微生物降解为甲烷和二氧化碳等气体,从而减少废水中的有机污染物含量。
UASB反应器后面是A/O工艺,也就是缺氧/好氧工艺。
废水首先进入缺氧区,在这个区域中,部分氨氮会还原为氮气,从而达到降解氮化合物的目的。
然后,废水进入好氧区,通过投放空气,利用好氧条件来降解有机物和氨氮。
A/O工艺后面是混凝沉淀环节,通过添加混凝剂和混凝沉淀剂,使废水中的悬浮物和颜料等大分子物质沉淀下来。
此过程可以显著净化水体,降低废水中的颜色和浊度。
混凝沉淀后,废水通过芬顿反应进一步处理。
芬顿反应是一种高效的氧化反应,可将有机物质氧化为无害的物质。
在芬顿反应中,废水中添加过氧化氢和铁盐,并在适当的条件下进行混合和反应。
这种反应产生的高效氧化物可以快速降解有机污染物,提高废水的水质。
最后,废水进入终沉池进行最后的沉淀和分离,以去除废水中残留的悬浮物和油脂等。
水解酸化-生物接触氧化工艺处理纺织印染废水

絮凝沉淀 常用的处理设施有:竖流沉淀池、斜管沉淀池、辐流沉淀池、 平流沉淀池等。
气浮 常用设施有:电解气浮装置、曝气气浮装置、加压溶气气浮 装置等。
吸附 常用的有:活性炭、硅藻土、树脂吸附剂等。
过滤 主要设施有:各类滤池、各种膜材过滤器等。
生化处理技术 厌氧包括:水解酸化、UASB等;
水解酸化-生物接触氧化工艺 处理纺织印染废水
主要内容
纺织印染废水的来源和特征 常用的处理单元 各类纺织印染废水的特征及其处理流程
工程实例:水解酸化-生物接触氧化工艺
纺织印染废水的来源
印染行业是工业废水排放大户,我国纺织印染行业排出的废水是污 染我国水环境的主要污染源之一。
印染加工的四个工序都要排出废水: 1.预处理阶段
2.染色工序 染色废水的水质随染布品种以及工艺的不同而变化,所用染料的种
类、染料上色率的高低以及染料本身化学耗氧量的大小都将对水质产 生很大的影响。废水中含有各种染料以及各种助剂、表面活性剂等。
废水色度高,一般在2000倍左右,碱性强,pH值一般在12左右,水质水 量变化大,BOD5值较低,CODCr值很高,可生化性较差。
因此开发经济有效的印染废水处理技术日益成为当今环保行业关注的 课题。不少地方在生物处理系统中增加了混凝、气浮、活性碳吸附、 臭氧及电解处理工艺,但从运行情况看,除生物法以外,其它工艺都 存在着能源、成本、效果和污泥二次污染问题。
为此,我们提出了兼氧酸化水解—好氧生物接触氧化工艺处理纺织印 染废水。
预处理设施: (1)格栅
格栅一般设两道 ,一道固定式粗格栅 ,一道为自动回转式细格栅。 (2)集水池
将各类印染废水收集 ,然后提升至调节池。 集水池根据情况而定 ,一般将它与调节池合二为一 ,不单独设置。 (3)调节池 纺织印染工业特有的生产过程 ,造成其废水排放的间歇性和多变性 , 使排出废水的水质和水量变化很大。在废水进入构筑物之前 ,必须 预先进行调节。将不同时间排出的废水 ,贮存在同一调节池内 ,并通 过机械或空气的搅拌达到出水均匀的目的。 此外 ,调节池还具有预沉淀、预曝气、降温和贮存临时事故排水的 功能。水力停留时间一般为 6~12h,最小应大于 4h。
水解酸化——SBR工艺处理牲畜养殖废水效果分析

⽔解酸化——SBR⼯艺处理牲畜养殖废⽔效果分析⽔解酸化——SBR⼯艺处理牲畜养殖废⽔效果分析随着科技的不断发展和社会进步,牲畜养殖业开始向着规模化、现代化、科技化⽅向发展,为了尽量缩减成本,⼤多数规模化的牲畜养殖场粪污都是尽量收集⼲粪直接向外售出,这就导致养殖过程中产⽣的废⽔所含污染物浓度降低,不太适合厌氧处理条件,因此,对于污染物浓度较低的牲畜养殖废⽔,⾮常有必要研究探寻⼀种新的处理⽅向或⼯艺,研究尽量本着低投⼊、⾼效率、能适应更⾼排放标准的原则进⾏。
⼀、⼯艺的选择及能效对⽐1、⽔解酸化⽔解酸化是⼀种介于好氧和厌氧之间的污⽔处理⽅法,是根据产甲烷菌与⽔解产酸菌⽣长速度的不同,将反应控制在介于厌氧处理的第⼀和第⼆阶段之间,即在⼤量⽔解细菌和酸化细菌的作⽤下将不溶性有机物⽔解为可溶性有机物,将难⽣物降解的⼤分⼦物质转化为易于⽣物降解的⼩分⼦物质从⽽改善废⽔可⽣化性的⼀种反应过程,同时此过程对SS还具有较⾼的去除率,由此可知⽔解酸化是能消耗⼀部分难降解污染物⽽不能⼤量去除污染物的⼯艺过程,因此不适合单独作为⼀种污⽔处理⼯艺来运⾏,但是,⼜因其具有投资少、处理能⼒强的特点,⾮常适合于与其他处理⽅法组成联合处理⼯艺实现降低投资成本、提⾼处理效果的⽬的。
2、SBR序批式活性污泥法SBR即英⽂Sequencing Batch Reactor的缩写,是⼀种安间歇⽅式运⾏的⼀种活性污泥处理⼯艺,相⽐于传统的连续性活性污泥处理⼯艺其具有⼯艺通组成简单、⽆需单独污泥回流、不设⼆次沉淀池、占地⾯积⼩、建设与运⾏费⽤低、处理效果好等特点。
由此,确定选⽤⽔解酸化——SBR联合处理⼯艺作为规模化牲畜养殖废⽔的处理⼯艺进⾏试验探寻。
⼆、试验结果1、⽔解酸化结果以某规模化养猪场产⽣的废⽔为样本,实验室模拟⽔解酸化过程参考⽂献[1]得知结果:2、SBR对⽔解酸化出⽔的处理结果参考⽂献[2]3结论①短时间的⽔解酸化对猪场废⽔中的SS、COD、BOD5及TP具有较好的去除效果,对N 的去除效果较差②SBR对⽔解酸化出⽔中的污染物有较好的去除率,对N的去除效果较好,特别是NH3-N 的去除率相当⾼,对P的去除效果较差。
养猪场污水UASBSBR工艺处理工程设计

养猪场污水UASB+SBR工艺处理工程设计摘要养殖业污水中富含大量营养物质,若不经处理直接外排入水体,往往会造成水体富营养化。
养猪废水的特点是排放集中、水力冲击负荷强、有机质浓度高、水解酸化快、沉淀性能好。
本设计采用UASB+SBR处理工艺,该工艺优点在于艺对有机物、悬浮物、氮和总磷均有很好的去除效果。
废水首先进入调节池,去除大部分悬浮物和少量有机物,出水流入集水井,通过泵输送到UASB反应器,大部分有机物被降解,并产生沼气。
UASB反应器出水进入SBR反应器进行后续处理,部分有机物和大部分NH3-N被降解。
由于SBR反应器出水SS、COD还较高,影响出水水质,因此通过氧化塘作进一步处理,以满足达标排放要求。
废水经处理后达到《畜禽养殖业污染物排放标准》(GB18596-2001)排放标准,本设计采用的工艺可达到预期的处理效果。
关键词:养猪场废水;有机废水;UASB;SBR;氧化塘AbstractA large number of aquaculture wastewater rich in nutrients, if not treated directly discharged into water bodies outside will often result in eutrophication. Emissions from swine wastewater is characterized by a concentration of strong hydraulic shock loads, high concentrations of organic matter, hydrolysis acidification rapid sedimentation performance. This design uses UASB + SBR treatment process, the process advantages of Arts of the organic matter, suspended solids, nitrogen and phosphorus removal were very good. First, adjust the pool water to enter, remove most suspended solids and a small amount of organic matter, water wells into the collection, by pumping to the UASB reactor, most of the organic matter is degraded, and produce methane. UASB reactor effluent into the SBR reactor for subsequent processing, part of the organic matter and most of the NH3-N degradation. SBR reactor effluent as SS, COD is also high, affecting water quality, so by oxidation pond for further processing to meet the discharge standards requirements.The treated wastewater to achieve "emission standards for livestock and poultry breeding industry"(GB18596-2001) emission standards, the design process can be used to achieve the desired treatment effect.Keywords: Piggery wastewater.;Organic waste ;USAB;SBR;Oxidation pond目录摘要 (I)ABSTRACT (II)目录 (III)第一章前言 (1)1.1 毕业设计课题及研究目的意义 (1)1.1.1课题的意义 (1)1.1.2 课题研究的目的 (2)1.2 国内外养殖业污染现状及防止措施 (2)1.2.1国外养殖业污染及防治措施 (2)1.2.2国内养殖业污染现状 (4)1.3 养殖厂废水处理的发展现状 (5)1.3.1国外发展现状 (5)1.3.2国内发展现状 (5)1.3.3 研究现状 (6)1.3.4 其他相关处理技术 (9)1.3.5 结论与展望 (9)1.4 养猪场废水处理工艺发展趋势 (10)第二章设计任务说明 (14)2.1设计依据 (14)2.2设计思想 (14)2.2.1 设计原则 (15)2.3水质水量 (15)2.3.1 设计水质水量的确定 (15)2.3.2 污水来源 (15)2.3.3水质特点 (15)2.3.4污水水质 (16)2.3.5 排放标准 (16)第三章污水处理工艺选择 (17)3.1废水工艺选择 (17)3.2工艺流程 (18)3.3构筑物对BOD5、COD cr的去除率 (19)第四章工艺流程设计计算 (20)4.1 筛网设计计算 (20)4.2格栅渠设计计算 (20)4.3初沉池设计计算 (21)4.4 调节池设计计算 (22)4.5 UASB反应器设计计算 (23)4.6二沉池设计计算 (32)4.7 SBR 反应池设计计算 (34)4.8 SBR设计程序 (35)4.9 SBR产泥量计算 (39)4.10 氧化塘设计计算 (40)第五章污泥处理与处置 (42)5.1污泥量与集泥池的确定与计算 (42)5.1.1 污泥量的确定与计算 (42)5.1.2 集泥池 (42)5.2 污泥浓缩池 (42)5.2.1 设计说明 (42)5.2.2 参数选取 (43)5.2.3 设计计算 (43)5.3 污泥脱水间 (44)第六章平面布置和高程布置 (45)6.1平面布置说明 (45)6.2 高程布置说明 (46)第七章污水处理工程中的水力计算 (47)7.1 污水处理高程水力计算 (47)7.1.1 高程计算注意事项 (47)7.1.2 水头损失计算及高程设计 (48)7.1.3处理构筑物及管道的水头损失 (48)第八章环境影响评价及工程措施 (50)8.1 环境影响评价 (50)8.1.1污水处理建设本身的环境保护问题 (50)8.2 工程技术措施 (51)结束语 (52)致谢 (53)参考文献 (54)第一章前言1.1 毕业设计课题及研究目的意义1.1.1课题的意义随着我国人民日常生活水平的提高,畜禽养殖越来越普遍。
水解酸化-UASB-SBR工艺处理改性淀粉废水研究

水解酸化-UASB-SBR工艺处理改性淀粉废水研究
水解酸化-UASB-SBR工艺处理改性淀粉废水研究
以3种高浓度改性淀粉废水(氧化淀粉、酯化淀粉和醚化淀粉)为研究对象,采用水解酸化-上向流厌氧生物法(UASB)-活性污泥法(SBR)组合工艺,从设计、调试、运行和技术分析来研究该工艺的可行性.研究结果表明:该工艺处理改性淀粉废水是可行的,对不同种类的改性淀粉废水具有较强的适应性.
作者:陈日祥 Cheng Rixiang 作者单位:佛山市顺德区环境保护监测站,广东,顺德,528300 刊名:环境工程 ISTIC PKU 英文刊名:ENVIRONMENTAL ENGINEERING 年,卷(期): 2005 23(2) 分类号:X7 关键词:改性淀粉废水水解酸化-UASB-SBR工艺颗粒污泥。
水解酸化UASB,SBR处理印染废水

水解酸化-UASB-SBR
该工艺流程如图1,已在绵阳和成都2家印染厂应用成功,在运行过程中,用高浓度、高碱度的煮炼和丝光废水取代清水加碱的脱硫除尘用水,达到以废治废的效果;采用调节池和酸化池共建,既保证了调节池容量的足够大,解决了印染废水多变化的难题,又节约占地和投资;由SBR排出的剩余污泥不是直接排放,而是返回了调节酸化池,在进入UASB反应池以厌氧消化后再排放,这种污泥回流处理方式可使污泥基本实现稳定,易脱水,不发臭,可直接用作肥料,处理效果见表2。
表2 水解酸化—UASB—SBR工艺处理效果
指标ρ(COD)/(mg·L-1) ρ(BOD)/(mg·L-1) ρ(SS)/(mg·L-1) 色度/倍
进水2500-4500 600-1000 400-600 100-600
出水80-150 30-40 20-70 50-60。
UASB-SBR生化系统处理制药废水的能力提升研究

UASB-SBR生化系统处理制药废水的能力提升研究[摘要] 采用水解酸化-UASB-SBR工艺处理金黄色素生产废水,污水系统运行初期进水COD:2500~7800 mg/L。
后期由于控制污水排放量,原水COD达到6000~17000mg/L,虽然水量减少了,但是原水浓度偏高,对生化系统的正常运行造成了压力,经过近半年的调整运行,污水处理系统逐步正常稳定化,能保证达标处理污水。
[关键词] 制药废水;UASB;SBRAbstract: Hydrolytic Acidification-UASB-SBR process was used to treat wastewater produced in the process of producing aluminon . The COD in the influent was 2500~7800 mg/L. Late due to control sewage discharge, COD reaches 6000~ 17000mg / L, while the decrease of water, but the water concentration is too high, the biochemical system normal operation caused by the pressure, after nearly half a year of operation, sewage treatment system gradually normal stabilization, can guarantee the compliance of sewage treatmentKey words: pharmaceutical wastewater;up-flow anaerobic sludge blanket;sequencing batch reactor本文主要介绍水解酸化-UASB-SBR工艺在处理金黄色素生产废水中的应用以及后期污水水量及COD变化调整运行参数的运行情况跟踪分析。
UASB反应器对印染废水的处理

UASB反应器对印染废水的处理1 引言近年来,由于化纤织物的发展和印染后整理技术的进步,使大量PVA浆料、新型助剂等难生化降解的有机物进入印染废水,这给生化处理增加了难度.而水解酸化的目的是针对印染废水中这类可生化性很差的一些高分子物质,期望它们在厌氧段转化为小分子物质,从而改善废水的可生化性,为后续处理创造条件.UASB反应器(Up-flow Anaerobic Sludge Blanket)作为第二代废水厌氧生物处理的典型工艺,具有结构紧凑、处理能力大(有机负荷高)、无机械搅拌装置、处理效果好及占地小等优点,与传统的厌氧生物处理工艺相比,实现了水力停留时间(HRT)与污泥停留时间(SRT)的有效分离,是目前研究较多、应用日趋广泛的新型废水厌氧处理设备.为此,某印染废水处理厂采用UASB作为水解酸化池,稳定运行后发现其不仅具有传统水解酸化的作用,废水通过UASB还具有脱氮效能且排泥量很少,2012年每吨水的污泥产量仅为376 g(含水率80%),大大小于奚旦立等研究发现的4000 g · t-1(含水率80%)的平均水平.为阐明该UASB如何脱氮并实现低污泥产量,本研究利用454高通量测序技术对UASB 中水解酸化污泥进行微生物的菌群结构分析,以期从微观方面解释这种现象并为以后此类废水的处理提供参考.2 材料与方法2.1 工艺概况江苏某工业园区污水处理厂以处理印染废水为主,约占总处理水量90%以上,处理水量约为12000 m3 · d-1左右,采用“UASB +好氧池+接触氧化池”为主体的二级生化处理工艺.经多年的实际运行,大量监测数据表明,该工艺处理效果良好,出水水质达到《城镇污水处理厂污染物排放标准》(GB18918—2002)一级A标准.2010—2012年污水处理厂进出水水质情况如表 1所示,工艺流程见图 1.表1 2010—2012年污水处理厂进出水水质情况图 1 工艺流程图2.2 水解酸化通过投加稀硫酸调节废水的pH值,使后续生化反应池内的微生物在正常环境下生存,以保证衔接工序高效稳定地运行.UASB可降解部分有机污染物、截流与消化回流剩余污泥和SS,减小后续处理的有机负荷.UASB反应池的外形尺寸为16 m×16 m×14 m(长×宽×高),为钢筋混凝土结构,共2座,有效水深8.5 m,三相分离区3.0 m,布水区1.5 m,超高0.5 m,水力停留时间8.0 h.系统稳定运行后,废水通过UASB反应池,其污染物的去除率如表 2所示.表2 UASB中污染物去除率2.3 实验方法污泥样品取自于现场稳定运行的UASB中,用无菌采样袋装盛并密封带回实验室,利用实时荧光定量PCR并委托上海欧易公司采用454高通量测序技术对污泥样品的微生物群落进行分析,实验流程如下.2.3.1 DNA提取使用OMEGA 公司的E.Z.N.A Soil DNA试剂盒抽提基因组DNA,并用1%琼脂糖凝胶电泳检测抽提的基因组DNA完整性.2.3.2 PCR扩增按指定测序区域,合成带有5′454 A、B接头-特异引物3′的融合引物,PCR采用TransGen TransStart Fastpfu DNA Polymerase AP221-02,PCR仪为ABI GeneAmp 9700 型;每个样品3个重复,将同一样品的PCR产物混合后用 2%琼脂糖凝胶电泳检测,使用AxyPrepDNA凝胶回收试剂盒(AXYGEN公司)切胶回收PCR产物,Tris-HCl洗脱;2%琼脂糖电泳检测.2.3.3 荧光定量参照电泳初步定量结果,将PCR产物用QuantiFluorTM -ST蓝色荧光定量系统(Promega 公司)进行检测定量,之后按照每个样品的测序量要求,进行相应比例的混合. emPCR和Roche Genome Sequencer FLX +上机测序所用试剂分别为Roche GS FLX Titanium emPCR Kits(Lib-L)和Roche GS FLX+ Sequencing Method Manual_XLR70 kit.2.3.4 生物信息学分析去除序列末端的后引物和接头序列、多碱基N、poly A/T尾巴及低质量碱基;去除所得序列的barcode标签序列、前引物序列;丢弃长度短于200 bp、模糊碱基数>0、序列平均质量低于25的序列;提取非重复序列,与Silva数据库(http://www.arb-silva.de/)中已比对的(16S/18S,SSU)核糖体序列数据进行比对,去杂后生成分类操作单元;采用Mothur(/wiki/Classify.seqs)软件将OTU中全部序列与Silva数据库进行比对,找出最相近且可信度达80%以上的种属信息.为了获得每个 OTU 的分类学信息,将 97%相似水平下每个 OTU 中的所有序列进行一致性分析,找出同一个 OTU 中的不同序列的最近祖先的种属信息作为该 OTU 的种属信息.3 结果与分析3.1 微生物群落的多样性分析3.1.1 微生物的丰度和多样性指数通过对Chao指数(/wiki/Chao)和Ace指数(/wiki/Ace)的计算可以统计出UASB中微生物群落的丰度估计,结果见表 3.通过对Shannon指数(/wiki/Shannon)和Simpson指数(/wiki/Simpson)指数的计算可以统计出UASB中的微生物群落的多样性估计,结果见表 4.式中,Schao1为估计的OTU数,即Chao指数;Sobs为实际观测到的OTU数;N1为只含有一条序列的OTU数目;N2为只含有两条序列的OTU数目;SACE 为ACE指数;Srare为含有少于10条(包含10条)序列的OUT数目;Sabund为含有多于10条序列的OUT数目;abund为“优势”OUT的阀值,默认为10;Ni为含有i条序列的OUT数目;Dsimpson为Simpson指数;Hshannon 为Shannon指数;N为所有的序列数.表3 样品的丰度估计量表4 样品的多样性估计量Boon等研究发现,生活废水、造纸废水、印染废水的菌群Shannon指数分别为2.70、2.68、 2.45.Miura等对城市污水的细菌群落结构进行了研究,其Shannon指数在3.25~4.00之间.因此,从表 3和表 4可见,该印染废水处理系统中细菌具有较高多样性,同时,根据生态学中的多样性导致稳定性原理,UASB反应器中的微生物菌种呈多样性分布有利于稳定产酸,并为后续微生物提供丰富的有效碳源.3.1.2 Good′s Coverage指数和稀释性曲线通过Good′s Coverage指数(/wiki/Coverage)的计算(公式(9))结果可以看出,样品的Good′s Coverage指数都较高(表 5),表示样品中序列被测出的概率较高.从图 2可以看出,样品的稀释性曲线已经渐渐趋向较平坦,证明此次测序的数据量是合理的,继续测序不会再产生较多新的OTU.式中,N1 为只含有一条序列的OUT数目,N为抽样中出现的总序列数目.表5 Good′s Coverage指数计算结果图 2 样品稀释性曲线3.2 测序结果样品有效序列和优化序列分别为11707和8491,通过分类学分析,UASB中微生物共有435种,在门的分布比例主要为变形菌门30.36%,拟杆菌门25.59%、绿弯菌门19.34%、厚壁菌门12.35%、互养菌门6.46%、螺旋体门1.58%和浮霉菌门1.15%等.通过454高通量测序,在属的水平上的优势菌群组成鉴定结果如表 6所示.可以看出,在UASB反应池的优势菌属中并未发现含有产甲烷菌,说明厌氧消化很好地停留在了水解酸化阶段.表6 优势菌属及其比例任南琪等研究发现,脱硫橄榄样菌属(Desulfobacula)属于δ变形菌纲(Deltaproteobacteria)的脱硫杆菌科(Desulfobacteraceae),可氧化各种芳香族化合物(包括芳香族硫氢甲苯)为CO2,它在缺氧的环境中可以利用硫酸盐和硫作为电子受体并以有机化合物作为电子供体,属于完全氧化型SRB(Sulfate-reducing bacteria),可以通过TCA 途径或乙酰辅酶A途径将乙酸反向氧化至CO2和H2O.杆状脱硫菌属(Desulforhabdus)也是属于δ变形杆菌纲(Deltaproteobacteria)的硫酸盐还原菌,可利用脂肪酸并将其完全氧化成CO2.Levilinea和长绳菌属(Longilinea)同属于绿弯菌门的厌氧绳菌纲(Anaerolineae),目前对它们的研究较少.曹新垲等对工业废水中的萘进行高效生物处理时发现,微生物群落中含有Levilinea和Longilinea,证明此两种属菌类对于染料中的萘有一定的去除作用.Thauera属细菌是β变形菌纲(Betaproteobacteria)下的一类革兰氏阴性细菌,大都为杆状且具有反硝化能力.广泛存在于各种类型的废水处理装置中并具有多种芳香族污染物降解能力的重要功能类群且已知的Thauera属细菌则都是反硝化菌.Paludibacter属于拟杆菌门的紫单胞菌科(Porphyromonadaceae),为中温厌氧型且能发酵多种单糖和二糖产丙酸、乙酸和少量丁酸.Tepidimicrobium属于梭菌纲(Clostridia)的梭菌科(Clostridiaceae),Slobodkin等发现它中度嗜热,属于厌氧细菌;Phitsuwan等发现它能够分解纤维素和木聚糖.类芽孢杆菌(Paenibacillus)的细胞呈杆状,能从各种糖上产酸,有的种还能够分解不同的多糖.李欣等某污水处理厂活性污泥采用双层平板基内培养法筛选得到一株兼性产淀粉酶菌株,经过鉴定为类芽胞杆菌属.梭菌属(Clostridium)属于厚壁菌门(Firmicutes),Rhee等将剩余污泥用厚壁菌门(Firmicutes)的梭菌属(Clostridium)进行发酵,可以实现污泥减量化和挥发酸的生产,是UASB中起到产酸和污泥减量作用的主要菌种之一.从表 2中可以看出,印染废水通过UASB反应池,B/C可以从进水时的0.30提高到0.42,SS和色度去除率分别达到70%和76%,并且在此印染废水处理工艺中,废水通过UASB反应池,NH+4-N与TN也有33%和40%左右的去除效率.这是因为在前端投加了稀H2SO4调节pH,UASB中硫酸盐抑制了产甲烷菌的生长,使整个反应器更好地停留在了水解酸化阶段,脱硫橄榄样菌属(Desulfobacula)和杆状脱硫菌属(Desulforhabdus)能够氧化废水中的乙酸、芳香族等有机物为CO2并将SO2-4还原成S2-;Paludibacter、 Tepidimicrobium、Paenibacillus能够分解废水中的多糖等物质,Levilinea和长绳菌属(Longilinea)能够去除染料中的萘,Thauera属能够去除印染废水中所含的少量芳香烃污染物.梭菌属(Clostridium)可能是此印染废水具有低污泥产量的主要原因.不可忽视的是,氨氮在通过UASB后有一定程度的去除,在门的水平下浮霉菌门占1.15%,且厌氧的浮霉菌门大部分都为厌氧氨氧化菌,由此可以推测出是通过厌氧氨氧化作用来去除的.但进水中硝酸盐与亚硝酸盐的含量很低,且通过高通量测序在属的水平上并未发现目前已知的几种以亚硝酸盐为电子受体的厌氧氨氧化菌,如C and idatus Brocadia、C and idatus Kuenenia、C and idatus Scalindua、C and idatus Jettenia等.因此,可能发生的是硫酸盐型厌氧氨氧化反应,能够以氨为电子供体,以硫酸盐为电子受体,将两种基质转化为氮气和单质硫.虽然目前对硫酸盐型厌氧氨氧化的研究较少,并不能确定到种属的水平上,但我们可以推测在进水无硝态氮与亚硝态氮的情况下,稀硫酸的存在可以发生硫酸盐型厌氧氨氧化从而去除进水中的部分氨氮.具体参见污水宝商城资料或更多相关技术文档。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水解酸化—U A S B—S B R 组合法处理印染废水
Revised by Hanlin on 10 January 2021
水解酸化—U A S B—S B R组合法处理印染废水摘要:根据印染废水的特性,提出了水解酸化-UASB-SBR组合工艺的处理力法。
该法的实际应用表明,废水COD可由2500~4500mg/L降至80~150m6/L、BOD5可由600~1000mg/L降至30~40mg/L,色度可由100~600倍降至50~60倍。
该法具有以废冶废、投资少、运行费用低、操作简单的特点。
关键词:印染废水水解酸化上流式厌氧污泥床序批式生物反应器
印染行业在我国国民经济中占有重要地位,但是印染废水的治理一直是一项摆在环保界面前的难题。
据不完全统计,全国印染行业每年排放废水约0.6×109m3(1),而其中大部分皆未能实现稳定达标排放。
主要问题是:印染废水量大,成分复杂,生物难降解物多,脱色困难,运行费用高等(2~4)。
印染废水主要来自退浆、煮炼、漂白、丝光、染色、印花、整理工段。
生产工段的特点决定了印染废水具有“高浓度、高色度、高pH、难降解、多变化”五大特征。
一般情况下,COD平均为800~2000mg/L,也有不少厂家的废水COD指标平均达2500~4500mg/L;色度一般为200~800倍,有的甚至高达1000~2000倍;pH一般为10~13,个别为
13~14;BOD5/COD为25~0.4,多数不到0.3;平均每印染100m要排放废水2.5~3m3(布窗以914mm计)(5),水量极不均匀。
因此,在选择处理工艺时必须充分考虑印染废水的这些特征,对症下药。
1工艺流程
印染废水的五大特征,也是印染废水治理的五大难题。
在选择治理方法〔工艺路线〕时,必须妥善解决好这五大难题。
对于高浓度印染废水,则必须选择可靠的组合工艺,使其浓度降下来,达到排放标准。
显然,单纯采用物化法很难满足要求,一是因为运行费用高,二是因为污泥产量大,处理困难,存在二次污染隐患。
对于高色度印染废水,则必须找到好的脱色方法,并要求脱色入法简单,运行费低,用投药混凝、O3氧化、活性炭吸附、电解等方法虽然有好的脱色效果,但厂家因长期运行费用太高而无法承受(高达1~2元/m3),因而必须寻找新的方法。
对高pH印染废水,则必须用简单、经济、实用的方法,在废水进入处理系统之前将pH调整到6~9范围内。
对难生物降解的印染废水,则必须采取有效措施,增加可生化性。
对多变化的印染废水,则必须采用加大调节池容量(这是以往特别容易忽视的问题)的办法,保证水量、水
质、色度达到相对均匀的要求,为后续工艺创造良好的进水条件,为此,我们提出了如图1所示的印染废水处理工艺流程。
2工艺特点及运行经验
上述工艺方法我们已在绵阳和成都2家印染厂废水处理工程中实施。
总结2项工程运行的经验,该方法具有以下待点:
(1)以废治废。
用高浓度、高碱度(pH)的煮炼和丝光废水取代清水加碱的脱硫除尘用水,可起一举多得的作用。
一方面这2股废水呈碱性,烟气呈酸性,可起酸碱中和并达脱硫目的;另一方面可以节约水资源和碱投加量。
麻石除尘器本身需耗大量自来水,若脱硫则必须投加碱液。
在成都、绵阳2家印染厂的运行结果表明,每天可为工厂节约清水1000M3左右,且进脱硫除尘器的废水pH为12~14,经脱硫除爱后pH降为8~10。
这不仅解决了印染废水pH高的问题,而且使烟气林格曼黑度、总悬浮颗粒物(TSP)、S02皆达一级排放标准,脱硫率达70%~85%,同时使处理装置进水COD从6000—8000mg/L降为4000—6000mg /L。