机械原理与机械设计:机构的组成原理

合集下载

机械原理

机械原理
i=1 j=1
5
p
末杆自由度: 末杆自由度:λ
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (3)具有公共约束的单闭环机构自由度计算
F = ∑i ⋅ pi − 6 −m) = ∑fj − λ (
5
p
λ = λr + λtt + λtr
i=1
j=1
基本转动(移动)自由度: 基本转动(移动)自由度: 各轴线都平行于某一个方向:其值=1 1)各轴线都平行于某一个方向:其值=1 分别平行于两个不同方向: 其值=2 2)分别平行于两个不同方向: 其值=2 有不与前两个方向共面的第三个方向, 3)有不与前两个方向共面的第三个方向, 其值=3 其值=3
2.2.1 运动副
构成运动副的点、 构成运动副的点、线、面称为运动副的元素。 面称为运动副的元素。 (1)低副:两构件通过面接触构成的运动副. 低副:两构件通过面接触构成的运动副. (2)高副:两构件通过点或线接触构成的运动副. 高副:两构件通过点或线接触构成的运动副. 点或线接触构成的运动副
2.2.1 运动副
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
公共约束: 公共约束: 是指在机构中由于运动副的特性及布 置的特殊性, 置的特殊性,使得机构中所有的活动构件共同失 去了某些自由度, 去了某些自由度,即对ห้องสมุดไป่ตู้构中所有活动构件同时 施加的约束,公共约束记为m 施加的约束,公共约束记为m 。

机构的组成原理

机构的组成原理

机构的组成原理
机构是由一定数量的机构成员和一定数量的机构部件组成的,机构成员通过机
构部件之间的相对运动来完成特定的功能。

机构的组成原理主要包括机构成员和机构部件两个方面。

首先,机构的组成原理中的机构成员是指构成机构的各个零部件,包括连接件、传动件、工作件等。

这些机构成员通过各种连接方式相互连接在一起,形成一个整体。

机构成员的选择和设计需要考虑材料的性能、工作环境的要求、结构的强度和刚度等因素。

在机构的组成过程中,机构成员的合理选择和布局对于机构的正常运转和性能发挥起着至关重要的作用。

其次,机构的组成原理中的机构部件是指构成机构的各种零部件之间的相对运
动关系。

机构部件的设计和布置需要考虑到机构的功能要求和运动特性,保证机构在工作过程中能够稳定可靠地运行。

同时,机构部件之间的相对运动关系也是保证机构正常工作的关键因素,需要通过合理的设计和调试来实现。

在机构的组成原理中,机构成员和机构部件之间存在着密切的联系和相互作用。

机构成员的选择和布局直接影响着机构部件之间的相对运动关系,而机构部件之间的相对运动关系又决定了机构成员的运动轨迹和工作性能。

因此,在机构的设计和制造过程中,需要综合考虑机构成员和机构部件之间的关系,保证机构能够正常工作并发挥出最佳的性能。

总之,机构的组成原理是机构设计和制造的基础,合理的机构成员选择和布局
以及机构部件之间的相对运动关系是保证机构正常工作和发挥性能的关键。

只有在充分理解和掌握机构的组成原理的基础上,才能设计出稳定可靠、性能优越的机构产品,满足不同领域的工程需求。

机械原理和机械设计

机械原理和机械设计

机械原理和机械设计机械原理和机械设计是现代工程领域中非常重要的两个概念,它们对于许多机械设备和系统的设计、运行和优化起着至关重要的作用。

机械原理是研究机械系统运动、力学和能量转换规律的基础理论,而机械设计则是根据机械原理的基础上,通过创新和设计来实现机械系统的功能和性能。

在机械原理方面,我们首先要了解力学原理,即物体在受力作用下的运动规律。

根据牛顿三大定律,我们可以推导出许多机械系统的运动和力学特性,例如受力分析、速度与加速度关系等。

在机械设计中,我们需要充分利用这些力学原理,合理设计机械结构,确保系统稳定、高效地运行。

机械原理中还包括能量转换原理。

能量是机械系统运行的基础,而能量转换则是机械设计的核心。

通过合理设计传动系统、减震系统等部件,我们可以实现能量的高效转换,提高机械系统的效率和性能。

而在机械设计方面,我们需要将机械原理应用到实际的设计中。

首先,我们需要明确设计的目标和要求,例如系统的功能、运行条件、使用寿命等。

然后,根据这些要求,我们可以选择合适的材料、结构、零部件等,进行设计。

在设计过程中,我们需要考虑力学原理、材料力学、流体力学等知识,确保设计的合理性和可靠性。

在机械设计中,创新和优化也是非常重要的。

通过不断地创新和改进设计方案,我们可以提高机械系统的性能,降低成本,提高效率。

同时,优化设计也可以减少系统的能耗、排放等,实现可持续发展。

因此,在机械设计中,我们需要注重创新和优化,不断提升设计水平和能力。

总的来说,机械原理和机械设计是紧密相关的两个领域,它们共同影响着机械系统的设计和运行。

通过深入理解机械原理,合理应用到机械设计中,我们可以设计出更加高效、可靠的机械系统,满足不同领域的需求。

希望通过对机械原理和机械设计的学习和研究,可以推动机械工程领域的发展,为社会的进步做出贡献。

《机械原理》讲义

《机械原理》讲义

绪论一、研究对象1、机械:机器和机构的总称机器(三个特征):①人为的实物组合(不是天然形成的);②各运动单元具有确定的相对;③必须能作有用功,完成物流、信息的传递及能量的转换。

机器的组成:原动机、工作机、传动部分、自动控制工作机机构:有①②两特征。

很显然,机器和机构最明显的区别是:机器能作有用功,而机构不能,机构仅能实现预期的机械运动。

两者之间也有联系,机器是由几个机构组成的系统,最简单的机器只有一个机构。

2、概念构件:运动单元体零件:制造单元体构件可由一个或几个零件组成。

机架:机构中相对不动的构件原动件:驱动力(或力矩)所作用的构件。

→输入构件从动件:随着原动构件的运动而运动的构件。

→输出构件机构:能实现预期的机械运动的各构件(包括机架)的基本组合体称为机构。

二、研究内容:1、机构的结构和运动学:①机械的组成;②机构运动的可能性和确定性;③分析运动规律。

2、机构和机器动力学:力——运动的关系·F=ma功——能3、要求:解决二类问题:分析:结构分析,运动分析,动力分析综合(设计):①运动要求,②功能要求。

新的机器。

第一章平面机构的结构分析(一)教学要求1、了解课程的性质与内容,能根据实物绘制机构运动简图2、熟练掌握机构自由度计算方法。

了解机构组成原理(二)教学的重点与难点1、机构及运动副的概念、绘机构运动简图2、自由度计算,虚约束,高副低代(三)教学内容§1-1 机构结构分析的目的和方法研究机构的组成原理和机构运动的可能性以及运动确定的条件一、用规定的符号和线条按一定的比例表示构件和运动副的相对位置,并能完全反映机构特1231)2)345§1-4 平面机构的自由度FF>0,三、计算F(1m-1例:F(2(3图1-15作业:P(1(2(3(4F1、=F2、=(一)教学要求1、能根据实物绘制机构运动简图2、熟练掌握机构自由度计算方法。

了解机构组成原理3、了解平面机构运动分析的方法,掌握瞬心法对机构进行速度分析4、熟练掌握相对运动图解法(二)教学的重点与难点1、机构及运动副的概念、绘机构运动简图2、自由度计算,虚约束,高副低代3、瞬心的概念及求法4、矢量方程,速度和加速度多边形,哥氏加速度,影像法(三)教学内容§2-1 研究机构运动分析的目的和方法一、目的:都必须首先计算其机构的运动参数。

机械原理 机构

机械原理 机构

机械原理机构
机械原理是研究机械运动规律及其产生的基本原理的学科。

机构是机械装置中的一个基本构件,用于实现机械运动的转换、传递与控制。

机构的基础概念包括驱动件、从动件和连杆等。

其中,驱动件通过外力或动力源产生驱动力,从动件受到驱动力的作用而产生运动,而连杆则是将驱动件与从动件连接起来,传递驱动力与运动。

机械原理中的机构有多种分类方法,常见的有平面机构和空间机构。

平面机构是指机构中的运动仅限于一个平面内的机构,而空间机构则允许运动在不同平面之间转换。

根据结构特征和运动方式,机构还可以分为平动机构、回转机构、滚动机构和曲柄机构等。

机械原理中的机构设计要考虑到多种因素,如结构强度、运动平稳性、工作效率和可靠性等。

在设计过程中,需要进行运动分析和受力分析,确保机构能够正常运行并承受预期的载荷。

同时,还需要考虑制造成本和使用方便性等因素,进行综合权衡,得到合理的机构设计方案。

除了在机械工程中应用,机械原理也被广泛运用于其他领域,如航空航天、汽车工程、机电一体化、机器人技术和精密仪器等。

机械原理为各种机械装置的设计与研究提供了理论基础,推动了机械工程的发展与创新。

机械原理第一章 平面机构组成原理及其自由度分析

机械原理第一章  平面机构组成原理及其自由度分析

机构自由度与能运动的条件为:机构自由度数大于等于1。 (二)机构具有确定运动的条件为:机构输入的独立运动数目等 于机构的自由度数。 由于平面机构的每个驱动副一般只有一个自由度,此时,机 构具有确定运动的条件又可表述为:机构驱动副数应等于机构的 自由度数。对驱动副位于机架的机构,与驱动力相连的构件为主 动构件,或称为原动件。故这时该类机构具有确定运动的条件又 可表述为:机构原动件数应等于自由度数。
按运动副的运动空间分:
平面运动副——指构成运动副的两构件之间的相对运动为平面 运动的运动副;
空间运动副——指构成运动副的两构件之间的相对运动为空间 运动的运动副。
按运动副对被联接的两构件相对运动约束数的不同分为: 低副——两构件通过面接触而构成的运动副; 高副——凡两构件系通过点或线接触而构成的运 动副。
4)选择适当的长度比例尺l( l =实际尺寸/图示长度),定出 各运动副的相对位置,绘制机构运动简图。从原动件开始,按运 动传递路线,顺序标出各构件的编号和运动副的代号。在原动件 上标明箭头方向即其运动方向。
例1-1-1:绘制图示颚式破碎机的运动简图 分析:该机构有6个构件和7个转动副。
颚式破碎机构
机构运动简图
第二节 平面机构自由度分析及应用举例
一、运动副的自由度和约束
运动副对该两构件独立运动所加的限制称为约束。约束数目 等于被其限制的自由度数。组成运动副两构件间约束的特点和数 目取决于该运动副的型式。 (一)转动副
只能绕垂直于xoy平面的轴的相对转动 (二)移动副 只能沿x轴方向移动
(三)高副
绘制机构运动简图的步骤与方法:
1)对照实物或实物图,分析机构的动作原理、组成情况和运动 情况,确定其组成的各构件,哪些构件为原动件、哪一构件为机 架和哪些构件为从动件 。 2)沿着运动传递路线,从原动件开始,逐一分析每两个构件间 相对运动的性质,并确定运动副的类型和数目。

机械原理:第二章机构的结构分析

机械原理:第二章机构的结构分析

斜齿轮机构
两个齿轮的齿廓为斜线,实现直线的 运动传递,同时具有较好的承载能力 和传动平稳性。
02
CHAPTER
机构的运动分析
机构运动简图
总结词
机构运动简图是表示机构运动关系的图形,通过图形化方式展示机构的组成和运 动传递路径。
详细描述
机构运动简图是一种抽象的图形表示,它忽略了机构的实际尺寸和形状,只关注 机构中各构件之间的相对运动关系。通过绘制机构运动简图,可以清晰地了解机 构的组成、运动传递路径以及各构件之间的相对位置和运动方向。
常见的受力分析方法
详细描述:常见的受力分析方法包括解析法、图解法和 有限元法等,每种方法都有其适用范围和优缺点,应根 据具体情况选择合适的方法。
机构的平衡分析
总结词
理解机构平衡的概念是进行平衡 分析的前提。
详细描述
机构平衡是指机构在静止或匀速 运动状态下,各作用力相互抵消 ,机构不会发生运动状态的改变 。
轮系
定轴轮系
各齿轮的转动轴线固定,齿轮的 运动由一个主动轮通过各齿轮的
啮合传递到另一个从动轮。
行星轮系
其中一个齿轮的转动轴线绕着另 一固定轴线转动,行星轮既可绕 自身轴线自转,又可绕固定轴线
公转。
混合轮系
由定轴轮系和行星轮系组合而成, 既有定轴轮系的自转运动,又有
行星轮系的公转和自转运动。
凸轮机构
机构运动分析的方法
总结词
机构运动分析的方法主要包括解析法和图解法两种。
详细描述
解析法是通过建立数学模型,运用数学工具进行求解的方法。这种方法精度高,适用于对机构进行精确的运动学 和动力学分析。图解法是通过作图和测量来分析机构运动的方法,这种方法直观易懂,适用于初步了解机构的运 动关系。

机构组成原理

机构组成原理

机构组成原理
机构组成原理是指由若干个机构部件组合而成的整体结构。

机构是由互相连接的零部件组成的系统,通过零部件之间的相对运动,实现特定的功能。

机构组成原理包括以下几个方面:
1. 机构的分类:机构根据其结构和功能可分为平面机构、空间机构、连杆机构、齿轮传动机构等。

每种机构都有特定的运动规律和工作原理。

2. 零部件的连接方式:机构的组成离不开零部件之间的连接。

常见的零部件连接方式有螺栓、焊接、销连接等。

连接方式的选择需要考虑零部件的材料性质、受力情况等因素。

3. 机构的工作原理:机构实现特定功能的原理有很多,例如连杆机构中的运动传递、齿轮机构中的转动传递等。

不同机构的工作原理决定了其运动方式和传动性能。

4. 机构的优化设计:在设计机构时,需要考虑结构的稳定性、传动效率、成本等因素。

通过优化设计,可以提高机构的性能和工作效率。

总之,机构组成原理是指通过将多个机构部件组合在一起,实现特定功能的系统结构。

了解机构组成原理对于设计和使用机构都具有重要意义,能够帮助人们更好地理解和应用机构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两个含有外接副的构 件直接用运动副联接。
(e)
(2) Ⅲ级组(n=4,PL=6) 中心构件
Ⅲ级组基本型
Ⅲ级组其它型举例
Ⅲ级组的结构特征: 三个含有外接副的构件与同一构件(用运动副)联接。
Ⅲ级组基本型
Ⅲ级组其它型举例
第四种形式称为IV级组。 结构特点:有两个三副杆,且4个构件构成四边形结构
内端副━━杆组内部相联。 外端副━━与组外构件相联。
J
H
I
G
F
D
C B
AP
Ⅲ级机构
【解】 以GH为原动件进行 结构分析:
H G
J I
Ⅱ级机构
F
D
C B
AP
本章重点小结
机架 一、构件 + 运动副 运动链 机构 原动件
从动件
基本杆组
二、运动链成为机构的条件:F > 0, 原动件数目等于自由度数目 平面运动链自由度计算方法和注意事项
三、机构运动简图的绘制
不能存在只有一个构件的运动副 或只有一个运动副的构件。
每个杆组拆分后自由度不变
每个构件和运动副都只能属于一 个杆组
机构的级别取决于机构中的基本杆组的最高级别
另一种说法:机构的级别与机构中最高级别基本杆组 的级别一致
3.平面机构的结构分析
结构分析的目的 1)了解机构的组成 2) 确定机构的级别 3)为机构受力分析提供简化方法
机构按所含最高杆组级别命名,如Ⅱ级机构,Ⅲ 级机构等。
杆组:自由度为零的不可再分的运动链。 机构可视为由原动件和若干个杆组构成。
组成原理
任何机构都可以看作是若干个自由度为零的基本杆组依次 联接到原动机和机架上而构成的,机构的自由度等于原动件的
数目,这就是机构的组成原理。
机架 构件 + 运动副 运动链 机构 原动件
4
3 1
8 6 5
7
Ⅲ级机构
2
4
3 1
8 6 5
7
Ⅱ级机构 或
Ⅱ级机构
2.4.2 机构的组成原理
F=1
F=0 F=0
2
4
3
5
6
1
78
F=1



动 件


2.平面机构组成原理: 任何一个平面机构都可以看作是由一系列基本组依次 联接到原动件、机架或前一个基本组而形成的。 ●原理的限定条件:平面低副机构;连架杆为原动件。
从动件组合
F= 0
基本杆组:最简单的不可再拆的自由度为零的构件组, 简称为杆组。
2)基本杆组 机构具有确定运动的条件是: 原动件数=自由度 设想:将机构中原动件和机架断开,则原动件与机 架构成基本机构,其F=1。剩下的构件组必有F=0 将构件组继续拆分成更简单F=0的构件组,直到不 能再拆为止。
F=0 F=1
(低副机构中Ph=0 )
∵ PL 为整数, ∴ n只能取偶数。
n = 2 4 n>4 已无实例了! PL = 3 6 n=2 的杆组称为Ⅱ级组━━应用最广而又最简单 的基本杆组。共有 5 种类型
●分类
PL=3n/2 外
(1)Ⅱ级组(n=2,PL=3)
接 副
内 (a) 接

(d)
(b)
(c)
Ⅱ级组的结构特征:
【例2-6】对图示机构进行高副低代和结构分析。
H G
F
J I
D
C B
AP
【解】1. 高副低代:
H G
F
J I
D
C B
AP
【解】1. 高副低代:
H G
F
J I
D
C B
AP
【解】 2. 结构分析:(1)除去虚约束:
H G
F
J I
D
C B
AP
【解】 2. 结构分析0的构件组。
1. 杆组(基本杆组、基本组、Assur 组)
●定义:F=0 不可再分的构件组。 ●结构公式:
F=3n - 2PL - PH = 3n - 2PL = 0 PL=3n/2
二、机构的结构分析
设基本杆组中有n个构件,则由条件F=0有:
F=3n-2PL-Ph=0
PL=3n/2
5I 7
G 6H
J
F
2
4 E
5I 7
B
1
A G
6
H
C
3
D
例7 分别以构件2、4、8为原动件,确定机构的杆组及机构的级别。
解: 以2为原动件
H8
1
2
4 D
7
A
F
C5
6
3E
1
2
A
B
G 4D C5
3
题图
B
注意:已拆过的杆和运动副不能重复再拆
1
(a)
解:1 F 3n 2P P 3 4 25 1 1
L
H
(b)
2 高副低代;
3 杆组拆分如(c )图所示
该机构为3级机构,
(c)
分析机构的过程:
1)先将机架、原动件与其它构件分离 2)从离原动件最远的杆组折起 3)先试拆Ⅱ级杆组,不成再考虑按Ⅲ级组拆
典型例题
2
B
1
A
C E4
3
D
J F
例10 计算图示机构自由度,并将高副低代,判断机构的级别。
解:1. 计算机构自由度
F
3n
2P l
P h
3
7
2
9
2
1
2
9 1
3 4
10
67 5
8
2. 高副低代
F
T
3. 判断机构的级别
A
3 4
2 10
9
1
67 5
8
例11 计算图示机构自由度,并将高副低代,判断机构的级别。
4 4
5
3
2 6
5 3
2
1
6
1.3.2
2-6 机构的组成原理、结构分类及结构分析 一、机构的组成原理
1)基本机构 由一个原动件和一个机架组成的双杆机构。 a)原动件作移动 (如油缸、气缸、直线电机等) b)原动件作转动 (如电动机)
1
1
2
2
1.3 .2 机构的组成原理和结构分析
机架 构件 + 运动副 运动链 机构 原动件
原动件画法:1个机架、1个活动构件、1个低副、 1个箭头,一个都不能少。
●基本组的联接 ─ 结构综合的杆组法(理解)
给定原动件数目和类型,用不同数目、不同类型的基 本组去联接,可得到新机构。
注意:杆组的各个外端副不允许联在同一个构件上。
1个构件
1个构件
机构的结构分析原则:
首先,从远离原动件的部分开始拆分; 试拆时,先试拆低级别杆组; 每拆完一个杆组,剩余的部分仍然是一个完整机构。
8 6 5
7
重要结论:该机构包含一个基本机构和两个基本杆组, 换句话说,将两个基本杆组添加到基本机构上,构成 了该八杆机构。
特别注意: 杆组的各个外端副不可以同时加在同一个构件
上,否则,构件将发生运动干涉而成为刚体。
特别注意:机构的级别与原动件的选择有关 图示八杆机构拆分成基本机构和基本杆组。
2
若干基本杆组
典型示例
2
基本 机构
基本 杆组
1
1
3=
1
+
2 3
4
F=3n-2PL-PH =3×3 -2 ×4 -0
=1
F=3n-2PL-PH =3×1 -2 ×1-0
=1
注意:基本杆组自由度为零
F=3n-2PL-PH =3×2 -2 ×3-0
=0
举例:将图示八杆机构拆分成基本机构和基本杆组。
2
4
3 1
相关文档
最新文档