同济大学《高等数学》(第四版)第8章答案

合集下载

同济大学 高数 第八章

同济大学 高数 第八章



1 1 2 解. AB 1,1, 2 , AB 2 , cos , cos , cos ,故 2 2 2 3 2 , , . 4 3 3 例.在第一卦限求点 A ,使得 OA 与 x , y 轴的夹角分别为 , ,且 OA 6 . 3 4 1 2 1 2 1 1 解. cos , cos cos , OA 6 2, 2 ,2 3,3 2,3 ,故 2 2 2 来自A 3,3 2,3 .


小兵整理
3
老姚高数笔记
第八章 空间解析几何与向量代数 第 8.1 节 向量及其线性运算 一.基本概念
1.向量:既有大小,又有方向的量,一般记为 a , b , .
我们的向量均为自由向量.
2.模:向量的长度也称为模,记为 a . 4.零向量:模为 0 的向量,记为 0 ,规定它的方向是任意的. 5.共线:若向量 a , b 的方向相同或相反,则称它们平行,记为 a // b ,也称为共线.
互相垂直的数轴,分别称为 x 轴,y 轴,z 轴,这样就构成了 Oxyz 坐标系,也可称为 O, i , j , k 坐标系;习惯上,我们采用右手系,即 i , j , k 的方向满足右手法则.
x 轴与 y 轴确定的平面称为 xOy 面,类似地,有 yOz 面, xOz 面,统称为坐标平面,
x, y, z 为点 M 的空间直角坐标,记 M x, y, z .
定理. M x, y, z OM xi yj zk .
3.向量的坐标 设 r 为空间向量,记 x r cos Prji r , y r cos Prj j r , z r cos Prjk r , 则称有序数组 x, y, z 为向量 r 的坐标,记 r x, y, z . 定理.设 r AB ,若 A x1 , y1 , z1 , B x2 , y2 , z2 ,则 r x2 x1 , y2 y1 , z2 z1 . 定理. r x, y, z r xi yj zk ,称为 r 的坐标分解式. 注. xi , yj , zk 分别称为 r 沿三根坐标轴方向的分向量. 四.坐标的应用 定理.设 a ax , a y , az , b bx , by , bz , ,则 (1) a b ax bx , a y by , az bz ;(2) a a x , a y , az .

同济大学《高等数学》(第四版)3-8节函数图形的描绘

同济大学《高等数学》(第四版)3-8节函数图形的描绘
上页 下页 返回
第三步 确定在这些部分区间内 f '( x) 和 f "( x) 的符 号,并由此确定函数的增减性与极值及曲线的凹 凸与拐点(可列表进行讨论);
第四步 确定函数图形的水平、铅直渐近线、斜渐 近线以及其他变化趋势;
第五步 描出与方程 f '( x) 0 和 f "( x) 0 的根对 应的曲线上的点,有时还需要补充一些点,再综 合前四步讨论的结果画出函数的图形.
1.铅直渐近线 (垂直于 x 轴的渐近线)
如果 lim f (x) 或 lim f (x)
x x0
x x0
那么 x x0 就是 y f (x) 的一条铅直渐近线 .
上页 下页 返回
例如 y
1
,
( x 2)(x 3)
有铅直渐近线两条: x 2, x 3.
1 (1,)
0


极小值
0
C (3,5) 28
A (1,0)
1
1 o 1
3
3
1
x
上页 下页 返回
y x3 x2 x 1
上页 下页 返回
四、小结
函数图形的描绘综合运用函数性态的研究,是导 数应用的综合考察.
y
凸的
单增
y f (x)

凹的
拐 点
大 值



a
o
单减
上页 下页 返回
2.水平渐近线 (平行于 x 轴的渐近线)
如果 lim f (x) b 或 lim f (x) b (b 为常数)
x
x
那么 y b 就是 y f (x) 的一条水平渐近线 .

《高等数学》第八章习题答案

《高等数学》第八章习题答案
3、 x + 2 y − 4 = 0 ;
6、 x − y + 2 z = ± (B) 1、略。 8.6
11 。 2
1、 (1)0; (2)0; (3)
3 5 3 + 2; (4) + 2。 2 2 2
2、
1 2 3 + + 3。 2 2 2
3、 x0 − y 0 + z 0 。 4、略。 5 、 gradu = 2i − 4 j + k 是 方 向 导 数 取 最 大 值 的 方 向 。 此 方 向 导 数 的 最 大 值 为
(x2 + y 2 ) 2 2 (dx + dy ) 。 3 12 π 3、 ∆z = arctan − , dz = 0.05 。 11 4
2、 (B) 1、 2.95 。2、 2.039 。 8.4 (A) 1、 e 2、
sin t − 2 t 2
(cos t − 4t ) 。
1 (2 − 15t 2 ) 。
(5)
∂z yze xy ∂z yxe xy = = ; 。 ∂x 3 z − 1 ∂y 3z − 1 ∂f ∂f ∂f , , 。 ∂x ∂y ∂z
(B) 1、提示:求出
∂2z ∂2z 2、提示:求出 2 ; 2 。 ∂x ∂y
8.5 (A) 1、 { ,2,3} , 1
x −1 y −1 z −1 = = 。 1 2 3 x − 1 + sin 1 y − 1 + cos 1 z − 4 sin 1 2、 = = ; 1 + cos 1 sin 1 4 cos 1
1 − (2t − 5t )
3 2
3、
∂z ∂z = 4x ; = 4y 。 ∂x ∂y

高等数学作业集答案第八章

高等数学作业集答案第八章

第八章 空间解析几何与向量代数§8.1向量及其线性运算 1.填空题(1)点)1,1,1(关于xoy 面对称的点为()1,1,1(-),关于yoz 面对称的点为()1,1,1(-),关于xoz 面对称的点为()1,1,1(-).(2)点)2,1,2(-关于x 轴对称的点为()2,1,2(-),关于y 轴对称的点为()2,1,2(---),关于z 轴对称的点为()2,1,2(-),关于坐标原点对称的点为()2,1,2(--).2. 已知两点)1,1,1(1M 和)1,2,2(2M ,计算向量21M M 的模、方向余弦和方向角.解:因为)0,1,1(21=M M ,故2||21=M M ,方向余弦为22cos =α,22cos =β,0cos =γ,方向角为4πα=,4πβ=, 2πγ=.3. 在yoz 平面上,求与)1,1,1(A 、)2,1,2(B 、)3,3,3(C 等距离的点. 解:设该点为),,0(z y ,则222222)3()3(9)2()1(4)1()1(1-+-+=-+-+=-+-+z y z y z y ,即⎪⎩⎪⎨⎧-+-+=-+-+-+=-+222222)3()3(9)2()1(4)2(4)1(1z y z y z z ,解得⎩⎨⎧==33y z ,则该点为)3,3,0(.4. 求平行于向量k j i a 432-+=的单位向量的分解式.解:所求的向量有两个,一个与a 同向,一个与a 反向. 因为29)4(32||222=-++=a ,所以)432(291k j i e a -+±=.5.设k j i m 22-+=,k j i n ++=2,求向量n m a +=4在各坐标轴上的投影及分向量.解:因为k j i k j i k j i n m a 796)2()22(44-+=+++-+=+=, 所以在x 轴上的投影为6=x a ,分向量为i i a x 6=,y 轴上的投影为9=y a ,分向量为j j a y 9=,z 轴上的投影为7-=z a ,分向量为k k a z 7-=.6. 在yOz 平面上,求与)1,2,1(A 、)0,1,2(B 和)1,1,1(-C 等距离的点.解:设所求的点为),,0(z y P ,由||||||CM BM AM ==可得⎪⎩⎪⎨⎧-+++=+-++-+=-+-+222222222222)1()1(1)1(2)1(2)1()2(1z y z y zy z y ,解之得21=y ,0=z 故所求的点为)0,21,0(.7. 已知点)6,2,1(-B 且向量在x 轴、y 轴和z 轴上的投影分别为1,4,4-,求点A 的坐标.解:设点A 的坐标为),,(z y x ,由题意可知)1,4,4()6,2,1(-=----z y x ,则5,6,5=-==z y x ,即点A 的坐标为)5,6,5(-.8.试用向量法证明:三角形各边依次以同比分之,则三个分点所成的三角形必与原三角形有相同的重心.证明:若),,(111z y x A 、),,(222z y x B 、),,(333z y x C 是一个FGH ∆的三个顶点,设三角形的重心为E,则),,(31)(31321321321z z z y y y x x x C B A E ++++++=++=设ABC ∆的同比nm之分点分别为F 、G 、H ,分点的坐标为),,(212121mn mz nz m n my ny m n mx nx F ++++++),,(323232mn mz nz m n my ny m n mx nx G ++++++),,(131313mn mz nz m n my ny m n mx nx H ++++++则三角形FGH ∆的重心为,()(31133221mn mx nx m n mx nx m n mx nx H G F ++++++++=++),133221133221m n mz nz m n mz nz m n mz nz m n my ny m n my ny m n my ny ++++++++++++++++),,(31321321321z z z y y y x x x ++++++=. 所以三个分点所成的三角形必与原三角形有相同的重心. §8.2 数量积 向量积 1.若3),(,4||,3||π===Λb a b a ,求b ac 23-=的模.解:b b b a a b a a b a b a c 22233233)23()23(||2⋅+⋅-⋅-⋅=-⋅-=73443cos431239||412||92222=⨯+⨯⨯⨯-⨯=+⋅-=πb b a a所以73||=c .2.已知||||b a b a -=+,证明:0=⋅b a .证明:由||||b a b a -=+,可得22||||b a b a -=+,可知)()()()(b a b a b a b a -⋅-=+⋅+,展开可得b a b a b a b a ⋅-+=⋅++2||||2||||2222,即04=⋅b a ,故0=⋅b a .3.已知20||,18||,10||=+==b a b a ,求||b a -. 解:因为b a b a b a b a b a b a ⋅++=⋅++=+⋅+=+=23241002||||)()(||400222所以242-=⋅b a ,)()(||b a b a b a -⋅-=-b a b a ⋅-+=2||||227824324100=++=.4.已知)4,2,1(=a ,)3,3,3(-=b ,求a 与b 的夹角及a 在b 上的投影.解:934)3(231=⨯+-⨯+⨯=⋅b a ,7799916419cos =++⋅++=θ,77arccos=θ. 因为a jb b a b Pr ||=⋅,所以3339Pr ==a jb .5.已知a ,b ,c 为单位向量,且满足0=++c b a ,计算a c c b b a ⋅+⋅+⋅.解:因为0)()(=++⋅++c b a c b a ,所以0222||||||222=⋅+⋅+⋅+++a c c b b a c b a ,而1||||||222===c b a ,所以23-=⋅+⋅+⋅a c c b b a . 6.求与k j i b k j i a 32,2-+=++=都垂直的单位向量. 解:kj i k j i k j i b a c 357122132113112312121-+-=+---=-=⨯=而83)3(5)7(||222=-++-=c ,所以)3,5,7(831--±=c e .7.设)(8,186,5b a b a b a -=+-=+=,试证A 、B 、D 三点共线.证明:只需证明//.因为b a b a 2)5(2102=+=+=+=,所以//.8.已知)3,2,1(-=a ,=b )0,,2(m ,)9,3,9(-=c (1)确定m 的值,使得b a +与c 平行.(2)确定m 的值,使得b a -与c 垂直.解:(1)要使b a +与c 平行,只需0=⨯+c b a )(,因为b a +)3,2,3(-=m ,而c b a ⨯+)()99,0,99(32m m m j --=--=,所以当1=m 时b a +与c 平行.(2)要使b a -与c 垂直,只需0)(=⋅-c b a ,因为b a -)3,2,1(---=m ,而c b a ⋅-)(24327639)9,3,9()3,2,1(+=+++-=-⋅---=m m m ,所以当8-=m 时,b a -与c 垂直. §8.3 曲面及其方程 1.填空题(1)将xOz 坐标面上的抛物线x z 42=绕x 轴旋转一周,所生成的旋转曲面的方程为(x y z 422=+),绕z 轴旋转一周,所生成的旋转曲面的方程为(2224y x z +=).(2)以点)2,3,2(-为球心,且通过坐标原点的球面方程为(17)2()3()2(222=-+++-z y x ).(3)将xOy 坐标面的圆422=+y x 绕x 轴旋转一周,所生成的旋转曲面的方程为(4222=++z y x ).2.求与点)1,2,1(A 与点)2,0,1(B 之比为2:1的动点的轨迹,并注明它是什么曲面.解:设动点为),,(z y x P ,由于2:1||:||=PB PA ,所以222222)2()0()1()1()2()1(2-+-+-=-+-+-z y x z y x ,解之,可得194166333222=+---++z y x z y x ,即920)32()38()1(222=-+-+-z y x ,所以所求的动点的轨迹为以点)32,38,1(为心,半径为352的球面. 3.求与点)3,1,2(和点)4,2,4(等距离的动点的轨迹. 解:设动点为),,(z y x P ,由题意知222222)4()2()4()3()1()2(-+-+-=-+-+-z y x z y x ,整理得0112=-++z y x .4. 写出下列曲面的名称,并画出相应的图形. (1)259916222-=--z y x . 解:该曲面为单叶双曲面. (2)259916222=--z y x . 解:该曲面为双叶双曲面.(3)1254222=++z y x . 解:该曲面为旋转椭球面. (4)x y x 922=-. 解:该曲面为双曲柱面. (5)x z y 922=+. 解:该曲面为椭圆抛物面.(6)0)3()2()1(4222=---+-z y x . 解:该曲面为椭圆锥面.§8.4 空间曲线及其方程 1. 填空题(1)二元一次方程组⎩⎨⎧-=+=3412x y x y 在平面解析几何中表示的图形是(两相交直线的交点)5,2();它在空间解析几何中表示的图形是(两平面的交线,平行于z 轴且过点)0,5,2().(2)旋转抛物面)20(22≤≤+=z y x z 在xOy 面上的投影为(⎩⎨⎧=+=222z y x z ),在x O z 面上的投影为(22≤≤z x ),在yOz 面上的投影为(22≤≤z y ).2.求球面4222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程.解:将x z -=1代入4222=++z y x ,得4)1(222=-++x y x ,因此投影方程为⎩⎨⎧=+-=322022y x x z . 3.分别求母线平行于x 轴、y 轴及z 轴且通过曲线⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 的柱面方程.解:在⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 中消去x 得4322=-z y ,即为母线平行于x 轴且通过曲线的柱面方程.在⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 中消去y 得45322=+z x ,即为母线平行于y 轴且通过曲线的柱面方程.在⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 中消去z 得8522=+y x ,即为母线平行于z 轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1)⎩⎨⎧-==++-14)1(222x y z y x .解:将1-=x y 代入4)1(222=++-z y x 得4)1(222=+-z x ,即14)2()1(222=+-z x . 令θcos 21=-x ,θsin 2=z ,所求的参数方程为 ⎪⎪⎩⎪⎪⎨⎧==+=θθθsin 2cos 2cos 21z y x . (2)⎪⎩⎪⎨⎧=+=++4922222z x z y x . 解:做变换⎩⎨⎧==θθsin 2cos 2z x ,将其带入方程9222=++z y x ,即得52=y . 所以参数方程为⎪⎩⎪⎨⎧=±==θθsin 25cos 2z y x (πθ20≤≤).5.求螺旋线⎪⎩⎪⎨⎧===θθθ3sin 2cos 2z y x 在三个坐标面上的投影曲线的直角坐标方程.解:螺旋线在xOy 面上的投影为⎪⎩⎪⎨⎧===0sin 2cos 2z y x θθ,直角坐标方程为⎩⎨⎧==+0422z y x . 螺旋线在yOz 面上的投影为⎪⎩⎪⎨⎧===03sin 2x z y θθ,直角坐标方程为⎪⎩⎪⎨⎧==03sin2x z y .螺旋线在zOx 面上的投影为⎪⎩⎪⎨⎧===03cos 2y z x θθ,直角坐标方程为⎪⎩⎪⎨⎧==03cos2y z x . 6.画出下列方程所表示的曲线:(1)⎩⎨⎧==++1164222z z y x .(2)⎪⎩⎪⎨⎧=-+=+1)2(2222y x y z x . (3)⎪⎩⎪⎨⎧==-4116422y z x .§8.5 平面及其方程 1. 填空题(1)一平面过点)4,1,1(-且平行于向量)1,1,2(-=a 和)1,0,1(=b ,平面的点法式方程为(0)4()1(3)1(=+----z y x ),平面的一般方程为(023=---z y x ),平面的截距式方程(12232=-+-+z y x ),平面的一个单位法向量为()1,3,1(1111-). (2)设直线L 的方程为⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A ,当(021==D D )时,直线L 过原点;当(021==A A )且(01≠D 或02≠D 有一个成立)时,直线L 平行于x 轴但不与x 轴相交;当(2121D D B B =)时,直线L 与y 轴相交;当(02121====D D C C )时,直线L 与z 轴重合. 2.求过三点)1,1,1(-,)3,1,3(-和)2,1,0(的平面方程. 解:由平面的三点式方程知,所求的平面方程为131313121212111z z y y x x z z y y x x z z y y x x ---------121110131113111-+---+--+-=z y x 121422111---+-=z y x =0,即0735=-++z y x . 3.求过点)1,1,1(-且垂直于两平面02=-+z y x 和052=+-z y x 的平面方程.解:该平面的法向量为k j i kj i37521211--=--,平面的方程为0)1(3)1(7)1(=--+--z y x ,即0537=---z y x .4.求点)1,2,1(到平面01022=-++z y x 的距离.解:点),,(0000z y x P =到平面0=+++D Cz By Ax 的距离公式是222000||CB A D Cz By ax d +++++=,因此点)1,2,1(到平面01022=-++z y x 的距离为1221|10122211|222=++-⨯+⨯+⨯=d .5.求平面052=-+-z y x 与各坐标面的夹角的余弦.解:所给平面的法向量为)1,2,1(-=n ,设该平面与xOy 面、yOz 面和zOx 面的夹角为z θ、x θ和y θ,于是=z θcos ||||n k n ⋅611)2(1|110201|222=+-+⨯+⨯-⨯=, =x θcos ||||n i n ⋅611)2(1|010211|222=+-+⨯+⨯-⨯=, =y θcos ||||n j n ⋅621)2(1|011201|222=+-+⨯+⨯-⨯=. 6.求过点)5,4,1(-且在三个坐标轴上的截距相等的平面的方程.解:设所求平面的方程为1=++aya y a x ,由于点)5,4,1(-在平面上,则1541=+-+aa a ,2=a ,所求方程为02=-++z y x . 7.分别按下列条件求平面方程:(1)平行于yOz 平面且经过点)2,3,2(--;(2)通过y 轴和点)1,1,2(-;(3)求平行于x 轴,且经过两点)2,1,2(-和)1,0,4(-的平面方程. 解:(1)yOz 平面的法向量是)0,0,1(=n ,可作为所求平面的法向量,因此所求平面的方程为0)2(0)3(0)2(1=+⋅++⋅+-⋅z y x ,即2=x . (2)所求平面的法向量即垂直于y 轴又垂直于向量)1,1,2(-=n ,所以所求平面的法向量为k i k j i201112+-=-,因此所求平面的方程为0)1(2)1(0)2(1=-⋅++⋅+-⋅-z y x ,即02=-z x .(3)由于所求平面平行于x 轴,故设所求平面方程为0=++D Cz By . 将点)2,1,2(-和)1,0,4(-分别代入0=++D Cz By 得02=+-D C B 及0=+-D C ,解得D C =及D B =. 因此所得方程为0=++D Dz Dy ,即01=++z y . §8.6 空间直线及其方程 1. 填空题(1)直线421zy x =-=和平面442=+-z z x 的关系是(平面与直线互相垂直).(2)过点)0,1,1(-且与直线321123-+=-=-z y x 平行的直线的方程是(31121-=+=-zy x ). (3)直线182511+=--=-z y x 与直线⎩⎨⎧=+=-326z y y x 的夹角为(3π). 2.化直线⎩⎨⎧=++=+-522z y x z y x 为对称式方程和参数方程.解:直线的方向向量为k j i k j in n s 3211211121++-=-=⨯=. 取10=x ,代入直线方程可得10=y ,20=z . 所以直线的对称式方程为321121-=-=--z y x . 令t z y x =-=-=--321121,所给直线的参数方程为⎪⎩⎪⎨⎧+=+=-=tz t y t x 32121. 3.求过点)3,0,2(且与直线⎩⎨⎧-=-+=+-1253742z y x z y x 垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即21n n n ⨯=)11,14,16(253421-=--=kj i .所求平面的方程为0)3(11)0(14)2(16=-+-+--z y x ,即01111416=+--z y x .4. 求直线⎩⎨⎧=---=-+-01023z y x z y x 与直线⎩⎨⎧=-+=+-+01202z y z y x 夹角的余弦.解:因为两直线的方向向量为k j i kjin 2241111311++=---=,k j i kjin +-=-=232101112,设两直线的夹角为θ,则422151)2(3224|122234|cos 222222=+-+++⨯+⨯-⨯=θ. 5. 求点)5,1,2(P 在直线:L13111-=-=-zy x 上的投影. 解:过)5,1,2(P 作垂直于已知直线L 的平面∏,则其法向量)1,3,1(-=n ,于是平面的方程为0)5()1(3)2(=---+-z y x ,即03=-+z y x .将已知直线的参数方程⎪⎩⎪⎨⎧-=+=+=tz t y tx 311代入03=-+z y x ,可得114-=t ,因此点)5,1,2(P 在直线L 上的投影即为平面∏与直线L 的交点)114,111,117(-. 6. 求直线:L ⎩⎨⎧=---=+-083032z y x z y x 在平面:∏12=+-z y x 上的投影直线的方程.解:设所给直线L 的平面束方程为0)83(32=---++-z y x z y x λ,即08)1()3()32(=--++-+λλλλz y x ,其中λ为待定常数,要使该平面与已知平面∏垂直,则有0)1()3()32(2=-++++λλλ,解得34-=λ,将其代入08)1()3()32(=--++-+λλλλz y x ,可得32756=-+z y x ,因此直线L 在平面∏上的投影直线方程为⎩⎨⎧=+-=-+1232756z y x z y x . 7.确定λ的值,使直线:L ⎩⎨⎧=-+=-+02012z x y x 与平面1:=-+∏z y x λ平行,并求直线L 与平面∏之间的距离.解:直线L 的方向向量n k j i kj i--==2101012,要使直线L 与平面∏平行,只要0=⋅s n (其中=s )1,,1(-λ为平面∏的法向量),即0121=+-λ,解得1=λ. 令10=x ,代入直线L 的方程可得10-=y ,10=z ,直线L与平面∏之间的距离332)1(11|1)1(11111|222=-++--⨯+⨯-⨯=d . 8.求通过直线⎩⎨⎧=-++=-+-02201:z y x z y x L 的两个互相垂直的平面,其中一个平面平行于直线111121-=-+=-z y x . 解:设平面束方程为0)22(1=-+++-+-z y x z y x λ,即012)1()1()12(=--++-++λλλλz y x ,=n )1,1,12(+-+λλλ.设平行于直线111121-=-+=-z y x 的平面为1∏,由0)1()1(2)12(=++--+λλλ,可知1-=λ,令10=x ,代入直线L 的方程,可得000==z y 平面1∏的方程为02)1(=---y x ,即012=-+y x . 设垂直于平面1∏的平面为2∏,由0)1(2)12(=-++λλ,可得41=λ,平面2∏的方程为04543)1(23=+--z y x ,即06536=-+-z y x . 第八章 空间解析几何与向量代数综合练习 1.填空题:(1)已知1||=a ,2||=b ,且a 与b 夹角为3πθ=,则=-||b a (3).(2)若向量)1,2,1(-=a ,=b ),,3(μλ-平行,则=),(μλ()3,6(-). (3)已知向量的模为10,且与x 轴的夹角为6π,与y 轴的夹角为3π,与z 轴的夹角为锐角,则=() 0 5, , 3(5).(4)曲线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos (a 、b 为常数)在xOy 平面上投影曲线是(⎩⎨⎧==+0222z a y x ).(5)xOy 平面上曲线16422=-y x 绕x 轴旋转一周所得旋转曲面方程是(16)(4222=+-z y x ).(6)直线z z y y x x 111-=-=-与平面0=+++D Cz By Ax 的夹角θ 的正弦=θsin (222222CB A pn m pC nB mA ++++++).(7)方程y z x =-22所表示的曲面名称为(双曲抛物面).(8)与两直线⎪⎩⎪⎨⎧+=+-==tz t y x 122及112212-=-=+z y x 都平行,且过原点的平面方程是(0=+-z y x ).(9)已知动点),,(z y x P 到yOz 平面的距离与点P 到点)2,1,1(-的距离相等,则点P 的轨迹方程为(012)2()1(22=++-+-x z y ).(10)与两平面012=--+z y x 和032=+-+z y x 等距离的平面方程为(012=+-+z y x ).2. 设k i a -=,k j i b ++=,求向量c ,使得b c a =⨯成立,这样的c有多少个,求其中长度最短的c .解:设=c ),,(z y x ,则 c a⨯y x z y zy kj ++-=-=)(10,则1,1-=+=x z y ,因此这样的c )1,1,(x x --=,有无穷个.由于||c 23)21(2)1(1222++=--++=x x x ,因此,当21-=x 时, 即c )21,1,21(--=长度最短. 3. 已知点)0,1,1(A 和点)2,1,0(B ,试在x 轴上求一点C ,使得ABC ∆的面积最小.解:设)0,0,(x C ,则)2,0,1(-=,)0,1,1(--=x,k j x i x AC AB +-+=---=⨯)1(221101,故A B C ∆的面积为1)]1(2[221||2122+-+=⨯=x S ,显然,当1=x 时,ABC ∆的面积最小,为25,所求点为)0,0,1(.4. 求曲线⎪⎩⎪⎨⎧+==+-2222242yx z z y x 在各坐标平面上的投影曲线方程.解:在xOy 平面投影为⎩⎨⎧==-04222z y x ;在yOz 平面投影为⎩⎨⎧==-043222x y z ;在zOx 平面投影为⎩⎨⎧==-04322y z x . 5.求原点关于平面:∏0=+++D Cz By Ax 的对称点的坐标.解:过原点作垂直于平面0=+++D Cz By Ax 的直线,该直线的方向向量等于平面∏的法向量),,(C B A ,所求直线的对称式方程为C z B y A x ==,即⎪⎩⎪⎨⎧===Ctz Bt y Atx 为其参数方程. 将此参数方程代入平面∏,有0)(222=+++D t C B A ,解得222C B A Dt ++-=,即直线与平面的交点为),,(222222222CB A CDC B A BD C B A AD ++-++-++-. 设所求的对称点为),,(000z y x ,则222020C B A AD x ++-=+,222020CB A BDy ++-=+,222020C B A CDz ++-=+,即所求的对称点为)2,2,2(222222222CB A CDC B A BD C B A AD ++-++-++-. 6.求直线11111:--==-z y x L 在平面012:=-+-∏z y x 上的投影直线绕x 轴线转一周所成曲面的方程.解:过L 作垂直于平面∏的平面0∏,所求的直线L 在平面∏上的投影就是平面∏和0∏的交线. 平面0∏的法向量为:k j i kj in 232111210--=--=,则过点),,(101的平面0∏的方程为: 0)1(23)1(=----z y x ,即0123=+--z y x . 所以投影线为⎩⎨⎧=+--=-+-0123012z y x z y x . 将投影线表示为以x 为参数的形式:⎪⎩⎪⎨⎧--==)12(212x z x y ,则绕x 轴的旋转面的方程为2222)]12(21[)2(--+=+xx z y ,即0416*******=+---z y x x .7.求球心在直线11212--==-z y x 上,且过点)1,2,1(-和点)1,2,1(--的球面方程.解:设球心为),,(z y x ,则222222)1()2()1()1()2()1(-++++=++-+-z y x z y x ,即02=-+z y x .又因为球心在直线上,直线的参数方程为⎪⎩⎪⎨⎧-==+=t z t y t x 122,将直线的参数方程代入02=-+z y x ,可得61-=t ,球心坐标为)67,31,611(-,所求球面方程为665)67()31()611(222=-+++-z y x .8.已知两条直线的方程是142211:1--=+=-z y x L ,10122:2zy x L =-=-,求过1L 且平行于2L 的平面方程. 解:因为所求平面过1L ,所以点)4,2,1(-在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为k j i k j i43212121--=-.因此所求平面的方程为0)4(4)2(3)1(2=--+--z y x ,即08432=+--z y x .9. 在过直线⎩⎨⎧=++=+++0201z y x z y x 的所有平面中,求和原点距离最大的平面.解:设平面束方程为0)2(1=++++++z y x z y x λ,即01)1()1()12(=++++++z y x λλλ,平面与原点的距离为31)32(61)1()1()12(|10)1(0)1(0)12(|2222++=++++++⨯++⨯++⨯+=λλλλλλλd要使平面与原点的距离最大,只要32-=λ,即该平面方程为03=---z y x .10. 设两个平面的方程为052=---z y x 和062=--+z y x (1)求两个平面的夹角. (2)求两个平面的角平分面方程. (3)求通过两个平面的交线,且和yOz 坐标面垂直的平面方程. 解:(1)两个平面的法向量为)1,1,2(1--=n 和)2,1,1(2-=n ,设两个平面的夹角为θ,则21)2(111)1(2|)2()1(1112|||||||cos 2222222121=-+++-+-⨯-+⨯-⨯=⋅=n n n n θ,所以3πθ=.(2)因为角平分面上任意一点),,(z y x 到两个平面的距离相等,由点到平面的距离公式,可得222222)2(11|62|)1()1(2|52|-++--+=-+-+---z y x z y x ,即)62(52--+±=---z y x z y x ,所求的角平分面方程为12=+-z y x 或1133=-z x .(3)设通过两个平面的交线的平面方程为)62(52=--++---z y x z y x λ,即0)65)12()1()2(=--+--++λλλλz y x ,由于该平面垂直于yOz 坐标面,所以00)12(0)1(1)2(=⋅+-⋅-+⋅+λλλ,可得2-=λ,因此所求的平面方程为0733=--z y . 11. 求直线321zy x =-=绕z 轴旋转所得旋转曲面的方程. 解:由于空间曲线⎪⎩⎪⎨⎧===)()()(t z z t y y t x x )(+∞<<-∞t 绕z 轴旋转所得旋转曲面的方程为⎩⎨⎧=+=+)()()(2222t z z t y t x y x )(+∞<<-∞t ,消去参数t 即可. 此直线的参数方程为 ⎪⎩⎪⎨⎧=-==t z t y t x 32,故该直线绕z 轴旋转所得旋转曲面的方程为⎩⎨⎧=-+=+tz t t y x 3)2()(2222,消去参数t ,旋转曲面的方程为22295z y x =+. 12. 画出下列各曲面所围立体的图形:(1)0,0,0,12643====++z y x z y x . (2)2,222=+=z y x z . (3)22224,y x z y x z --=+=. (4)2222,2y x z y x z +=--=.(5)222y x z +=,22x z -=. (6)2x y =,0=z ,y z =,1=y .。

高等数学_课后习题答案第八章

高等数学_课后习题答案第八章

习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4}; (3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x ,y )|y ≤x 2}, 边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}.2. 已知f (x ,y )=x 2+y 2-xy tan xy ,试求(,)f tx ty .解:222(,)()()tan (,).txf tx ty tx ty tx ty t f x y ty =+-⋅=3. 已知(,,)wu vf u v w u w +=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy +(xy )x +y +x -y =(x +y )xy +(xy )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(3)z =(4)u =(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠ (4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:1(1)y x y →→22001(2)lim;x y x y →→+00(3)x y →→0x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y xy x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞.(3)原式=1.4x y →→=-(4)原式=02.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2e x y x y x x y y x y x yx y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x yx y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x yx y ⎧++≠⎪=+⎨⎪+=⎩ (3)222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩ 解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y ++++≤=≤+⋅++++又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y u x y u →→→+==+,故00lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续.(2)000sin lim lim1(0,0)0x u y uz z u→→→==≠= 故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+,若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++故00lim x y z→→不存在.故函数z 在O (0,0)处不连续. 7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y x y x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=22e ,0,0,0.x y x y y y -⎧⎪≠⎨⎪=⎩ 解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞.故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2x y ;(2)s =22u v uv +;(3)z =x;(4)z =lntan xy ;(5)z =(1+xy );(6)u =z xy ; (7)u =arctan(x -y )z;(8)y zu x =.解:(1)223122,.z z x xy x xy y y ∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u ∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xyx y y x y∂==∂+(4)21122sec csc ,tan z x x xx y y y yy ∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy ∂=⋅⋅-=-∂(5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy -∂'=+⋅=+⋅=++∂+ []ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z -∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂(7)11221()().1[()]1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z z z z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yz u y x x z -∂=∂2211ln ln .ln ln .y yzzy y zz u x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y =+,求证:3u ux y u x y ∂∂+=∂∂.证明: 222223222()2()()u xy x y x y x y xy xx y x y ∂+-+==∂++. 由对称性知 22322()u x y yx yx y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+.10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z x y z x y ∂∂+=∂∂.证明: 11112211e e x y x y z x x x ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦,由z 关于x ,y 的对称性得1121e x y z y y ⎛⎫+- ⎪⎝⎭∂=∂故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y ⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(y,求f x (x ,1) .解:1(,)1(x f x y y y =+-则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂设切线与正向x 轴的倾角为α,则tan α=1. 故α=π4.13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan yx ;(3)z =y x;(4)z =2exy+.解:(1)2322224812816z z z x xy x y xyx x x y ∂∂∂=-=-=-∂∂∂∂ ,,由x ,y 的对称性知22222128.16.z z y x xy y y x ∂∂=-=-∂∂∂(2)222211z y y x x y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++(3)222ln ,ln ,x x z zy y y y x x ∂∂==∂∂21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y yz y xy y y x y x y y zy x y y y x y y x -------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂(4)22e 2,e ,x y x y z zx x y ++∂∂=⋅=∂∂222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x yz x x x x z z z x x y x y y x ++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+ 22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32z x y ∂∂∂.解:ln()1ln(),z yx xy xy x xy ∂=⋅+=+∂232223221,0,11,.z y z x xy x x y z x z x y xy y x y y ∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx yx y ++∂∂=⋅=⋅∂∂∴222222d 2ed 2e d 2e (d d )x yx y x y z x x y y x x y y +++=+=+ (2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=-⎪+∂+⎝⎭2223/2()z x y x y ∂==∂+∴ 223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y --∂∂==⋅⋅∂∂2ln ln y z u x x y y z ∂=⋅⋅⋅∂∴211d d ln d ln ln d .zzzy y z y zu y x x x x zy y x x y y z --=+⋅+⋅⋅⋅ (4)∵1y zu y x x z -∂=∂1ln y z u x x y z ∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭ 17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=-(2)e ,1,1,0.15,0.1.xyz x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y )取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f (x ,y )=x y,则d f (x ,y )=yx y -1d x +x yln x d y , 取x =2,y =1,d x =-0.03,d y =0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a =10cm ,另一边长b =24cm,当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x =10,y =24,d x =0.4,d y =-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol 理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L ,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT 得V =RTP ,且在标准状态下,R =8.20568×10-2,ΔV ≈d v =-2d d RT R p T P P +=d d V RP T P P -+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V =4.45cm 3,其绝对误差限是0.01cm 3,质量m =30.80g ,其绝对误差限是0.01g ,求由公式mv ρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m =30.80,d v =0.01,d m =0.01时,22130.801d d d 0.010.014.45 4.450.01330.0133m v m v v ρ==-+-⨯+⨯≈=-当v =4.45, m =30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,zv ∂∂;(2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v ∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux ;(4) u =x 2+y 2+z 2, x =e cos t t ,y =e sin t t ,z =e t,求d d ut .解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z yxy y v x xy v u x u y uu v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=- 223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y vu v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++(2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y v y x x y y y x u x y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e e x y xx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++(4)d d d d d d d d u u x u y u z t x t y t z t ∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭ (3)().,,u f x xy xyz =解:(1)12122e 2e .xy xy uf x f y xf y f x ∂''''=⋅+⋅⋅=+∂1212(2)e 2e .xy xy uf y f x yf x f y ∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f xy y ∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭ (3)1231231,uf f y f yz f yf yzf x ∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf y uf xy xyf z ∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x =+=为可导函数,证明:.z zx y z xy x y ∂∂+=+∂∂证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x ∂''=+⋅=+∂故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y ∂∂+=∂∂. 证明:∵ 2222z yf x xyf xf f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂,∴22222112211z z yf f y f y zx x y yf yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂解:2,2,z zxf yf x y ∂∂''==∂∂222222224,224,zf x xf f x f x zxf y xyf x y ∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.zf y f y ∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数:(1),;x x z f y ⎛⎫= ⎪⎝⎭ (2)()22;,z f xy x y = (3)().sin ,cos ,e x y z f x y +=解:(1)1212111,z f f f f x y y ∂''''=⋅+⋅=+∂2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x ∂''''=⋅+⋅=+∂()()22222211122122432221112222222244,z y yf xy f y f xy f y f xy xyf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yzxf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x ++∂''''=⋅+⋅=+∂()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y z xf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y+++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x yξη=-=-,可将方程22222430u u ux x y y ∂∂∂++=∂∂∂∂化简为 20uξη∂=∂∂.证明:设1(,),3u f f x y x y ξη⎛⎫==-- ⎪⎝⎭ 2222222222222222222222221411(1)(1)3333u u u u u x x x u u u u u u u ux x x x x u u u uuu u x y ξηξηξηξηξηξξηηξηξξηηξξηηξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⋅+⋅+⋅+⋅=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫⎛⎫=+⋅-+⋅+⋅-=----- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭22u η∂∂222222222222222222222222211(1)33111211(1)(1)33933343142433u u u u uy u u u uuu u u y u u ux x y yu u u u ξηξηξξηηξηξξηηξξηηξ∂∂∂∂∂⎛⎫=⋅+⋅-=--- ⎪∂∂∂∂∂⎝⎭∂∂∂∂∂∂∂∂⎛⎫⎛⎫=-⋅-⋅--⋅-⋅-=++-- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂++∂∂∂∂∂∂∂∂∂=+++--∂∂∂∂∂2222222221239340.3u u u u u u ξηηξξηηξη⎛⎫⎛⎫∂∂∂∂+-++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭∂=-=∂∂故20.uξη∂=∂∂29. 求下列隐函数的导数或偏导数:(1)2sin e 0x y xy +-=,求d d yx ;(2)ln arctany x =,求d d yx ;(3)20x y z ++-=,求,z z x y ∂∂∂∂;(4)333z xyz a -=,求22,z zx y ∂∂∂∂. 解:(1)[解法1] 用隐函数求导公式,设F (x ,y )=sin y +e x -xy 2,则2e ,c o s 2,x x y F y F y xy =-=- 故22d e e d cos 2cos 2x x x y F y y y x F y xy y xy --=-=-=--. [解法2] 方程两边对x 求导,得()2cos e 02x y y y x yy '⋅+-='+⋅故2e .cos 2xy y y xy -'=- (2)设()221(,)ln arctan ln arctan ,2y yF x y x y x x ==-+ ∵222222121,21x x x y y F x y x y x y x +⎛⎫=-⋅=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭222221211,21y y y x F x y x x y y x -=-⋅=++⎛⎫+ ⎪⎝⎭∴d .d x y F y x y xF x y +=-=- (3)方程两边求全微分,得d 2d d 0,x y z ++=,z x y =则d ,z x y =故z z xy ∂∂==∂∂ (4)设33(,,)3F x y z z xyz a =--,23,3,33,x y z F yz F xz F z xy =-=-=-则 223,33x z F z yz yz x F z xy z xy ∂-=-=-=∂--223,33y z F z xz xz y F z xy z xy ∂-=-=-=∂--()()()()22222222322232222()z z z x x xz z xy xz y z y z xy y y z xy xzxzz x x xz z xy z xyx yzz xy xy z z xy ∂∂⎛⎫--- ⎪∂∂∂∂⎛⎫⎝⎭== ⎪-∂∂⎝⎭-⎛⎫⋅--- ⎪--⎝⎭==--30. 设F (x ,y ,z )=0可以确定函数x =x (y ,z ),y =y (x ,z ),z =z (x ,y ),证明:1x y zy z x ∂∂∂⋅⋅=-∂∂∂.证明:∵,,,y x z x y z F F F x y zyF z F x F ∂∂∂=-=-=-∂∂∂∴ 1.y z x y z x F F F x y z F F F y z x ⎛⎫⎛⎫∂∂∂⎛⎫---⋅⋅=⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭31. 设11,0F y z x y ⎛⎫++= ⎪⎝⎭确定了函数z =z (x ,y ),其中F 可微,求,z zx y ∂∂∂∂. 解:12122110x F F F F x x ⎛⎫'''=⋅+⋅=-- ⎪⎝⎭122122121222122221222011111z y x z y zF F F F F F F y F F F z x x F F x F F F F F y F z y y F F y F '''=⋅+⋅=⎛⎫''-=⋅+⋅ ⎪⎝⎭'-'∂=-=-=∂''''-''-∂=-=-=∂''32. 求由下列方程组所确定的函数的导数或偏导数:(1)22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求:d d ,;d d y z x x(2)1,0,xu yv yu xv +=⎧⎨-=⎩ 求:,,,;u v u vx x y y ∂∂∂∂∂∂∂∂(3)2(,),(,),u f ux v y v g u x v y =+⎧⎨=-⎩ 其中f ,g 是c '类函数,求,;u v x x ∂∂∂∂(4)e sin ,e cos ,u u x u v y u v ⎧=+⎪⎨=-⎪⎩ 求,,,.u u v v x y x y ∂∂∂∂∂∂∂∂ 解:(1)原方程组变为222222320y z x y z x ⎧-=-⎪⎨+=-⎪⎩方程两边对x 求导,得d d 22d d d d 23d d y zy x x x y z y z x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩当 2162023y J yz y y z -==+≠21d 16(61),3d 622(31)22d 12.2d 6231x y xz x x z x z x J yz y y z y x z xy x y x x J yz y z ----+===--++-===-++(2)设(,,,)1,(,,,),F x y u v xu yv G x y u v yu xv =+-=-,,,,,,,,x y u v x y u v F u F v F x F y G v G u G y G x =====-===-22u v uv F F x yJ x y G G y x===---故 22x v xv F F uyG G v x u ux yvxJJ x y --∂-+=-=-=∂+222222,,.uxu x yvy v uyu y F F xuG G y v vvx uy x J J x yF F vyG G u x u vx uy y J J x yF F x vG G y u v xu vy y J J x y-∂--=-=-=∂+-∂--=-=-=∂+∂-=-=-=∂+(3)设(,,,)(,),F u v x y f ux v y u =+-2(,,,)(,),G u v x y g u x v y v =-- 则121221121(1)(21),21uv uvF F xf f J xf yvg f gG G g vyg ''-''''===---''-故12121221122121(21),(1)(21)xvx v uf f F F G G g yvg uf yvg f g ux JJ xf yvg f g ''''''''-----∂=-=-=∂''''--- 111111112211(1).(1)(21)uxu x xf uf F F G G g g g xf uf vx JJ xf yvg f g ''-'''''-+-∂=-=-=∂''''---(4)(,),(,)u u x y v v x y ==是已知函数的反函数,方程组两边对x 求导,得1e sin cos ,0e cos (sin ),u u u u v v u v x x xu u v v u v x x x ∂∂∂⎧=++⎪⎪∂∂∂⎨∂∂∂⎪=---⎪∂∂∂⎩整理得 (e sin )cos 1,(e cos )sin 0,uu u v v u v x x u v v u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪-+=⎪∂∂⎩解得 sin e (sin cos )1uu v x v v ∂=∂-+cos e [e (sin cos )1]uu v v x u v v ∂-=∂-+方程组两边对y 求导得0e sin cos 1e cos sin u u u u v v u v y y y u u v v u v y y y ∂∂∂⎧=++⎪∂∂∂⎪⎨∂∂∂⎪=-+⎪∂∂∂⎩整理得 (e sin )cos 0(e cos )sin 1uu u v v u v y y u v v u v y y ∂∂⎧++=⎪∂∂⎪⎨∂∂⎪-+=⎪∂∂⎩解得 cos sin ,.e (sin cos )[e (sin cos )1]uu uu v v v e y v v y u v v ∂-∂+==∂-∂-+ 33. 设e cos ,e sin ,u ux v y v z uv ===,试求,.z z x y ∂∂∂∂ 解:由方程组e cos e sin uux v y v ⎧=⎪⎨=⎪⎩ 可确定反函数(,),(,)u u x y v v x y ==,方程组两边对x 求导,得1e cos e sin 0e sin e cos uu u u u v v v x x u v v v x x ∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩解得 cos sin ,e e u uu v v v x x ∂∂==-∂∂ 所以 cos sin e u z u v v v u v v u x x x ∂∂∂-=+=∂∂∂方程组两边对y 求导,得0e cos e sin 1e sin e cos uu u u u v v v y y u v v v y y ∂∂⎧=-⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解得 sin cos ,e e u uu v v v xy ∂∂==∂∂所以 sin cos e u z u v v v u v v u y y y ∂∂∂+=+=∂∂∂.34. 求函数322(,)51054f x y x x xy y x y =--+++-在(2,-1)点的泰勒公式. 解:(2,1)2f -=231010,(2,1)325,(2,1)1610,(2,1)21,6,2,x x y y xx xx xy xxx yy f x x y f f x y f f x f f f f =--+-==-++-==--==-==故223223(,)(2,1)(2)(2,1)(1)(2,1)1(2)(2,1)2(2)(1)(2,1)(1)(2,1)2!1(2)(2,1)3!23(2)(1)(2)(2)(1)(1)(2)x y xx xy yy xxx f x y f x f y f x f x y f y f x f x y x x y y x =-+--++-⎡⎤+--+-+-++-⎣⎦+⎡⎤--⎣⎦=+-+++---++++-35. 将函数(,)xf x y y =在(1,1)点展到泰勒公式的二次项.解:(1,1)1,f =(1,1)(1,1)1(1,1)(1,1)ln 0,1,x x x y f y y f xy -====2(1,1)(1,1)1(1,1)(1,1)2(1,1)(1,1)2(ln )0,1ln 1,(1)0,(,)1(1)(1)(1)0().x xx x x xy x yyx f y y xy y y f y f xy x f x y y y x y ρ--==⎛⎫+⋅== ⎪⎝⎭=-===+-+--+。

高等数学课后习题答案第八章1

高等数学课后习题答案第八章1

高等数学课后习题答案第八章1第八章习题解答节8.1部分习题解答 5、求极限(1)、101011l i m 2201=+-=+-→→yx xy y x (2)、xy y x y x 1sin)(lim 0+→→。

由y x xyy x +≤+≤1sin )(0,而0)(lim 00=+→→y x y x 所以01sin)(lim 00=+→→xyy x y x (3)、2ln 214)02ln()sin ln(lim2202=++=++→→y x y x y x (4)、=+-→→xy xy y x 42lim 041421)42(lim 00-=+-=++-→→xy xy xy y x (5)、110c o s 1c o s l i m000==++→→e y x y e x y x (6)、=++-→→xy y x ey x y x )()cos(1lim22220=++→→xy y x ey x y x )()(21sin 2lim 222220 )(21)(21sin lim 222200y x y x y x ++→→0101)(21sin lim 2200=?=+?→→xy y x e y x 6、证明下列极限不存在(1)、yx yx y x -+→→00l i m 证明:取路径0=x 有=-+→→y x y x y x 00lim1lim0-=-→=yyy x 取路径0=y 有=-+→→y x y x y x 00lim1lim 00=→=xx x y ,所以y x yx y x -+→→00lim 不存在(2)、xy x x y x -+→→2220l i m证明:取路径x y =有xy x x y x -+→→22200lim x x x y x -=→→2202lim 0142lim 00=-=→→x x y x 取路径x y =有x y x x y x -+→→2220 0lim 1lim 220==→→x x y x ,所以xy x x y x -+→→22200lim 不存在。

高等数学第八章课后习题答案

高等数学第八章课后习题答案

第八章习题解答(2) 节8.4部分习题解答1、设22v uv u z ++= y x v y x u -=+=,,求x z ∂∂,yz ∂∂ 解:v u u z +=∂∂2 v u vz 2+=∂∂ 1=∂∂x u ,1=∂∂x v ;1=∂∂y u ,1-=∂∂yv 所以x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂xvx v u v u v u 6)(3)2()2(=+=+++y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂yv y v u v u v u 2)2()2(=-=+-+ 2、设v u z ln 2= y x v yxu 23,-==,求x z ∂∂,y z ∂∂解:v u u zln 2=∂∂ vu v z 2=∂∂ y x u 1=∂∂,3=∂∂x v ;2yx y u -=∂∂,2-=∂∂y v所以 x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂x v )23(3)23l n (23ln 21222y x y x y x y x v u v u y -+-=+y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂y v )23(2)23l n (22ln 2223222y x y x y x y x v u v u y x ----=-- 3、设v e z uln = 22222,2y x v y x u -=-=,求x z ∂∂,yz∂∂ 解:v e u z uln =∂∂ ve v z u =∂∂ x x u 4=∂∂,x x v 2=∂∂;y y u 2-=∂∂,y yv 4-=∂∂ 所以x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂xv]21)2ln(2[22ln 42222222yx y x xe v e x v xe y x u u-+-=+-y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂yv ]22)2ln(2[24ln 2222222yx y x ye v e y v ye y x u u-+--=--- 4、设y x e z 2-= 3,sin t y t x ==,求 dtdz解:y x e x z 2-=∂∂ y x e yz 22--=∂∂,t dt dx cos =,23t dt dy =, 所以dt dz ⋅∂∂=x z +dt dx ⋅∂∂y z =dtdy223c o s t te y x +-)2(2y x e --=)6(c o s 22s i n 3t t e t t -- 5、设)arcsin(y x z -= 34,3t y t x ==,求 dtdz 解:2)(11y x x z --=∂∂ 2)(11y x y z ---=∂∂,t dt dx 3=,212t dt dy =, 所以 dt dz ⋅∂∂=x z +dt dx ⋅∂∂y z =dtdy=---22)(1123y x t 232)43(1123t t t ---6、设)23tan(22y x t z -+= t y tx ==,1,求dtdz 解:2sec 4x x z =∂∂)23(22y x t -+ 2s e c 2y yz -=∂∂)23(22y x t -+, 2sec 3=dt dz )23(22y x t -+;21t dt dx -=,tdt dy 21=, 1=dt dt 所以t dz ∂⋅∂∂=x z +dt dx ⋅∂∂y z =∂∂+t z dt dy 2s e c )23(22y x t -+]3212)1(14[2+--tt t t 2sec =)22(2t t +)42(3t -⋅ 7、设1)(2+-=a z y e u ax xz x a y cos ,sin ==,求 dx du解:=∂∂x u 1)(2+-a z y ae ax ,=∂∂y u12+a ae ax ,-=∂∂z u 12+a ae ax x dx dy cos =;x dxdzsin -=,所以 dx du ⋅∂∂=x u ⋅∂∂+y u =⋅∂∂+dx dzz u dx dy ]s i n c o s )c o s s i n ([12x x a x x a a a e ax ++-+ x e ax sin =8、设222z y xe u ++= x y z sin 2=,求x u ∂∂,yu∂∂ 解:x x u 2=∂∂222z y x e ++⋅ y yu2=∂∂222z y x e ++⋅,z z u 2=∂∂222z y x e ++⋅ x y x z cos 2=∂∂,x y yz sin 2=∂∂; 所以:x u ∂∂=∂∂⋅∂∂+∂∂⋅+∂∂=xzz u y u x u 0]cos 22[2222x zy x e z y x +++ =+=++]cos sin 22[22sin 2422x xy y x e xy y x]2sin 2[4sin 2422x y x e xy y x+=++y u ∂∂=∂∂⋅∂∂+∂∂+⋅∂∂=yz z u y u x u 0]sin 222[222x y z y e z y x ⋅+++ =⋅+=++]sin 2sin 22[2sin 2422x y x y y e xy y x]sin 21[222sin 2422x y ye xy y x+++9、设)cos(22y x y x z +++= v y v u x arcsin ,=+=,求vu zu z ∂∂∂∂∂2, 解:)sin(2y x x x z +-=∂∂,)sin(2y x y yz +-=∂∂ 1=∂∂u x ,1=∂∂v x ,0=∂∂u y211vv y -=∂∂所以)a r c s i n s i n ()(2)s i n (2v v u v u y x x uz++-+=+-=∂∂)111)(arcsin cos(222vv v u v u z -+++-=∂∂∂ 10、设,arctan y xz =v u y v u x -=+=,验证:22vu v u v z u z +-=∂∂+∂∂ 证明:22yx yx z +=∂∂,22y x x y z +-=∂∂,1=∂∂u x ,1=∂∂v x ,11=∂∂u y ,1-=∂∂v y所以)(122x y y x u z -+=∂∂22v u v +-=,)(122x y yx v z ++=∂∂22v u u += 故有 左边=+-=∂∂+∂∂=22vu vu v z u z 右边 11、设f 具有连续的一阶偏导数,求下列函数的一阶偏导数 (1)、)34,23(y x y x f z -+=解:设y x v y x u 34,23-=+=,于是有3=∂∂x u ,2=∂∂y u ,4=∂∂x v ,3-=∂∂yv2143f f x z +=∂∂ =∂∂yz2133f f - (2)、),(22xy e y x f z -= 解:设xy e v y x u =-=,22,于是有x x u 2=∂∂,y y u 2-=∂∂,xy ye x v =∂∂,xu xe yv=∂∂ =∂∂x z 212f ye xf xy + 212f xe yf yzxy +-=∂∂ (3)、)32,ln (y x x y f z +=解:设y x v x y u 32,ln +==,于是有x y x u =∂∂,x y u ln =∂∂,2=∂∂x v ,3=∂∂yv212f f x y x z +=∂∂ 213ln f xf yz+=∂∂ (4)、),(yxx y f z = 解:设y x v x y u ==,,于是有2x y x u -=∂∂,x y u 1=∂∂,y x v 1=∂∂,2yx y v -=∂∂ 2121f y f xy x z +-=∂∂2211f y x f x y z -=∂∂ (5)、),,(y x y x x f z -+=解:设y x v y x u -=+=,,于是有1=∂∂x u ,1=∂∂x v ,1=∂∂y u ,1-=∂∂yv321f f f x z ++=∂∂ 32f f yz -=∂∂ (6)、),,(x y z xy x f u =解:设xyz t xy s ==,,于是有y x s =∂∂,yz x t =∂∂,x y s =∂∂,zx yt=∂∂ 0=∂∂z x ,0=∂∂z s xy zt=∂∂ 321yzf yf f x u ++=∂∂ 32z x f xf yu+=∂∂ 3xyf z u =∂∂ 12、设)(u f 具有连续的导数,)(xyxf xy z += 验证:z xy yz y x z x+=∂∂+∂∂ 验证:)])(()([2xy x y f x x y f y x x z x-'++=∂∂)()(x y f y x y xf xy '-+= ='+=∂∂)])(([xyx y f x x y y z y)(x y f y xy '+左边==+=+=∂∂+∂∂z xy xyxf xy y z y x z x)(2右边 13、设)(22y x f z +=,)(u f 具有二阶连续的导数,求,,222y x z x z ∂∂∂∂∂,22y z∂∂ 解:设22y x u +=有1f u z=∂∂ 1122f u z =∂∂ x x u 2=∂∂ 222=∂∂x u 0=∂∂∂y x u y y u2=∂∂ 222=∂∂yu 12xf x z =∂∂ x xf f x z 22211122+=∂∂112142f x f += 11112422xyf y xf yx z ==∂∂∂ 12yf y z=∂∂ 11212242f y f yz +=∂∂ 14、设f 具有二阶连续的导数,求,,222y x z x z ∂∂∂∂∂,22yz∂∂(1)、),(xy y x f z += 解:设xy v y x u =+=,有1f u z =∂∂ 1122f u z =∂∂ 122f v u z =∂∂∂ 2f v z =∂∂ 2222f v z =∂∂ 1=∂∂x u 022=∂∂x u 02=∂∂∂y x u 1=∂∂y u 022=∂∂y u y x v =∂∂ 022=∂∂x v 12=∂∂∂y x v x y v =∂∂ 022=∂∂yv 于是有:22222)(xv v z x u u z z v y u x z ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂22212112f y yf f ++=y x vv z y x u u z z v x u v y u y x z ∂∂∂∂∂+∂∂∂∂∂+∂∂+∂∂∂∂+∂∂=∂∂∂222))((2221211)(f xyf f y x f ++++= 22222)(y vv z y u u z z v x u yz ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂22212112f x xf f ++= (2)、),(yxxy f z =解:设yx v xy u ==, 有1f u z =∂∂ 1122f u z =∂∂ 122f v u z =∂∂∂ 2f v z=∂∂ 2222f v z =∂∂ y x u =∂∂ 022=∂∂x u 12=∂∂∂y x u x y u =∂∂ 022=∂∂yu y x v 1=∂∂ 022=∂∂x v221yy x v -=∂∂∂ 2y x y v -=∂∂ 3222y x y v =∂∂ 于是有:22222)1(x v v z x u u z z v y u y x z ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂2221211212f y f f y ++=yx vv z y x u u z z v y x u x v y u y y x z ∂∂∂∂∂+∂∂∂∂∂+∂∂-∂∂∂∂+∂∂=∂∂∂2222))(1(221223111f y f f y x xyf -+-+=222222)(y v v z y u u z z v y x u x y z ∂∂∂∂+∂∂∂∂+∂∂-∂∂=∂∂232242122211222f y x f y x f y x f x ++-=。

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)习题8-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界. (1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为 {(x , y )|x =0或y =0}. (2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为 {(x , y )|1≤x 2+y 2≤4}, 边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}. (3){(x , y )|y >x 2}; 解 开集, 区域, 无界集, 导集为 {(x , y )| y ≥x 2}, 边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22ty tx ty tx ty tx ty tx f ⋅⋅-+=),()tan (2222y x f t y x xy y x t =-+=.3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域: (1)z =ln(y 2-2x +1); 解 要使函数有意义, 必须 y 2-2x +1>0, 故函数的定义域为D ={(x , y )|y 2-2x +1>0}. (2)y x y x z -++=11;解 要使函数有意义, 必须 x +y >0, x -y >0, 故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须 y ≥0,0≥-y x 即y x ≥, 于是有 x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }. (4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须 y -x >0, x ≥0, 1-x 2-y 2>0, 故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221r z y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}. (6)22arccos y x z u +=.解 要使函数有意义, 必须 x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限: (1)22)1,0(),(1lim y x xyy x +-→;解110011lim22)1,0(),(=+-=+-→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y yx . (3)xyxy y x 42lim )0,0(),(+-→; 解xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim )0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)yxy y x )sin(lim)0,2(),(→;解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim不存在.(2)22222)0,0(),()(lim y x y x y x y x -+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0), 则1lim )(lim 44022222 )0,0(),(==-+→=→x x y x y x y x x xy y x ;如果动点p (x , y )沿y =2x 趋向(0, 0), 则044lim )(lim 2440222222 )0,0(),(=+=-+→=→x x x y x y x y x x xy y x .因此, 极限22222)0,0(),()(lim y x y x y x y x -+→不存在.8. 函数xy xy z 2222-+=在何处间断?解 因为当y 2-2x =0时, 函数无意义, 所以在y 2 -2x =0处, 函数xy x y z 2222-+=间断.9. 证明0lim 22)0,0(),(=+→yx xyy x . 证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+,所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x y x xyy x y x .因此 0lim22)0,0(),(=+→yx xyy x . 方法二:证明 因为2||22y x xy +≤, 故22||22222222y x y x y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤-+22|0|2222y x y x xy,所以 0lim22)0,0(),(=+→yx xyy x .10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x -x 0|<δ时, 有|f (x )-f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x -x 0|<δ, 从而|F (x , y )-F (x 0, y 0)|=|f (x )-f (x 0)|<ε, 所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8-21. 求下列函数的偏导数: (1) z =x 3y -y 3x ; 解 323y y x xz -=∂∂,233xy x y z -=∂∂.(2)uvvu s 22+=;解 21)(uv v u v v u u u s -=+∂∂=∂∂,21)(vu u u v v u v v s -=+∂∂=∂∂.(3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理 )ln(21xy y y z =∂∂.(4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅-⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y -=根据对称性可知)]2sin()[cos(xy xy x yz -=∂∂.(5)yx z tan ln =;解 yx y y y x yx x z 2csc 21sec tan 12=⋅⋅=∂∂,yx y x y x y x yx y z 2csc 2sec tan 1222-=-⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(--+=⋅+=∂∂y y xy y y xy y xz ,]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xyxy xy y ++++=.(7)zy x u =;解 )1(-=∂∂z y x zy x u ,x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂,x x zy z y x x z u z yz y ln )(ln 22⋅-=-=∂∂.(8) u =arctan(x -y )z ;解 zz y x y x z x u 21)(1)(-+-=∂∂-, zz y x y x z y u 21)(1)(-+--=∂∂-, zz y x y x y x z u 2)(1)ln()(-+--=∂∂. 2. 设g l T π2=, 试证0=∂∂+∂∂g T g l T l .解 因为lg l T ⋅⋅=∂∂1π,gg g l g T 1)21(223⋅-=⋅-⋅=∂∂-ππ, 所以 0=⋅-⋅=∂∂+∂∂g l g l g T g l T l ππ. 3. 设)11(yx ez +-=, 求证z yz y x z x 222=∂∂+∂∂.解 因为2)11(1x ex z yx ⋅=∂∂+-, 2)11(1y e yz y x ⋅=∂∂+-, 所以 z eeyz y x z x yx yx 2)11()11(22=+=∂∂+∂∂+-+-4. 设y x y x y x f arcsin )1(),(-+=, 求)1 ,(x f x .解 因为x x x x f =-+=1arcsin )11()1 ,(,所以 1)1 ,()1 ,(==x f dx d x f x .5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 因为242x x x z ==∂∂,αtan 1)5,4,2(==∂∂xz ,故 4πα=.6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4-4x 2y 2;解 2384xy x xz -=∂∂, 2222812y x x z -=∂∂; y x y yz 2384-=∂∂, 2222812x y y z -=∂∂;xy y x y yy x z 16)84(232-=-∂∂=∂∂∂. (2)xyz arctan =;解 22222)(11y x y x y xy x z +-=-⋅+=∂∂,22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy yz +=⋅+=∂∂, 22222)(2y x xy y z +-=∂∂;22222222222222)()(2)()(y x x y y x y y x y x y y y x z +-=+-+-=+-∂∂=∂∂∂. (3) z =y x .解 y y xz xln =∂∂, y y x z x 222ln =∂∂; 1-=∂∂x xy yz , 222)1(--=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂--y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, -1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x , f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0, 所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2, f yz (0, -1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyyx xy x z ,x xy y x z 122==∂∂, 023=∂∂∂y x z ,y xy x y x z 12==∂∂∂, 2231y y x z -=∂∂∂. 9. 验证:(1)nx e y tkn sin 2-=满足22xy k t y ∂∂=∂∂;证明 因为nx e kn kn nx e t y t kn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx ne x y tkn cos 2-=∂∂, nx e n x y t kn sin 2222--=∂∂, nx e kn xy k t kn sin 2222--=∂∂,所以 22xyk t y ∂∂=∂∂.(2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂. 证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r xr -=∂∂-=∂∂, 由对称性知32222ry r y r -=∂∂, 32222r z r z r -=∂∂,因此 322322322222222rz r r y r r x r z r y r x r -+-+-=∂∂+∂∂+∂∂ rr r r r z y x r 23)(332232222=-=++-=. 习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22yx y z +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分. 解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12,所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233y x y y x x y x +∆+∆++=, 所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cm 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x y x ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yxy xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dt dyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=x xxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明)()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y y e f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂.(2)) ,(zyy x f u =;解1211)()(f yz y x f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂, )()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f zy'⋅-=.(3) u =f (x , xy , xyz ).解 yz f y f f x u ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22yz ∂∂. 解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422, f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数):(1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂=v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)(1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=v fx u v f v u f x u f x 2222222vf v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和v f ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂ )(1)1()(vfy y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂=y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=222112232221v f y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂ 22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2',z y=f1'⋅2xy+f2'⋅x2=2xyf1'+x2f2';z xx=y2[f11''⋅y2+f12''⋅2xy]+2yf2''+2xy[f21''⋅y2+f22''⋅2xy]=y4f11''+2xy3f12''+2yf2''+2xy3f21''+4x2y2 f22''=y4f11''+4xy3f12''+2yf2''+4x2y2 f22'',z xy=2y f1'+y2[f11''⋅2xy+f12''⋅x2]+2xf2'+2xy[f21''⋅2xy+f22''⋅x2]=2y f1'+2xy3f11''+x2y2f12''+2xf2'+4x2y2f21''+2x3yf22''=2y f1'+2xy3f11''+5x2y2f12''+2xf2'+2x3yf22'',z yy=2xf1'+2xy[f11''⋅2xy+f12''⋅x2]+x2[f21''⋅2xy+f22''⋅x2]=2xf1'+4x2y2f11''+2x3y f12''+2x3yf21''+x4f22''=2xf1'+4x2y2f11''+4x3y f12''+x4f22''.(4) z=f(sin x, cos y,e x+y).解z x=f1'⋅cos x+ f3'⋅e x+y=cos x f1'+e x+y f3',z y=f2'⋅(-sin y)+ f3'⋅e x+y=-sin y f2'+e x+y f3',z xx=-sin x f1'+cos x⋅(f11''⋅cos x+ f13''⋅e x+y)+e x+y f3'+e x+y(f31''⋅cos x+ f33''⋅e x+y)=-sin x f1'+cos2x f11''+e x+y cos x f13''+e x+y f3'+e x+y cos x f31''+e2(x+y) f33''=-sin x f1'+cos2x f11''+2e x+y cos x f13''+e x+y f3'+e2(x+y) f33'', z xy=cos x[f12''⋅(-sin y)+ f13''⋅e x+y]+e x+y f3'+e x+y [f32''⋅(-sin y)+ f33''⋅e x+y]=-sin y cos x f12''+e x+y cos x f13'+e x+y f3'-e x+y sin y f32'+e2(x+y)f33'=-sin y cos x f12''+e x+y cos x f13''+e x+y f3'-e x+y sin y f32''+e2(x+y)f33'',z yy=-cos y f2'-sin y[f22''⋅(-sin y)+ f23''⋅e x+y]+e x+y f3'+e x+y[f32''⋅(-sin y)+ f33''⋅e x+y]=-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23ts y +=, 证明2222)()()()(tu s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(yu x u ∂∂+∂∂=.又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222yu x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅=22222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(22yu x u t t u t t u ∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343yu y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂. 习题8-51. 设sin y +e x-xy 2=0, 求dxdy.解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设xy y x arctan ln 22=+, 求dx dy.解 令xy y x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=, 22222221)(11221yx x y x xy y x y y x F y +-=⋅+-+⋅+=, y x y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x ,F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F y z , 于是 13231=+=--=∂∂+∂∂z z z x F FF F y z x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu u v u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,所以 c b a c b b a c a y z b x z a vu v v u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z-xy , xye yz F F x z zz x -=-=∂∂, 222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xy z yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xz xy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂.(3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g x u g xv x vf x u x u f x u 21212)1()( , 即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x u u cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx u u sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得dy v v e v dx v v e v du u u 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u u u u ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而 1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u , ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u . 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tFy F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=. 证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得 ⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dx dt t f x f dx dy , 移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F t F y F t fD 的条件下 yF t f t F x F t f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1.习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为 ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++,法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得y y 2='.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档