[教学设计]《数列的极限》精品教案

合集下载

最新高三教案-数列的极限1 精品

最新高三教案-数列的极限1 精品

数列的极限教案一、教育目标(一)知识教学点:理解数列极限的定义,即“ε—N定义”;能说出ε、N的涵义;懂得n与N的区别;会把数列中的某些项画在数轴上,并能从图上看出这个数列的变化趋势.(二)能力培养点:培养学生由具体到抽象、从有限到无限的思维能力,训练类比思维方法,会依据“ε—N定义”求简单数列的极限.(三)学科渗透点:通过数列极限概念的教学,使学生懂得无限问题可以转化为有限问题来解决,通过对变量有限过程的研究,来认识变量无限变化过程的辩证思想观点.二、教学分析1.重点:数列极限“ε—N定义”.解决方法:画图、列表,进行直观的“定性描述”;运用类比方法,引进ε、N,用不等式来进行定量描述.2.难点:ε与N的涵义,n与N的区别.解决方法:分析、思考、问答的形式解决.3.疑点:ε的任意性与确定性.解决方法:分析、举例说明.三、活动设计1.活动方式:画图、列表、分析、思考、问答、练习.2.教具:投影仪(或小挂图.)四、教学过程1.数列变化趋势的定性描述:考察两个实例:即两个无穷数列;为直观起见,把两个数列中的前n项分别在数轴上表示出来:容易看出:当项数n无限增大时,数列(1)中的项无限趋近于1,数列(2)中的项无限趋近于0.特别注意:在“增大”与“趋近”之前添加“无限”二字的意义:①表示项数n的增大与项的趋近都在无限过程中进行的;②表示数列(1)的项不仅趋近于1,而且是无限趋近于1,数列(2)也一样趋近于零,而且是无限趋近于0.(出示投影一)数列(1)中各项与1的差的绝对值如下表:2.数列(1)变化趋势的定量描述:投影1.引进ε、N,即怎样定量描述“数一项,使得这一项后面的所有项与1的差的绝对值都小于ε.如给定ε=0.001,数列(1)中存在一项,从投影表中可以看出,即为第三项,对这一项后面的所有项,不等式:皆成立,换句话说,对于任意给定的ε=0.001,存在自然数N=3,当n>3时,不等式恒成立.再给定ε=0.000001,情形怎样呢?学生1回答.此时,存在自然数N=6,当n>N时,不等式恒成立.类比分析,从具体到抽象,得出:“无论预先给多么小的正数ε,总存在着这样的自然数N,当n>N时,不等式恒成立.”事实上,无论预先给定多么小的正数ε,确实存在着这样的自然数N(怎样找N,后面再讲).这时,可以说数列(1)的极限是1.{a n}的极限.上述定义可简述为:“即ε-N定义”于”,“∞”表示“无穷大”,“n→∞”表示“n趋向于无穷大”,也就是n无限4.举例数ε?(3)确定这个数列的极限.学生2答:面的所有项与1的差的绝对值都小于ε.例2.求常数数列,-a,-a,-a,…的极限.解:任意给定ε<0,总存在自然数N(不妨取N=1),当n>N时,不等式:|-a -(-a)|=0<ε恒成立,5.关于“ε—N定义”的两点说明(1)ε与N的关系:从例1、例3可以看出,对于预先任意给定ε<0,为找到1的差的绝对值小于任意给定的正数ε,解不等式意义上说,可以把N看作ε的函数,所以有时把N记作N(ε).数列{-7}.6.与代数运算的区别求极限也是一种运算,与代数运算的区别,前者是无限运算,后者是有限运算.7.消除疑点ε的绝对任意性和相对的确定性:(1)就极限的全过程来说,ε必须具有绝对的就极限全过程的某一阶段来说,ε又是具体给定的,即相对确定性,如取ε=0.1,无限多个相对确定性表示出来的.8.数列极限的存在性并不是每个数列都有极限.反例:①如数例{n}不存在极限,因为当项数n无限9.总结对照板书的设计内容,强调讲述:(1)数列极限的“ε—N定义”.(3)ε的绝对任意性和相对确定性的辩证关系的理解.(4)会依据“ε—N”定义,求证简单数列的极限.五、布置作业(2)第几项后面所有项与4的差绝对值都小于0.01?都小于任意指定的正数ε?(3)确定这个数列的极限.所有项与4的差的绝对值都小于0.01.差的绝对值都小于任意指定的正数ε.(3)由(2)可知,这个数列的极限为4.(1)把这个数列的5项在数轴上表示出来;<ε.(4)确定这个数列的极限.解:(1)略.(3)填表:(4)这个数列的极限是1.(2)先求数列{0.11…1}的极限,再用“ε—N定义”证明.下面用ε-N定义证明之六、板书设计。

高三数学《数列的极限》教案

高三数学《数列的极限》教案

数列的极限·教案目的要求使学生能从数列的变化趋势理解数列极限的概念;会判断一些简单数列的极限.内容分析1.极限概念是微积分中最重要和最基本的概念之一.因为微积分中其他重要的基本概念(如导数、微分、积分等)都要用极限概念来表述,并且它们的运算和性质也都要用极限的运算和性质来论证.2.为了让学生能尽早进入微积分的主体部分(本书后续内容)的学习,本章不重在理论研究.考虑到中学生理解极限的严格定义(ε-N定义和ε-δ定义)有一定难度,教科书只对极限的定义进行直观描述,教学中一定要注意把握分寸,恰当掌握教科书的深度和广度.3.数列的极限是最简单的一种极限,它可以看作是自变量以取正整数的形式趋向于无穷时的特殊函数极限.(1)数列的极限虽简单但却是重要的极限,后面讲函数极限即是由此引入的.正因为它可视为特殊的函数极限,就以它的四则运算法则纳入函数极限四则运算法则之中介绍.(2)建议新课导入从引言刘徽的“割圆术”说起,引入数列的极限.“割之弥细,所失弥少.割之又割,以至不可割,则与圆周合体而无所失矣”,这正是极限概念和思想的要点.它具有承上启下的作用,能激发学生对后续内容的学习兴趣.(3)数列的极限的直观描述方式的定义,强调的是从变化趋势来理解数列极限的概念,通过观察三个具体数列,归纳出它们共同的特性:随着项数n的无限增大,数列的项a n无限地趋近于某一个常数a(即|a n-a|无限地接近于0).由此给出数列极限的直观描述性定义.“随着项数n的无限增大,数列的项a n无限地趋近于某个常数a”的意义有两个方面:一方面,数列的项a n趋近于a是在无限过程中进行的,即随n的增大,a n越来越接近于a;另一方面,a n不是一般地趋近于a,而是“无限”地趋近于a,即|a n-a|随n的增大而无限地趋近于0.(4)由于当n无限增大时,常数数列的项a n始终保持不变,因此有任何常数数列的极限都是这个常数本身.(5)例3是一道开放性的题目.学生需要通过运用计算器计算,并观察分析所得结果进行猜想.通过特殊到一般,在教师的引导下,猜想出只要求记住并会应用.4.本节的重点是数列极限的概念,难点是如何从变化趋势的角度来正确理解极限概念.在讲授时,注意结合数列例子,通过比较数值的变化以及数轴上点的变化,讲清“无限趋近”的意义,找出它们的共同特性,归纳出数列极限的直观描述性定义.5.结合引言内容,通过对刘徽“割圆术”的介绍,对学生进行爱国主义思想教育,激发学生的学习热情和民族自豪感.对极限概念及思想的深入理解不是一次就能完成的,而是需要一个较长的过程.通过极限内容的教学,树立运动变化的观点.教学过程1.新课导入,引出课题从引言第61页刘徽“割圆术”说起(可提前布置学生预习),提出问无限趋近于圆周长2πR呢(让学生从图形上看这种变化趋势)?回答是肯定的,可以用极限的知识来证明.在数学中,极限的概念和思想是非常重要的.它是微积分中最重要、最基本的概念之一,它是研究变量在无限变化中的变化趋势.我们在高二数学第二册(下)中讲授球体积和表面积公式的推导时,用到了极限的思想方法.今天就来学习如何求数列的极限(导出课题).2.特例分析,归纳特性考察教科书第76页三个数列①、②、③,当n无限增大时,项a n的变化趋势:(1)随着n的增大,从数值变化趋势上看,a n有三种变化方式:数列①是递减的,②是递增的,③是正负交替地无限趋近于a.(2)随着n的增大,从数轴上观察项a n表示的点的变化趋势,也有三种变化方式:①是从点a右侧,②是点左侧,③是从点a两侧交替地无限趋近于a.(3)随着n的增大,从差式|a n-a|的变化趋势上看,它们都是无限地接近于0,即a n无限趋近于a.这三个数列的共同特性是:不论这些变化趋势如何,“随着项数n的无限增大,数列的项a n无限地趋近于常数a(即|a n-a|无限地接近于0)”.引出数列极限的定义.3.形成概念,加深理解(1)数列极限的直观描述性定义(板书).注意:①着重从变化趋势上理解数列极限的概念,它是一种定性的研究.②“无限趋近”的意义有两个方面.(2)讲解例1,学生完成教科书第76页的练习.(3)讲授极限的符号表示方法,明确符号的意义和读法.4.计算观察,得到结论C(C为常数).(2)讲解例3.让学生先猜{0.99n}的极限,再用计算器分别算0.991000、0.995000、0.9910000、0.9920000,并分析数列变化趋势得出极限,从而得5.课堂学习,知识拓广学生板演教科书第77页练习1、2,教师讲评后针对练习2(4)可提先将学生分成两组分别讨论问题①、②,然后教师收集结果.6.归纳小结(1)理解数列极限的定义及项a n的三种变化方式.(2)理解数列极限的符号表示方法和它的意义.(3)掌握数列极限的一个性质和一个重要结论,并且会用.布置作业教科书第78页习题第1、2、3题.。

人教版高中数学数列的极限教案2023

人教版高中数学数列的极限教案2023

人教版高中数学数列的极限教案2023(注:本文为某位高中数学老师为2023年准备的一份数列极限教案,供参考学习之用。

)人教版高中数学数列的极限教案2023第一节:教学目标通过本节课的学习,学生应该能够:1.了解数列的概念和基本性质;2.掌握求数列极限的方法,并能运用所学方法解题。

第二节:教学重点1.数列极限的定义和性质;2.极限与数列的关系;3.常用的数列极限定理。

第三节:教学方法1.教师讲授法:结合丰富的例题,引导学生熟悉并理解数列的概念和性质,掌握求数列极限的方法。

2.微课堂法:以教师录制的微课为主要教学方式,让学生在课前学习相关内容,课堂上加强练习和提问。

第四节:教学内容1.数列的概念和性质(1)概念:数列是按照一定顺序排列的一系列数。

(2)性质:①有限项数列和无限项数列;②数列有通项公式;③数列有公比或公差。

2.极限与数列的关系(1)定义:若存在一个常数a,对于任意给定的正数ε(无论多么小),总能找到某一项之后的所有项,使其与常数a的距离小于ε,则称常数a是该数列的极限,记作lim an=a(n→∞)。

(2)性质:①数列极限唯一;②收敛数列有界;③有界数列必有收敛子数列。

3.常用的数列极限定理(1)夹逼定理:设数列{an},{bn},{cn},如果an≤bn≤cn,且lim an=lim cn=a,那么{bn}的极限存在且等于a。

(2)单调有界定理:单调递增有上界(下界)的数列必收敛,单调递减有下界(上界)的数列也必收敛。

第五节:教学后记通过本节课的学习,学生对数列及其极限有了更深入的了解,能够掌握求解数列极限的方法,并能够运用所学方法解决实际问题。

同时,通过微课堂的教学方式,学生的主动学习能力得到了锻炼,教学效果得到了提升。

《数列的极限》教学设计精品

《数列的极限》教学设计精品

《数列的极限》教学设计精品《数列的极限》教学设计南海市桂城中学邝满榆(一)教材分析数列和极限是初等数学和高等数学衔接与联系最紧密的内容之一,是学习高等数学的基础,微积分中所有重要概念,如导数、定积分等,都是建立在极限概念的基础上,极限的概念是微积分的重要概念和重点,本节数列的极限是极限的一类,与函数极限形式不同,但它们的思想是完全相同的,通过数列极限(ε-N定义)概念的教学,使学生初步理解极限的思想方法,为学习高等数学打下基础。

(二)教学对象学生在初中已知道:当圆的内接正多边形的边数不断的成倍增加时,多边形的周长Pn 不断增大,并越来越接近于圆的周长C。

在高一立几推导球的表面积公式时也接触过极限的思想。

这些都为学生理解数列极限的定义打下基础。

但因为学生以前接触的代数运算都是有限运算,而极限概念中含有“无限”,比较抽象,又要将“无限”定量描述出来,即用ε-N的语言叙述出来更困难了,所以这一课是数列极限这一章中学生最难听得懂,教师也最难讲得好的一课。

讲好的关键是结合数列的图象和表格讲清“无限”的几何意义,使学生对数列极限有较丰富的感性认识并讲清“无限趋近”和“无限增大”的意义和二者之间的联系。

(三)教学媒体:投影仪 (四)教学目标⑴掌握数列极限的定义。

⑵应用定义求证简单数列的极限,或从数列的变化趋势找到简单数列的极限。

⑶通过数列极限定义的教学对学生进行爱国主义和辩证唯物主义的教育。

(五)重点、难点理解数列的概念及定义中一些字母和记号的特性。

(六)教学方法:启发分析,讲练结合。

(七)教学过程一、定义的引进 1. 复习提问⑴ |a| 的几何意义:表示数a的点与原点的距离。

⑵ |x-A| 的几何意义:表示数x 的点及数A的点之间的距离。

⑶设ε>0,解不等式 |x-A|A-ε A A+ε X2. 启发引导:当学生按照上述结果回答完问题后,指出满不等式 |x-A|3. 定义的引进本节课的课题是“数列的极限”(板书),极限的思想在我国古代早有出现,公元前四世纪,我国古代重要的哲学家和思想家庄子就指出了“一尺之棰,日取某半,万世不竭”,我们把每天取去一半后所余的尺数用现代熟悉的表达方式可以得到一个数列:1111 ,,,......,n,......;这是一个无穷数列(\万世不竭\)2482把上述数列的前几项分别在数轴上表示出来:①11111 0 32 16842 1从图形容易看出,不论项数n怎样大, 2 n永不为0,只是0 1?的近似值,但当n无限增大时,数列 2 n ? 的项就无限趋近于0。

数列的极限教学设计

数列的极限教学设计

课题: 数列的极限一、教学内容分析极限概念是数学中最重要和最基本的概念之一,因为高等数学中其它重要的基本概念(如导数、微分、积分等)都是用极限概念来表述的,而且它们的运算和性质也要用极限的运算和性质来推导,所以,极限概念的掌握至关重要. 二、教学目标设计1.理解数列极限的概念,能初步根据数列极限的定义确定一些简单数列的极限. 2.观察运动和变化的过程,初步认识有限与无限、近似与精确、量变与质变的辩证关系,提高的数学概括能力、抽象思维能力和审美能力. 三、教学重点及难点重点:数列极限的概念以及简单数列的极限的求解. 难点:数列极限的定义的理解. 四、教学流程设计五、教学过程设计(一)、引入1、创设情境,引出课题1. 观察 举例:[A] 战国时代哲学家庄周著的《庄子·天下篇》引用过一句话:一尺之棰 日取其半 万世不竭.[B] 三国时的刘徽提出的“割圆求周” 的方法。

他把圆周分成三等分、六等分、十二等分、二十四等分······ 这样继续分割下去,所得多边形的周长就无限接近于圆的周长。

割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣。

(二)、学习新课 2、观察归纳,形成概念实例引入概念 符号数列的极限几何 理解运用与深化(例题解析、巩固练习)课堂小结并布置作业(1)直观认识请同学们考察下列几个数列的变化趋势 A.ΛΛ,101,,101,101,10132n ①“项”随n 的增大而减小 ②但都大于0③当n 无限增大时,相应的项n 101可以“无限趋近于”常数0B.ΛΛ,1,,43,32,21+n n ①“项”随n 的增大而增大 ②但都小于1③当n 无限增大时,相应的项1+n n可以“无限趋近于”常数1C.ΛΛ,)1(,,31,21,1nn--- ①“项”的正负交错地排列,并且随n 的增大其绝对值减小②当n 无限增大时,相应的项nn)1(-可以“无限趋近于”常数0概念辨析归纳数列极限的描述性定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞=,读作“当n 趋向于无穷大时,n a 的极限等于a ”“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思lim n n a a →∞=有时也记作:当n →∞时,n a →a .问题拓展给出数列极限的N -ε定义:一般地,设数列{}n a 是一个无穷数列,a 是一个常数,如果对于预先给定的任意小的正数ε,总存在正整数N ,使得只要正整数N n >,就有ε<-a a n ,那么就说数列{}n a 以a 为极限,记作a a n n =∞→lim ,或者∞→n 时a a n →.讲授例题【例1】.已知数列 1146512,,,,,.....,1(1),...2356n n++-1)写出这个数列的各项与1的差的绝对值; 2)第几项后面的所有项与1的差的绝对值都小于0.1?都小于0.001? 都小于0.0003? 3)第几项后面的所有项与1的差的绝对值都小于任何预先指定的正数ε? 4)1是不是这个数列的极限?【例2】考察下面的数列,写出它们的极限:1) 31111,,,,,827n⋅⋅⋅⋅⋅⋅2) 56.5,6.95,6.995,,7,,10n ⋅⋅⋅-⋅⋅⋅3)1111,,,,,248(2)n--⋅⋅⋅⋅⋅- 【例3】求常数数列-1,-1,-1,···,-1,···的极限.【例4】当a 满足什么条件时,0lim nn a →∞=?试举例验证。

数列极限的教学设计名师公开课获奖教案百校联赛一等奖教案

数列极限的教学设计名师公开课获奖教案百校联赛一等奖教案

数列极限的教学设计引言数列是数学中的重要概念,也是数学学科的基础。

数列极限作为数列理论的核心内容,对于学生的数学思维能力的培养和数学学科的进一步发展具有重要意义。

本篇文档就如何进行数列极限的教学设计进行探讨。

一、知识背景的梳理数列是数学中的一种重要概念,定义为按一定顺序排列的实数或复数构成的无穷序列。

数列极限是数列理论的重要内容,用于研究数列趋于无穷时的性质。

通过数列极限的研究,可以理解数列的发散和收敛的特性,并在实际问题中应用数列极限的概念和性质。

二、教学目标的确定通过数列极限的教学,使学生能够:1. 理解数列极限的概念,能够准确描述数列的极限;2. 掌握计算数列极限的方法,能够灵活运用数列极限的定义和性质求解问题;3. 培养数学思维能力,提高学生的逻辑推理和问题解决能力;4. 培养学生的数学建模能力,能够将数列极限的概念和方法应用于实际问题中。

三、教学内容的设计1. 数列极限的概念介绍- 引导学生回顾数列的基本概念,解释数列极限的概念;- 以一些具体的实例引导学生理解数列极限的概念,例如递推数列、利用递推公式可以定义数列等;- 给出数列极限的定义,并进行讲解和讨论。

2. 数列极限的性质与运算法则- 引导学生发现数列极限的性质,如数列极限的唯一性、有界性、保序性等;- 引导学生探究数列极限的运算法则,如极限和的性质、极限差的性质、极限积的性质等;- 给出数列极限运算法则的定义和证明过程,并进行讲解和讨论。

3. 数列极限的计算方法- 引导学生了解数列极限的计算方法,如夹逼定理、单调有界数列极限、递推数列极限等;- 通过具体的实例或习题,让学生理解数列极限计算方法的应用;- 针对不同类型的数列极限计算方法,进行详细的讲解和演示。

4. 数列极限的应用- 引导学生了解数列极限在实际问题中的应用,如金融领域中的年利润增长率、自然科学领域中的动态模拟等;- 针对具体的应用问题,让学生探索数列极限的解决方法,并进行讨论和分析;- 结合实际应用问题的解决过程,培养学生的数学建模能力和问题解决能力。

数列的极限教案大学

数列的极限教案大学

课程名称:高等数学授课对象:大学本科生课时安排:2课时教学目标:1. 知识与技能:使学生掌握数列极限的定义、性质和运算法则,并能运用这些知识解决实际问题。

2. 过程与方法:通过小组讨论、案例分析等方式,培养学生分析问题和解决问题的能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。

教学重点:1. 数列极限的定义和性质。

2. 数列极限的运算法则。

教学难点:1. 数列极限定义的理解和应用。

2. 数列极限运算法则的应用。

教学准备:1. 教学课件2. 数列极限相关习题3. 小组讨论问题教学过程:第一课时一、导入1. 回顾数列的定义,引导学生思考数列极限的概念。

2. 提出问题:如何判断一个数列的极限是否存在?如何求一个数列的极限?二、新课讲解1. 介绍数列极限的定义:当n趋向于无穷大时,数列{an}的项an趋向于一个确定的数A,记作lim(an) = A。

2. 讲解数列极限的性质:数列极限的保号性、保序性、唯一性等。

3. 介绍数列极限的运算法则:和、差、积、商的极限运算法则。

三、案例分析1. 给出几个数列,引导学生判断其极限是否存在,并求出其极限。

2. 通过案例分析,帮助学生理解数列极限的定义和性质。

四、课堂小结1. 总结本节课所学内容,强调数列极限的定义、性质和运算法则。

2. 提出课后思考题,引导学生进一步巩固所学知识。

第二课时一、复习1. 复习上节课所学内容,检查学生对数列极限定义、性质和运算法则的掌握情况。

2. 针对学生的疑问进行解答。

二、小组讨论1. 将学生分成若干小组,每组讨论以下问题:(1)如何判断一个数列的极限是否存在?(2)如何求一个数列的极限?2. 各小组汇报讨论结果,教师进行点评。

三、课堂练习1. 布置课后作业,要求学生独立完成。

2. 针对作业中的问题,进行讲解和答疑。

四、课堂小结1. 总结本节课所学内容,强调数列极限的定义、性质和运算法则的应用。

2. 提出课后思考题,引导学生进一步巩固所学知识。

数列的极限教案

数列的极限教案

数列的极限教案教案标题:数列的极限教案教案目标:1. 理解数列的概念和基本性质。

2. 掌握数列极限的定义和计算方法。

3. 能够应用数列极限解决实际问题。

教学资源:1. 教科书或课件:包含数列的定义、基本性质和极限的计算方法。

2. 习题集:包含不同难度层次的数列极限计算题目。

3. 实际问题:包含数列极限应用的实际问题,如金融、物理等领域。

教学步骤:引入:1. 通过提问或展示实例,引发学生对数列的兴趣,例如:什么是数列?数列的应用有哪些?2. 引导学生思考数列的特点和规律,以激发他们对数列极限的好奇心。

探究:3. 解释数列极限的定义:当数列的项逐渐趋近于某个常数L时,我们说数列的极限是L。

4. 讲解数列极限的计算方法:a. 若数列是等差数列或等比数列,可直接根据公式计算极限。

b. 若数列不是等差数列或等比数列,可通过递推关系或数学归纳法推导极限。

实践:5. 给予学生一些简单的数列极限计算练习题,以巩固他们对极限计算方法的理解和应用能力。

6. 引导学生分析实际问题,并将其转化为数列极限问题,例如:一个投资人每年投资1000元,年利率为5%,求他的总投资额极限是多少?7. 提供一些实际问题的解决方法,帮助学生将数列极限与实际问题相结合。

拓展:8. 提供一些挑战性的数列极限计算题目,以培养学生的逻辑思维和解决问题的能力。

9. 鼓励学生自主探究其他数列极限的计算方法,并进行讨论和分享。

总结:10. 总结数列极限的概念和计算方法,强调数列极限在实际问题中的应用意义。

11. 鼓励学生通过课后练习巩固所学知识,并提供必要的辅导和指导。

评估:12. 设计一些评估题目,测试学生对数列极限概念的理解和计算方法的掌握程度。

13. 通过学生的表现和答案,评估教学效果,并根据需要进行针对性的复习和强化训练。

备注:教案的具体内容和教学步骤可根据不同教育阶段的要求进行调整和适应。

在教学过程中,教师应根据学生的实际情况和学习能力,灵活运用不同的教学方法和教学资源,以提高教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数列的极限》教学设计
(一)教材分析
数列和极限是初等数学和高等数学衔接与联系最紧密的内容之一,是学习高等数学的基础,微积分中所有重要概念,如导数、定积分等,都是建立在极限概念的基础上,极限的概念是微积分的重要概念和重点,本节数列的极限是极限的一类,与函数极限形式不同,但它们的思想是完全相同的,通过数列极限(ε-N定义)概念的教学,使学生初步理解极限的思想方法,为学习高等数学打下基础。

(二)教学对象
学生在初中已知道:当圆的内接正多边形的边数不断的成倍增加时,多边形的周长P n不断增大,并越来越接近于圆的周长C。

在高一立几推导球的表面积公式时也接触过极限的思想。

这些都为学生理解数列极限的定义打下基础。

但因为学生以前接触的代数运算都是有限运算,而极限概念中含有“无限”,比较抽象,又要将“无限”定量描述出来,即用ε-N的语言叙述出来更困难了,所以这一课是数列极限这一章中学生最难听得懂,教师也最难讲得好的一课。

讲好的关键是结合数列的图象和表格讲清“无限”的几何意义,使学生对数列极限有较丰富的感性认识并讲清“无限趋近”和“无限增大”的意义和二者之间的联系。

(三)教学媒体:投影仪
(四)教学目标
⑴掌握数列极限的定义。

⑵应用定义求证简单数列的极限,或从数列的变化趋势找到简单数列的极限。

⑶通过数列极限定义的教学对学生进行爱国主义和辩证唯物主义的教育。

(五)重点、难点
理解数列的概念及定义中一些字母和记号的特性。

(六)教学方法:启发分析,讲练结合。

(七)教学过程
一、定义的引进
1.复习提问
⑴ |a| 的几何意义:表示数a 的点与原点的距离。

⑵ |x-A| 的几何意义:表示数x 的点及数A 的点之间的距离。

⑶设ε>0,解不等式 |x-A|<ε,并且在数轴上表示出它的解集。

2. 满不等式 |x-A|<ε的点x 全部落在区间(A-ε,A+ε)内,要使点x 与点A 的距离即 |x-A| 无限制地小,ε要怎样变化?引导学生说出ε是一个任意小的正数。

3. 定义的引进 本节课的课题是“数列的极限”(板书),极限的思想在我国古代早有出现,公元前四世纪,我国古代重要的哲学家和思想家庄子就指出了“一尺之棰,日取某半,万世不竭”,我们把每天取去一半后所余的尺数用现代熟悉的表达方式可以得到一个数列: 把上述数列的前几项分别在数轴上表示出来: ①
0 从图形容易看出,不论项数n 怎样大, 永不为0,只是0 的近似值,但当n 无限增大时,数列 的项就无限趋近于0。

即当n →∞时, →0。

再看无穷数列②:0.9,0.99,0.999,……, ,…… 0 0.9 0.99 1
当项数无限增大时②中的项无限趋近于1,即n →∞时, →1。

“无限增大”、“无限趋近”怎样利用数量来刻划呢?
如图由,||εεε+<<-⇒<-A x A A x )"(",......;21,......,81,41,21万世不竭这是一个无穷数列n 321161814121n
21{}n 21n
21
n
1011-n 1011-n 21
让学生读定义,对定义中的字母和记号逐字逐句体会: ① 定义中的数列 {a n } 是什么数列?
②“存在一个常数A ”是什么意思?
③“无论预先指定多么小的正数ε”,这个ε具有什么特征?
④找出一项a N ,这个项数N 是否存在,有多少个?
⑤ |a n -A|<ε恒成立,这里的绝对值是什么意思?
学生回答后,教师用下列表格小结:(用投影仪打出)
n n 的过程,这种过程在有限的时间内无法完成,只能近似地趋近于A ,只有当项数n 趋于无穷时,量变到质变,引起质的飞跃,得到了极限A 。

二、应用
1. 例题: ⑴写出这个数列的各项与0的差的绝对值; ⑵第n 项后面的所有项与0的差的绝对值都小于0.1?都小于0.001?都小于0.0003?
⑶第n 项后面的所有项与0的差的绝对值都小于任何预先的正数ε? ⑷ 0是不是这个数列的极限?
⑴计算 |a n -1|; ⑵第n 项后的所有项与1的差的绝对值都小于 ?都小于任
意指定的正数ε?
⑶确定这个数列的极限。

讲例1、2前先让学生在数轴上表示出这两个数列的前n 项,由数列的变化趋势找到它们的极限。

,......1)1(,......,41,31,21,1:11n n +---已知数列例,......1,......,43,32,21:2+-n n 已知数列例1001
教师讲解例1,然后小结:
当给定任意小的正数ε以后,要找N ,一般可以通过解不等式 |a n -A|<ε找出N 0,大于N 0的N 1都可作为N 。

确定极限的存在关键是对任给的ε>0,保证N 的存在。

例1的(3)实际上就是用定义证明了数列 的极限是0。

例2由学生阅读,然后让学生总结用定义证明数列极限的步骤:
① 由证题者给出任意小的正数ε>0;
② 使 |a n -A|<ε,找出N ,当n>N 时有 |a n -A|<ε。

例3:求常数数列 –7,-7,-7,…… 的极限。

证明:对任意小的正数ε,任取自然数N ,当n>N 时不等式 |-7-(-7)|=0<ε恒成立。

n →∞
小结:任何一个常数数列的极限都是这个常数本身。

2.练习:(用投影仪打出)
Ⅰ. 是非题:
⑴数列极限定义中的ε是一个很小很小的正数。

⑵数列极限定义中的N 有无穷多个,但只要找一个就够了。

⑶一个数列如果有极限,那么极限是唯一的。

⑷与 |a n -A|<ε等价的是a n ∈(A-ε,A+ε)。

⑸ (1-ε,1+ε)内存在有穷多项,(1-ε,1+ε)外存在无穷多项。

⑹无穷数列都有极限。

⑺有穷数列一定没有极限。

Ⅱ. 观察下列数列的变化趋势找出它们的极限:
可见:数列{a n }趋近于极限A 有三种情况:a n 大于A 而趋向于A ;a n 小于A 而趋向于A ;a n 时而小于A 时而大于A 而趋向于A 。

三、本节内容小结
⎭⎬⎫⎩⎨⎧-+n n 1)1(17)7lim(-=-∴⎭⎬⎫⎩⎨⎧--+1)1()1()1(n n ⎭⎬⎫⎩⎨⎧-n n )1()2({}
n n )1()3(-+⎭⎬⎫⎩⎨⎧-+-n n 1)1(1)4(⎭⎬⎫⎩⎨⎧+2)5(n n
n =A 四、作业:
课本P72习题十九1,2。

⑴求证:这两个数列的极限分别是5和1; ⑵作一个无穷数列使它各项为这两个数列的对应项的和,验证所得数列的极限等于这两个数列极限的和。

为下节四则运算作好铺垫。

2
,......,53,42,3125,......,515,410,35:++n n n n 和已知数列思考题。

相关文档
最新文档