最新中考数学 平行四边形基础训练(含答案)

合集下载

(名师整理)最新人教版数学中考《平行四边形》专题精练(含答案解析)

(名师整理)最新人教版数学中考《平行四边形》专题精练(含答案解析)

平行四边形一选择题:1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BCB.∠A=∠C,∠B=∠DC.AB∥CD,AD∥BC D.AB=CD,AD=BC2.能判定四边形是平行四边形的条件是( )A.一组对边平行,另一组对边相等;B.一组对边相等,一组邻角相等;C.一组对边平行,一组邻角相等;D.一组对边平行,一组对角相等。

3.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD 4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm 5、如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若□ABCD的周长为48,DE=5,DF=10,则□ABCD的面积等于( )A.87.5 B.80 C.75 D.72.56.如图,任意四边形ABCD各边中点分别是E、F、G、H,若对角线AC、BD的长都为20cm,则四边形EFGH的周长是 ( )A.80cmB.40cmC.20cmD.10cm7.如图,在□ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0根,则□ABCD周长为( )A.4+2B.12+6C.2+2D.2+或12+68.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cm B.5cm C.6cm D.8cm9.如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF周长为()A.9B.10C.11D.1210.如图,□ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.1011.如图,E为▱ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°12.如图,在□ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,□ABCD的周长是14,则DM等于()A.1 B.2 C.3 D.413.如图,在□ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC的值为()A.2:5B.2:3C.3:5D.3:214.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2sD.1s15.如图,□ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm16.如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关17.如图,平行四边形ABCD绕点A逆时针旋转300,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.155° B.170° C.105°D.145°18.如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB 重合)形成一线对称图形戊,如图2所示,则图形戊的两对角线长度和()A.26 B.29 C.24D.2519.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第个图中平行四边形的个数是( )A.3n B.3n(n+1) C.6n D.6n(n+1)20、如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E 在线段AB上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.A.①② B.②③④ C.①②④ D.①②③④二填空题:21.如图,□ABCD中,点E是边BC上一点,AE交BD于点F,若BE=2,EC=3,则的值为22.如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则□ABCD周长是.23.如图,在□ABCD中,对角线AC,BD相交于点O,P是BC边中点,AP交BD 于点Q. 则的值为________.24.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.25.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE 相交于点F,若S△AFD=9,则S△EFC= .26.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______27.在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=2x+1以每秒1个单位的速度向下平移,经过秒该直线可将平行四边形OABC的面积平分.28.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于29.如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N. 给出下列结论:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=S △ABC.其中正确的结论是_______________(只填番号)30.一个四边形四条边顺次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_________.三简答题:31.如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,求平行四边形ABCD的周长.32.如图,已知□ABCD中,、分别是、上的点,,、分别是、的中点,求证:四边形是平行四边形。33.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.34.如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.35.△ABC中,中线BE、CF相交于O,M是BO的中点,N是CO的中点.求证:四边形MNEF是平行四边形.36.如图,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.37.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF= .38.如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.(1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?39.如图,已知在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD 为边作等边三角形ADE.求证:(1)△ACD≌△CBF;(2)四边形CDEF为平行四边形.40.如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.(1)求证:△AEF≌△BEC;(2)判断四边形BCFD是何特殊四边形,并说出理由;(3)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,若BC=1,求AH 的长.参考答案1、A2、D;3、D4、A5、B;6、B;7、A8、A.9、A 10、C 11、C 12、C; 13、B14、B. 15、C 16、C 17、A 18、A 19、B;20、C 21、. 22、12 23、24、3; 25、 4 . 26、51 27、6 28、150° 29、①②③; 30、平行四边形;31、【解答】解:在平行四边形ABCD中,∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABE=∠EBC,∠BCE=∠ECD.,∴∠EBC+∠BCE=90°,∴∠BEC=90°,∴BC2=BE2+CE2=122+52=132∴BC=13cm,∵AD∥BC,∴∠AEB=∠EBC,∴∠AEB=∠ABE,∴AB=AE,同理CD=ED,∵AB=CD,∴AB=AE=CD=ED=0.5BC=6.5cm,∴平行四边形ABCD的周长=2(AB+BC)=2(6.5+13)=39cm32、略; 33、略34、证明:∵BE⊥AD,BE⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,BE⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.35、【解答】证明:∵BE,CF是△ABC的中线,∴EF∥BC且EF=0.5BC,∵M是BO的中点,N是CO的中点,∴MN∥BC且MN=0.5BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.36、连结BE,CE //且=AB□ABEC BF=FC.□ABCD AO=OC,∴AB=2OF.37、【解答】解:(1)证明:∵DF∥AC,DE∥AB,∴四边形AFDE是平行四边形.∴AF=DE,∵DF∥AC,∴∠FDB=∠C又∵AB=AC,∴∠B=∠C,∴∠FDB=∠B∴DF=BF∴DE+DF=AB=AC;(2)图②中:AC+DE=DF.图③中:AC+DF=DE.(3)当如图①的情况,DF=AC﹣DE=6﹣4=2;当如图②的情况,DF=AC+DE=6+4=10.故答案是:2或10.38、(1) 5 (2)或或39、提示:(1)∵△ABC为等边三角形,∴AC=CB,∠ACD=∠CBF=60°.又∵CD=BF,∴△ACD≌△CBF.(2)∵△ACD≌△CBF,∴AD=CF,∠CAD=∠BCF.∵△AED为等边三角形,∴∠ADE=60°,且AD=DE.∴FC=DE.∵∠EDB+60°=∠BDA=∠CAD+∠ACD=∠BCF+60°,∴∠EDB=∠BCF.∴ED∥FC.∵ED FC,∴四边形CDEF为平行四边形.40、(1)证明:①在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.(2)在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形(3)解:∵∠BAD=60°,∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,BC=1,∴AB=2BC=2.∴AD=AB=2.设AH=x,则HC=HD=AD﹣AH=2﹣x,在Rt△ABC中,AC2=22﹣12=3,在Rt△ACH中,AH2+AC2=HC2,即x2+3=(2﹣x)2,解得x=,即AH=.。

中考数学 平行四边形综合试题含详细答案

中考数学 平行四边形综合试题含详细答案

中考数学 平行四边形综合试题含详细答案一、平行四边形1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.(1)求证:△AED≌△CEB′(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由折叠的性质知,,,,则由得到;(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.【详解】(1)四边形为矩形,,,又,;(2),,,,在中,,过点作于,,,,,,,、、共线,,四边形是矩形,,.【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.3.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM ∥CH ,CH ⊥BC ,∴AM ⊥BC ,∴∠EAM=90°+90°﹣x=180°﹣x ,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x ,∴∠EAM=∠DBI ,∵AE=BD ,∴△AEM ≌△DBI ,∵在△DBI 和△ABC 中,DB=AB ,BI=BC ,∠DBI+∠ABC=180°,∴△DBI 和△ABC 是互补三角形,∴S △AEM =S △AEF =S △AFM =2,∴S △EFM =3S △ABC =6.考点:1、作图﹣应用与设计,2、三角形面积4.如图①,在等腰Rt ABC V 中,90BAC ∠=o ,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=o ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED V 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED V 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【答案】(1)证明见解析;(2)①AF 2AE =②4222【解析】【分析】()1如图①中,结论:AF 2AE =,只要证明AEF V 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF V ≌EDA V 再证明AEF V 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:Q 四边形ABFD 是平行四边形,AB DF ∴=,AB AC =Q ,AC DF ∴=,DE EC =Q ,AE EF ∴=,DEC AEF 90∠∠==o Q ,AEF ∴V 是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .Q 四边形ABFD 是平行四边形,AB//DF ∴,DKE ABC 45∠∠∴==o ,EKF 180DKE 135∠∠∴=-=o o ,EK ED =,ADE 180EDC 18045135∠∠=-=-=o o o o Q ,EKF ADE ∠∠∴=,DKC C ∠∠=Q ,DK DC ∴=,DF AB AC ==Q ,KF AD ∴=,在EKF V 和EDA V 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,EKF ∴V ≌EDA V ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==o ,AEF ∴V 是等腰直角三角形,AF 2AE ∴=.②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===,22AH (25)(2)32=-=,AE AH EH 42=+=,如图④中当AD AC =时,四边形ABFD 是菱形,易知AE AH EH 32222=-==,综上所述,满足条件的AE的长为42或22.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.5.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度7.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的关系(直接写出结论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为.【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析; (3)2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG5∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=12•CD•NG=12•DG•CM,∴2×25,∴CM=GH45,∴MG=CH22CG CM355,∴FH =FG ﹣FG =5, ∴CF =22FH CH +=22535()()55+=2. 故答案为2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.8.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP 剟.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明△OMC′≌△C′NB′,可得C′N =OM =33,B′N =C′M =3,即可得出点B′的坐标;(3)连接OB ,AC 相交于点K ,则K 是OB 的中点,因为P 为线段BC′的中点,所以PK =12OC′=3,即点P 在以K 为圆心,3为半径的圆上运动,即可得出AP 长的取值范围. 【详解】解:(1)∵A (﹣6,0)、C (0,6),O (0,0),∴四边形OABC 是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B ,∵OB =2,OA′=OA =6,∠OBC =45°,∴A′B=626-,∴BD=(626-)×21262=-,∴CD=6﹣(1262-,-)=626∴BC与A′B′的交点D的坐标为(662-,6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=33,B′N=C′M=3,∴点B′的坐标为)-+;333,333(3)如图③,连接OB,AC相交于点K,则K是OB的中点,∵P为线段BC′的中点,∴PK=1OC′=3,2∴P在以K为圆心,3为半径的圆上运动,∵AK=2∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+剟.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.9.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD .应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O .(1)求证:△AOB 和△AOE 是“友好三角形”;(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,请直接写出△ABC 的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】 试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE 是平行四边形,然后根据平行四边形的性质证得OE=OB ,即可证得△AOE 和△AOB 是友好三角形;(2)△AOE 和△DOE 是“友好三角形”,即可得到E 是AD 的中点,则可以求得△ABE 、△ABF 的面积,根据S 四边形CDOF =S 矩形ABCD -2S △ABF 即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB 是平行四边形,求出BC 和A′D 推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S △ABC =2S △ADC =2S △A′D C =2××A′D×CQ=2××2×1=2;即△ABC 的面积是2或2.考点:四边形综合题.10.点P 是矩形ABCD 对角线AC 所在直线上的一个动点(点P 不与点A ,C 重合),分别过点A ,C 向直线BP 作垂线,垂足分别为点E ,F ,点O 为AC 的中点.(1)如图1,当点P 与点O 重合时,请你判断OE 与OF 的数量关系;(2)当点P 运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;(3)若点P 在射线OA 上运动,恰好使得∠OEF =30°时,猜想此时线段CF ,AE ,OE 之间有怎样的数量关系,直接写出结论不必证明.【答案】(1)OE =OF .理由见解析;(2)补全图形如图所示见解析,OE =OF 仍然成立;(3)CF =OE+AE 或CF =OE ﹣AE .【解析】【分析】(1)根据矩形的性质以及垂线,即可判定()AOE COF AAS ∆≅∆,得出OE =OF ; (2)先延长EO 交CF 于点G ,通过判定()AOE COG ASA ∆≅∆,得出OG =OE ,再根据Rt EFG ∆中,12OF EG =,即可得到OE =OF ; (3)根据点P 在射线OA 上运动,需要分两种情况进行讨论:当点P 在线段OA 上时,当点P 在线段OA 延长线上时,分别根据全等三角形的性质以及线段的和差关系进行推导计算即可.【详解】(1)OE =OF .理由如下:如图1.∵四边形ABCD 是矩形,∴ OA =OC .∵AE BP ⊥,CF BP ⊥,∴90AEO CFO ∠=∠=︒.∵在AOE ∆和COF ∆中,AEO CFO AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AOE COF AAS ∆≅∆,∴ OE =OF ;(2)补全图形如图2,OE =OF 仍然成立.证明如下:延长EO 交CF 于点G .∵AE BP ⊥,CF BP ⊥,∴ AE //CF ,∴EAO GCO ∠=∠.又∵点O 为AC 的中点,∴ AO =CO .在AOE ∆和COG ∆中,EAO GCO AO CO AOE COG ∠=∠⎧⎪=⎨⎪∠=⎩,∴()AOE COG ASA ∆≅∆,∴ OG =OE ,∴Rt EFG ∆中,12OF EG =,∴ OE =OF ; (3)CF =OE +AE 或CF =OE -AE . 证明如下:①如图2,当点P 在线段OA 上时.∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,由(2)可得:OF =OG ,∴OGF ∆是等边三角形,∴ FG =OF =OE ,由(2)可得:AOE COG ∆≅∆,∴ CG =AE .又∵ CF =GF +CG ,∴ CF =OE +AE ;②如图3,当点P 在线段OA 延长线上时.∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,同理可得:OGF ∆是等边三角形,∴ FG =OF =OE ,同理可得:AOE COG ∆≅∆,∴ CG =AE .又∵ CF =GF -CG ,∴ CF =OE -AE .【点睛】本题属于四边形综合题,主要考查了矩形的性质、全等三角形的性质和判定以及等边三角形的性质和判定,解决问题的关键是构建全等三角形和证明三角形全等,利用矩形的对角线互相平分得全等的边相等的条件,根据线段的和差关系使问题得以解决.11.如图,抛物线y=mx 2+2mx+n 经过A (﹣3,0),C (0,﹣32)两点,与x 轴交于另一点B .(1)求经过A ,B ,C 三点的抛物线的解析式;(2)过点C 作CE ∥x 轴交抛物线于点E ,写出点E 的坐标,并求AC 、BE 的交点F 的坐标 (3)若抛物线的顶点为D ,连结DC 、DE ,四边形CDEF 是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。

2024成都中考数学第一轮专题复习之第五章 第一节 平行四边形与多边形 知识精练(含答案)

2024成都中考数学第一轮专题复习之第五章 第一节 平行四边形与多边形 知识精练(含答案)

2024成都中考数学第一轮专题复习之第五章第一节平行四边形与多边形知识精练基础题1.(2023衡阳)如图,在四边形ABCD中,已知AD∥B C.添加下列条件不能..判定四边形ABCD 是平行四边形的是()第1题图A.AD=BCB.AB∥DCC.AB=DCD.∠A=∠C2.(2023兰州)如图①是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中,如图②是八角形空窗的示意图,它的一个外角∠1=()图①图②第2题图A.45°B.60°C.110°D.135°3.若平行四边形中两个内角的度数比为1∶4,则其中较小的内角是()A.36°B.40°C.45°D.48°4.如图,在▱ABCD中,对角线AC与BD相交于点O,已知△CDO的周长为15,AC=7,BD=11,则CD的长为()A.5B.6C.8D.9第4题图5.(2023自贡)第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角∠ACB=15°,算出这个正多边形的边数是()第5题图A.9B.10C.11D.126.如图,在平行四边形ABCD中,AD=2AB,点E为BC中点,连接AE,ED,则下列结论错误的是()A.AE=CEB.AE平分∠BADS▱ABCDC.AE⊥EDD.S△AED=12第6题图7.(2022乐山)如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为E,过点B作BF⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF的长为()第7题图D.2A.4B.3C.528.(2023扬州)如果一个多边形每一个外角都是60°,那么这个多边形的边数为________.9.(2023株洲)如图所示,在平行四边形ABCD中,AB=5,AD=3,∠DAB的平分线AE交线段CD于点E,则EC=________.第9题图10.(2023兰州)如图,在▱ABCD中,BD=CD,AE⊥BD于点E,若∠C=70°,则∠BAE=________°.第10题图11.(2023凉山州)如图,▱ABCO的顶点O,A,C的坐标分别是(0,0),(3,0),(1,2),则顶点B的坐标是________.第11题图12.(2023枣庄改编)如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=44°,则∠2的度数为________.第12题图13.如图,在△ABC中,中线AF与中位线DE交于点O,连接DF,EF.(1)求证:四边形ADFE是平行四边形;(2)若AB=8,AC=6,AF=5,求BC的长及四边形ADFE的面积.第13题图14.(2023株洲)如图所示,在△ABC中,点D,E分别为AB,AC的中点,点H在线段CE 上,连接BH,点G,F分别为BH,CH的中点.(1)求证:四边形DEFG为平行四边形;(2)若DG⊥BH,BD=3,EF=2,求线段BG的长度.第14题图拔高题15.(2023山西改编)蜂巢结构精巧,其巢房横截面的形状均为正六边形,如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M均为正六边形的顶点.若点P,Q的坐标分别为(-23,3),(0,-3),则点M的坐标为________.第15题图16.(2022毕节)如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接P A,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ长度的最小值为________.第16题图参考答案与解析1.C2.A【解析】∵正八边形的外角和为360°,∴每一个外角为360°÷8=45°.3.A 【解析】如解图,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠B =∠D ,∠B +∠C =180°.∵平行四边形中两内角度数比为1∶4,∴∠B ∶∠C =1∶4,∴∠C =4∠B ,∴∠B +4∠B =180°,解得∠B =36°.第3题解图4.B 【解析】∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .∵AC =7,BD =11,∴OC +OD =12AC +12BD =12(AC +BD )=9.又∵△CDO 的周长为15,∴CD =15-(OD +OC )=6.5.D 【解析】由题意得,AB =BC ,∠ACB =15°,∴∠BAC =15°,∴这个正多边形的一个外角为∠ACB +∠BAC =30°,∴这个正多边形的边数为360°30°=12.6.A 【解析】由题意可知,AD =BC ,∵E 为BC 的中点,AD =2AB ,∴AB =BE ,∴∠BAE =∠BEA .∵AD ∥BC ,∴∠DAE =∠BEA ,∴∠BAE =∠DAE ,即AE 平分∠BAD ,故B 正确;∵AB =BE =CE =CD ,∴∠CED =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CED ,∴∠ADE =∠CDE ,∴DE 平分∠ADC ,∵AB ∥DC ,∴∠BAD +∠CDA =180°,∴∠EAD +∠EDA=90°,∴AE ⊥ED ,故C 正确;∵△ADE 与平行四边形ABCD 同底等高,∴S △AED =12S ▱ABCD ,故D 正确;不能推出AE =CE ,∴错误的是A.7.B 【解析】在平行四边形ABCD 中,S △ABC =12S 平行四边形ABCD ,∵DE ⊥AB ,BF ⊥AC ,∴12AC ·BF =12AB ·DE ,∵AB =6,AC =8,DE =4,∴8BF =6×4,解得BF =3.8.6【解析】∵多边形的外角和是360°,多边形的每一个外角是60°,∴多边形的边数为360°÷60°=6.9.2【解析】∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC =AB .∴∠DEA =∠EAB .∵∠DAB 的平分线AE 交DC 于点E ,∴∠EAB =∠DAE ,∴∠DEA =∠DAE ,∴AD=DE .∵AD =3,AB =5,∴EC =DC -DE =AB -AD =5-3=2.10.50【解析】在△DBC 中,∵BD =CD ,∠C =70°,∴∠DBC =∠C =70°.又∵在▱ABCD 中,AD ∥BC ,∴∠ADB =∠DBC =70°,∠BAD =∠C =70°.又∵AE ⊥BD ,∴∠DAE =90°-∠ADB =90°-70°=20°,∴∠BAE =∠BAD -∠DAE =50°.11.(4,2)【解析】∵▱ABCO 中,O (0,0),A (3,0),∴BC =OA =3,∵BC ∥AO ,∴点B 的纵坐标与点C 的纵坐标相等,∵C (1,2),∴B (4,2).12.16°【解析】如解图,∵正六边形的一个外角的度数为360°6=60°,∴正六边形的一个内角的度数为180°-60°=120°,即∠FAB =120°,∵一束太阳光线平行照射在放置于地面的正六边形上,∠1=44°,∴∠3=∠1=44°,∵AB ∥ED ,∴∠AGF =∠3=44°,∴∠2=180°-∠FAB -∠AGF =16°.第12题解图13.(1)证明:∵DE 是△ABC 的中位线,∴点D 是AB 的中点,点E 是AC 的中点.∵AF 是△ABC 的中线,∴点F 是BC 的中点,∴DF 和EF 是△ABC 的中位线,∴EF ∥AB ,DF ∥AC ,∴四边形ADFE 是平行四边形;(2)∵点D 是AB 的中点,点E 是AC 的中点,∴AD =BD =12AB =4,AE =CE =12AC =3.∵四边形ADFE 是平行四边形,∴EF =AD =4.∵AF =5,∴AE 2+EF 2=AF 2,∴△AEF 是直角三角形,∴EF⊥AC,∴EF是AC的垂直平分线,∴AF=CF=5.∵BF=CF,∴BC=2CF=10.∵EF⊥AC,∴S四边形ADFE=EF·AE=12.14.(1)证明:∵点D,E分别为AB,AC的中点,∴DE∥BC,DE=12 BC.∵点G,F分别为BH,CH的中点.∴GF∥BC,GF=12 BC,∴GF∥DE,GF=DE.∴四边形DEFG为平行四边形;(2)解:∵四边形DEFG为平行四边形,∴DG=EF=2.∵DG⊥BH,∴∠DGB=90°.∵BD=3,∴BG=BD2-DG2=32-22=5.15.(33,-2)【解析】由题意可得,P(-23,3),Q(0,-3),如解图,正六边形的顶点在坐标轴上,∴2∠CDO=120°,即∠CDO=60°.过点P作x轴,y轴的垂线分别交坐标轴于点A,B,设点C为正六边形落在x轴上的顶点,∴点C为AO的中点,又∵x P=-23,∴AC=OC=3.∵OC=3,∠CDO=60°,∴OD=1.又∵OB=|y P|=3,∴OD=1,BD=2,即正六边形的边长为2.由解图可得|y M|=BD,|x M|=3OC,且点M位于第四象限,∴M(33,-2).第15题解图16.125【解析】∵∠BAC =90°,AB =3,BC =5,∴AC =BC 2-AB 2=52-32=4.∵四边形APCQ 是平行四边形,∴PO =QO ,CO =AO =2,∵PQ 最短也就是PO 最短,∴过点O 作BC 的垂线OP ′,∵∠ACB =∠P ′CO ,∠CP ′O =∠CAB =90°,∴△CAB ∽△CP ′O ,∴CO BC =OP ′AB ,∴25=OP ′3,∴OP ′=65,∴PQ 的最小值为2OP ′=125.第16题解图。

平行四边形基础训练题

平行四边形基础训练题

平行四边形基础训练题一.选择题(共10小题)1.在四边形ABCD中,给出下列条件:①AB∥CD;②AD=BC;③∠A=∠C;④AD∥BC.从以上选择两个条件使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种2.如图,在平行四边形ABCD中,DE平分∠ADC,∠DEC=30°,则∠ADC=()A.30°B.45°C.60°D.80°3.如图,在▱ABCD中,若∠A=∠D+40°,则∠B的度数为()A.110°B.70°C.55°D.35°4.如图,在△ABC中,点D、E分别是AB、AC的中点,若∠B=40°,则∠BDE的度数为()A.40°B.50°C.140°D.150°5.(2021秋•泰山区期末)下列条件中,不能判定四边形是平行四边形的是()A.两组对边分别相等B.一组对边平行,另一组对边相等C.两组对角分别相等D.一组对边平行且相等6.(2021秋•九龙坡区校级期末)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为()A.8B.10C.16D.207.平行四边形一边长是14cm,那么它的两条对角线的长度可以是()A.8cm和16cm B.10cm和16cm C.18cm和14cm D.8cm和12cm 8.如图所示,在平行四边形ABCD中,已知AB=8,AD=3,AE平分∠BAD交DC于点E,则CE的长为()A.3B.4C.5D.89.(2021秋•晋江市期末)如图,在Rt△ABC中,∠C=90°,∠A=2∠B,AB=8,D、E 分别是AB与AC的中点,则DE的长为()A.5B.4C.2D.210.(2021秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1)B.(1,2)C.(2,1)D.(2,2)二.填空题(共10小题)11.如图,平行四边形ABCD中,AC、BD相交于点O,OE⊥BD交AD、BC于E、F,若△ABE的周长为10,则四边形ABCD的周长是.12.(2021秋•芝罘区期末)如图,平行四边形ABCD中,AB=4,AD=6,∠BAD和∠ADC 的平分线交BC于E、F两点,则EF的长是.13.(2021秋•莱芜区期末)如图,已知▱ABCD的周长为38,对角线AC、BD相交于点O,点E是CD的中点,△DOE的周长为16,则BD的长为.14.(2021秋•任城区期末)如图,在▱ABCD中,AB=AC,∠CAB=40°,则∠D的度数是.15.如图,在▱ABCD中,DB=AB,∠C=70°,AE⊥BD于E,则∠DAE=.16.(2022•渝中区校级开学)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E、F分别是线段AO,BO的中点,若AC+BD=12cm,△OAB的周长是10cm,则EF=cm.17.(2022•九龙坡区校级开学)如图,DE是△ABC的中位线,∠ABC的角平分线交DE于点F,AB=8,BC=12,则EF的长为.18.(2021秋•泰山区期末)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,BC=12,则EF的长为.19.(2021秋•任城区期末)如图,▱ABCD的顶点A,B,C的坐标分别是(0,1),(﹣2,﹣2),(2,﹣2),则顶点D的坐标是.20.(2021秋•张店区期末)如图,在▱ABCD中,AB=3,AD=5,∠ABC的平分线交AD 于E,交CD的延长线于点F,则DF=.三.解答题(共5小题)21.(2022•锦江区校级开学)如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E、F在对角线AC上,且AE=CF.(1)求证:四边形EGFH是平行四边形;(2)连接BD交AC于点O,若BD=14,AE+CF=EF,求EG的长.22.(2021秋•鲤城区校级期末)如图,在平行四边形ABCD中,点E、F分别在边BC和AD上,且BE=DF.求证:AE∥CF.23.如图,在平行四边形ABCD中,对角线AC和BD相交于点O,BD⊥AD,AB=10,AD =8,求OB的长度及平行四边形ABCD的面积.24.(2021秋•桓台县期末)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.25.如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明:BE=DF.。

初中数学特殊的平行四边形50题(含答案)

初中数学特殊的平行四边形50题(含答案)

特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。

2024中考数学全国真题分类卷 第十七讲 平行四边形与多变形(含答案)

2024中考数学全国真题分类卷 第十七讲 平行四边形与多变形(含答案)

2024中考数学全国真题分类卷第十七讲平行四边形与多变形命题点1平行四边形的判定1.(2023河北)依据所标数据,下列一定为平行四边形的是()2.(2023达州)如图,在△ABC 中,点D ,E 分别是AB ,BC 边的中点,点F 在DE 的延长线上.添加一个条件,使得四边形ADFC 为平行四边形,则这个条件可以是()第2题图A.∠B =∠FB.DE =EFC.AC =CFD.AD =CF3.(新趋势)·注重学习过程(2023永州)如图,BD 是平行四边形ABCD 的对角线,BF 平分∠DBC ,交CD 于点F .(1)请用尺规作∠ADB 的角平分线DE ,交AB 于点E (要求保留作图痕迹,不写作法);第3题图(2)根据图形猜想四边形DEBF 为平行四边形,请将下面的证明过程补充完整.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADB =∠________(两直线平行,内错角相等).又∵DE 平分∠ADB ,BF 平分∠DBC ,∴∠EDB =12∠ADB ,∠DBF =12∠DBC ,∴∠EDB =∠DBF .∴DE ∥__________(______________________)(填推理的依据).又∵四边形ABCD 是平行四边形,∴BE ∥DF .∴四边形DEBF为平行四边形(________________________)(填推理的依据).4.(2023贺州)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且ED=BF,连接AF,CE,AC,EF,且AC与EF相交于点O.(1)求证:四边形AFCE是平行四边形;(2)若AC平分∠FAE,AC=8,tan∠DAC=34,求四边形AFCE的面积.第4题图5.(2023毕节)如图①,在四边形ABCD中,AC和BD相交于点O,AO=CO,∠BCA=∠CA D.(1)求证:四边形ABCD是平行四边形;(2)如图②,E,F,G分别是BO,CO,AD的中点,连接EF,GE,GF,若BD=2AB,BC =15,AC=16,求△EFG的周长.第5题图命题点2平行四边形性质的相关证明与计算6.(2023广东省卷)如图,在▱ABCD中,一定正确的是()第6题图A.AD=CDB.AC=BDC.AB=CDD.CD=BC7.(2023湘潭)如图,在▱ABCD 中,连接AC ,已知∠BAC =40°,∠ACB =80°,则∠BCD =()第7题图A.80°B.100°C.120°D.140°8.(2023内江)如图,在▱ABCD 中,已知AB =12,AD =8,∠ABC 的平分线BM 交CD 边于点M ,则DM 的长为()第8题图A.2B.4C.6D.89.(2023赤峰)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD ,其中一张纸条在转动过程中,下列结论一定成立的是()第9题图A.四边形ABCD 周长不变B.AD =CDC.四边形ABCD 面积不变D.AD =BC源自人教八下P 43第2题10.(2023无锡)如图,在▱ABCD 中,AD =BD ,∠ADC =105°,点E 在AD 上,∠EBA =60°,则ED CD 的值是()第10题图A.23B.12C.32D.2211.(2023泰安)如图,四边形ABCD为平行四边形,则点B的坐标为________.第11题图12.(2023邵阳)如图,在等腰△ABC中,∠A=120°,顶点B在▱ODEF的边DE上,已知∠1=40°,则∠2=________.第12题图13.(2022青海省卷)如图,在▱ABCD中,对角线BD=8cm,AE⊥BD,垂足为E,且AE=3cm,BC=4cm.则AD与BC之间的距离为________.第13题图14.(2022嘉兴)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=23,则AH的长为________.第14题图15.(2022哈尔滨)四边形ABCD是平行四边形,AB=6,∠BAD的平分线交直线BC于点E,若CE=2,则▱ABCD的周长为________.16.(2023烟台)如图,在▱ABCD中,DF平分∠ADC,交AB于点F,BE∥DF,交AD的延长线于点E.若∠A=40°,求∠ABE的度数.第16题图17.(2023扬州)如图,在▱ABCD中,BE,DG分别平分∠ABC,∠ADC,交AC于点E,G.(1)求证:BE∥DG,BE=DG;(2)过点E作EF⊥AB,垂足为F.若▱ABCD的周长为56,EF=6,求△ABC的面积.第17题图18.(挑战题)(2023包头)如图,在▱ABCD中,AC是一条对角线,且AB=AC=5,BC=6,E,F是AD边上两点,点F在点E的右侧,AE=DF,连接CE,CE的延长线与BA的延长线相交于点G.(1)如图①,M是BC边上一点,连接AM,MF,MF与CE相交于点N.①若AE =32,求AG 的长;②在满足①的条件下,若EN =NC ,求证:AM ⊥BC ;(2)如图②,连接GF ,H 是GF 上一点,连接EH .若∠EHG =∠EFG +∠CEF ,且HF =2GH ,求EF 的长.第18题图命题点3多边形及其性质类型一多边形的计算19.(2023柳州)如图,四边形ABCD 的内角和等于()第19题图A.180°B.270°C.360°D.540°20.(2022扬州)如图,点A ,B ,C ,D ,E 在同一平面内,连接AB ,BC ,CD ,DE ,EA ,若∠BCD =100°,则∠A +∠B +∠D +∠E =()第20题图A.220°B.240°C.260°D.280°21.(2023河北)如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为α,β,,则正确的是()第21题图A.α-β=0B.α-β<0C.α-β>0D.无法比较α与β的大小22.(2023眉山)一个多边形外角和是内角和的29,则这个多边形的边数为______.类型二正多边形的性质及计算23.(2023烟台)一个正多边形每个内角与它相邻外角的度数比为3∶1,则这个正多边形是()A.正方形B.正六边形C.正八边形D.正十边形24.(2023甘肃省卷)大自然中有许多小动物都是“小数学家”,如图①,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图②,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()第24题图A.2mmB.22mmC.23mmD.4mm25.(2023舟山)正八边形一个内角的度数是________.26.(2023株洲)如图所示,已知∠MON=60°,正五边形ABCDE的顶点A、B在射线OM上,顶点E在射线ON上,则∠AEO=________度.第26题图27.(2022上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,中间正六边形的面积为________.第27题图28.(2023宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是________.第28题图类型三平面镶嵌29.(2023青岛)图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中∠ABC的度数是________°.第29题图参考答案与解析1.D【解析】A选项只能得到上下一组对边平行,不能判定为平行四边形;B选项只能得到左右一组对边平行,不能判定为平行四边形;C选项只能得到左右一组对边相等,不能判定为平行四边形;D选项可以得到上下一组对边平行且相等,可以判定为平行四边形.2.B【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE∥AC且DE=12AC.当∠B=∠F时,不能判定CF∥AD,即不能判定四边形ADFC为平行四边形,故选项A不符合题意,当DE=EF时,DF=AC,∴四边形ADFC为平行四边形,故选项B符合题意;当AC=CF时,不能判定CF∥AD,即不能判定四边形ADFC为平行四边形,故选项C不符合题意;根据AD=CF,DF∥AC不能判定四边形ADFC为平行四边形,故选项D不符合题意.3.解:(1)如解图,DE即为所求作的角平分线;第3题解图(2)DBC;BF;内错角相等,两直线平行;两组对边分别平行的四边形是平行四边形.4.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AE∥FC.∵ED=BF,∴AD-ED=BC-BF,即AE=FC,∴四边形AFCE是平行四边形;(2)解:∵AE∥FC,∴∠EAC=∠ACF.∵AC平分∠FAE,∴∠EAC=∠FAC,∴∠ACF=∠FAC,∴AF=FC,由(1)知四边形AFCE是平行四边形,∴平行四边形AFCE是菱形,∴AO =12AC =4,AC ⊥EF ,在Rt △AOE 中,AO =4,tan ∠DAC =34,∴EO =3,∴S △AOE =12AO ·EO =12×4×3=6,∴S 菱形AFCE =4S △AOE =24.5.(1)证明:在△AOD 和△COB 中,DAO =∠BCO ,=CO ,AOD =∠COB ,∴△AOD ≌△COB ,∴DO =BO ,∴四边形ABCD 是平行四边形;(2)解:如解图,连接DF .∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =DC .∵BD =2AB ,∴DO =DC .∵E ,F 分别是BO ,CO 的中点,∴DF ⊥OC ,EF ∥12BC ,EF ∥12AD ,∴∠DFA =90°.∵G 是AD 的中点,∴GF =12AD =EF =GD ,∴四边形EFDG 是平行四边形,∴GE =DF .∵AC =16,∴AF =12,∵BC =15,∴EF =GF =7.5,∴在Rt △ADF 中,DF =AD 2-AF 2=152-122=9,∴△EFG 的周长为EF +GF +GE =7.5+7.5+9=24.第5题解图6.C7.C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC =40°,∴∠BCD =∠ACB +∠ACD =80°+40°=120°.8.B 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD =12,AD =BC =8,∴∠CMB =∠ABM ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CMB =∠CBM ,∴CM =CB =8,∴DM =CD -CM =12-8=4.9.D 【解析】∵两张纸条对边平行,∴四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,但长度在改变,∴周长、面积都会改变.10.D 【解析】如解图,过点B 作BF ⊥AD 于点F ,则∠BFD =∠BFA =90°,∵四边形ABCD 是平行四边形,∴∠A +∠ADC =180°,AB =CD ,∵∠ADC =105°,∴∠A =75°,∵AD =BD ,∴∠ABD =∠A =75°,∴∠ADB =30°,设BF =x ,则BD =2x ,DF =3x ,∴AF =AD -DF =BD -DF =2x -3x ,∴AB =BF 2+AF 2=x 2+(2x -3x )2=(6-2)x ,即CD =(6-2)x ,∵∠EBA =60°,∠A =75°,∴∠BEF =45°,∴∠EBF =90°-45°=45°,∴∠BEF =∠EBF ,∴EF =BF =x ,∴ED =DF -EF =3x -x =(3-1)x ,∴ED CD=(3-1)x(6-2)x =22.第10题解图11.(-2,-1)【解析】∵A (-1,2),D (3,2),∴AD ∥x 轴,AD =4.∵四边形ABCD 为平行四边形,∴AD ∥BC ,BC =AD ,∴BC ∥x 轴,BC =4,∵C (2,-1),点C 在点B 右边,∴点B 的坐标为(-2,-1).12.110°【解析】∵在等腰△ABC 中,∠A =120°,∴∠ABC =∠C =30°,∵∠1=40°,∴∠ABE =70°,∵四边形ODEF 是平行四边形,∴OF ∥DE ,∴∠2+∠ABE =180°,∴∠2=110°.13.6cm【解析】设AD 与BC 之间的距离为h cm ,∵BD =8cm ,AE =3cm ,AE ⊥BD ,∴S △ABD =12BD ·AE =12×8×3=12(cm 2),∴S ▱ABCD =2S △ABD =24(cm 2),又∵S ▱ABCD =BC ·h =24,BC =4cm ,∴h =244=6(cm).14.233【解析】∵AB ⊥AC ,BC =23,AB =2,∴在Rt △ABC 中,AC =BC 2-AB 2=22,∴在▱ABCD 中,AO =12AC =2.在Rt △ABO 中,BO =AO 2+AB 2=6,∵AB ⊥AC ,AH ⊥BD ,∴∠OAB =∠AHB =90°.又∵∠ABO =∠HBA ,∴△ABO ∽△HBA ,∴AH AO =AB BO ,即AH 2=26,解得AH =233.15.20或28【解析】如解图①,当点E 在线段BC 上时,∵四边形ABCD 为平行四边形,∴BC ∥AD ,∴∠BEA =∠EAD .∵AE 平分∠BAD ,∴∠BAE =∠EAD ,∴∠BEA =∠BAE ,∴BE =AB =6,∵CE =2,∴BC =BE +CE =6+2=8,∴▱ABCD 的周长为2×(6+8)=28;如解图②,当点E 在线段BC 延长线上时,∵四边形ABCD 为平行四边形,∴BC ∥AD ,∴∠BEA =∠EAD .∵AE 平分∠BAD ,∴∠BAE =∠EAD ,∴∠BEA =∠BAE ,∴BE =AB =6,∵CE =2,∴BC =BE -CE =6-2=4,∴▱ABCD 的周长为2×(6+4)=20,∴▱ABCD 的周长为20或28.第15题解图16.解:如解图,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠1=∠2.又∵DF 平分∠ADC ,第16题解图∴∠1=∠3,∴∠2=∠3.∵∠A =40°,∴∠2=∠3=70°.又∵BE ∥DF ,∴∠ABE =∠2=70°.17.(1)证明:∵四边形ABCD 是平行四边形,∴∠ABC =∠ADC ,AD =BC ,AD ∥BC ,∵BE ,DG 分别平分∠ABC ,∠ADC ,∴∠CBE =12∠ABC ,∠ADG =12∠ADC ,∴∠CBE =∠ADG ,∵AD ∥BC ,∴∠DAG =∠BCE ,∴△ADG ≌△CBE ,∴∠AGD =∠BEC ,BE =DG ,∴∠CGD =∠AEB ,∴BE ∥DG ;(2)解:如解图,过点E 作EM ⊥BC 于点M ,第17题解图∵▱ABCD 的周长为56,∴AB +BC =28,∵BE 为∠ABC 的平分线,∴EF =EM =6,∴S △ABC =S △ABE +S △BCE =12AB ·EF +12BC ·EM =12×6(AB +BC )=84.18.(1)①解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,DC =AB =5,AD =BC =6,∴∠GAE =∠CDE ,∠AGE =∠DCE ,∴△AGE ∽△DCE ,∴AG DC =AE DE,∴AG ·DE =DC ·AE .∵AE =32,∴DE =AD -AE =6-32=92,∴92AG =5×32,∴AG =53;②证明:∵AD ∥BC ,∴∠EFN =∠CMN ,∵EN =NC ,∠ENF =∠CNM ,∴△ENF ≌△CNM ,∴EF =CM ,∵AE =32,AE =DF ,∴EF =AD -AE -DF =3,∴CM =3,∴BM =BC -CM =3,∴BM =CM ,∵AB =AC ,∴AM ⊥BC ;(2)解:如解图,连接CF ,第18题解图∵AB =AC ,AB =DC ,∴AC =DC ,∴∠CAD =∠CDA ,∵AE =DF ,∴△AEC ≌△DFC ,∴CE =CF ,∴∠CEF =∠CFE .∵∠EHG =∠EFG +∠CEF ,∴∠EHG =∠EFG +∠CFE =∠CFG ,∴EH ∥CF ,∴GH HF =GE EC,∵HF =2GH ,∴GE EC =12.由(1)①知△AGE ∽△DCE ,∴AE DE =GE CE =12,∴DE =2AE .∵AD =6,∴AE =2,∴DF =2,∴EF =AD -AE -DF =2.19.C20.D 【解析】如解图,连接BD ,∵∠BCD =100°,∴∠CBD +∠CDB =180°-100°=80°,∴∠A +∠ABC +∠CDE +∠E =360°-(∠CBD +∠CDB )=360°-80°=280°.第20题解图21.A 【解析】任意多边形外角和度数均为360°,∴△ABC 与四边形BCDE 的外角和度数都为360°,∴α=β=360°,∴α-β=0.22.11【解析】∵外角和等于内角和的29,多边形的外角和为360°,∴内角和等于360°÷29=1620°,设多边形的边数为n ,由题意得(n -2)×180°=1620°,解得n =11,故该多边形的边数是11.23.C 【解析】∵该正多边形每个内角与它相邻的外角的度数比为3∶1,∴可设该正多边形每个内角与它相邻的外角的度数分别为3x ,x ,∴x +3x =180°,解得x =45°.∵正多边形的外角和为360°,∴该多边形的边数为360°÷45°=8,∴这个正多边形是正八边形.24.D 【解析】如解图,分别过点B ,C 作BM ⊥AD ,CN ⊥AD 于点M ,N ,∵六边形ABCDEF是正六边形,∴∠BAM =60°,∠ABM =30°,∴AM =12AB ,同理DN =12AB ,由作图可知四边形BCNM 是矩形,∴MN =BC =AB ,∴AD =AM +MN +DN =2AB =8,∴AB =4.第24题解图【一题多解】取AD 的中点O ,构造出△ABO ,△CBO ,△CDO ,易得均为等边三角形,即可求解.25.135°【解析】正八边形的内角和为(8-2)×180°=1080°,所以它的一个内角的度数是1080°÷8=135°.26.48【解析】由正多边形内角和定理可知,∠EAB =(5-2)×180°5=108°,又∵∠EAB =∠MON +∠AEO ,∠MON =60°,∴∠AEO =48°.27.332【解析】由对称性及直角三角形的性质可知,中间小正六边形的边长为1.根据正六边形的面积公式可得,S =6×34×12=332.28.47【解析】如解图,设正六边形ABCDEF 的中心为O ,连接MO 并延长交边CD 于点N ,∵正六边形是中心对称图形,∴MN 将正六边形ABCDEF 的面积平分,点M 和点N 关于点O 对称,∴OM =ON ,即MN =2OM ,连接OA ,OF ,过点O 作OP ⊥AF 于点P ,∵六边形ABCDEF 是正六边形,AB =6,∴AB =AF =6,OA =OF ,∠AOF =60°,∴△OAF是等边三角形,∴OA =6,∵OP ⊥AF ,∴PA =PF =12AF =3,∴OP =OA 2-PA 2=33,∵AM =2,∴PM =PA -AM =3-2=1,∴OM =OP 2+PM 2=27,∴MN =2OM =47,即直线l 被正六边形所截的线段长是47.第28题解图29.60【解析】如解图,∵BC ∥AE ,∴∠ABC +∠BAE =180°,∴∠BAE =180°-∠ABC .∵图④是由有3个大小相同的图③镶嵌得到的,∴∠BAF =∠EAF =∠BAE ,∵∠BAF +∠EAF+∠BAE=360°,∴∠BAE=120°,∴∠ABC=60°.第29题解图。

中考数学专题训练:平行四边形(附参考答案)

中考数学专题训练:平行四边形(附参考答案)

中考数学专题训练:平行四边形(附参考答案)1.如图,□ABCD的对角线AC,BD相交于点O,则下列结论一定正确的是( )A.OB=OD B.AB=BCC.AC⊥BD D.∠ABD=∠CBD2.如图,□ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD的中点.若AD=4,CD=6,则EO的长为( )A.1 B.2C.3 D.43.如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平行四边形,则下列正确的是( )A.AD=BC B.∠ABD=∠BDCC.AB=AD D.∠A=∠C4.如图,在□ABCD中,点E,F分别在边BC,AD上.若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是( )A.AE∥CFB.AE=CFC.BE=DFD.∠BAE=∠DCF5.如图,P是面积为S的□ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则( )A.S1+S2>S2B.S1+S2<S2C.S1+S2=S2D.S1+S2的大小与点P的位置有关6.如图,在□ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是( )A.AC=BD B.OA=OCC.AC⊥BD D.∠ADC=∠BCDAC 7.如图,在□ABCD中,AC,BD交于点O,分别以点A和点C为圆心,大于12的长为半径作弧,两弧相交于M,N两点,作直线MN,交AB于点E,交CD于点F,连接CE.若AD=6,△BCE的周长为14,则CD的长为( )A.10 B.8C.6 D.3√38.如图,将一副三角尺在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2的度数为( )A.55°B.65°C.75°D.85°9.如图,在□ABCD中,将△ABC沿着AC所在的直线翻折得到△AB′C,B′C交AD 于点E ,连接B ′D .若∠B =60°,∠ACB =45°,AC =√6,则B ′D 的长是( )A .1B .√2C .√3D .√6210.如图,在□ABCD 中,∠B =60°,AB =BC ,AE ⊥BC 于点E ,连接DE ,交AC 于点G .以DE 为边作等边三角形DEF ,连接AF ,交DE 于点N ,交DC 于点M ,且M 为AF 的中点.在下列说法中:①∠EAN =45°;②12AE =√3CM ;③S △AGE =S △DGC ;④AF ⊥DE .正确的个数为( )A .1个B .2个C .3个D .4个11.如图,在□ABCD 中,EF ∥BC ,GH ∥AB ,EF ,GH 的交点P 在BD 上,图中与四边形ABHG 面积相等的四边形是______________.12.如图,正六边形ABCDEF 的顶点A ,F 分别在正方形BMGH 的边BH ,GH 上.若正方形BMGH 的边长为6,则正六边形ABCDEF 的边长为_____.13.如图,ABCDEF 为正六边形,ABGH 为正方形,连接CG ,则∠BCG +∠BGC =________.14.如图,在平面直角坐标系中,平行四边形ABCD的顶点坐标为A(-3,2),B(-1,-2),C(3,-2),则顶点D的坐标为____________.15.如图,将□ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F.若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则□ABCD的周长为__________.16.如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.17.如图,在四边形ABDF中,点E,C为对角线BF上的两点,AB=DF,AC=DE,EB=CF,连接AE,CD.(1)求证:四边形ABDF是平行四边形;(2)若AE=AC,求证:AB=DB.18.如图,已知正方形ABCD,点E是边BC上一点,将△ABE沿直线AE折叠,点B落在点F处,连接BF并延长,与∠DAF的平分线相交于点H,与AE,CD分别相交于点G,M,连接HC.(1)求证:AG=GH;(2)若AB=3,BE=1,求点D到直线BH的距离;(3)当点E在边BC上(端点除外)运动时,∠BHC的大小是否变化?为什么?参考答案1.A 2.A 3.D 4.B 5.C 6.B 7.B 8.C 9.B 10.B 11.四边形BCFE 12.4 13.30° 14.(1,2) 15.4a+2b 16.(1)证明略(2)四边形AECD的面积为2417.(1)证明略(2)证明略18.(1)证明略(2)点D到直线BH的距离为3√105(3)∠BHC的大小不变,理由略。

初中数学中考中的平行四边形(含答案)

初中数学中考中的平行四边形(含答案)

F,AB=6,DH=4,BF:FA=1:5.

19.( 2018?赤峰)如图, P 是?ABCD的边 AD上一点, E、F 分别是 PB、PC的中点,若 ?ABCD的面积
为 16cm2,则△ PEF的面积(阴影部分)是
cm2.
三、解答题
1. (2018 潍坊 ) 如图 1, 在□ABCD中, DH⊥AB于点 H,CD的垂直平分线交 CD于点 E, 交 AB于点
的周长为(
)A.20 B.16 C.12 D. 8
5 题图
6
题图
7 题图
8 题图
6.( 2018?眉山)如图,在 ?ABCD中, CD=2A,D BE⊥AD于点 E, F 为 DC的中点,连结 EF、BF,
下列结论:①∠ ABC=2∠ABF;② EF=BF;③ S 四边形 DEBC=2S△EFB;④∠ CFE=3∠ DEF,其中正确结论的个 数共有( ) A. 1 个 B.2 个 C. 3 个 D.4 个
不能判定四边形 BCED为平行四边形的是(

A.∠ ABD=∠ DCE B. DF= CF
C.∠ AEB=∠ BCD D.∠ AEC=∠ CBD
12. ( 2019 湖北随州) 如图, 在平行四边形 ABCD中,E 为 BC的中点, BD,AE 交于点 O,若随机向平行四边形 ABCD
2
内投一粒米,则米粒落在图中阴影部分的概率为(
1 题图
3
题图
4 题图
1
2.(2018?宜宾)在 ?ABCD中,若∠ BAD与∠ CDA的角平分线交于点 E,则△ AED的形状是( )
A.锐角三角形 B .直角三角形 C.钝角三角形 D .不能确定
3.( 2018?黔南州)如图在 ?ABCD中,已知 AC=4cm,若△ ACD的周长为 13cm,则 ?ABCD的周长为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学 平行四边形基础训练(含答案)
1.如图,DE 是□ABCD 中∠ADC 的平分线,交AB 于点E ,EF ∥AD ,交DC 于点F ,
(1)求证:四边形AEFD 是菱形
(2)如果∠A=60°,AD=5,求菱形AEFD 的面积。

参考答案:(1)略
(2)3
2
25
2.如图,在□ABCD 中,E ,F 分别是AB ,CD 的中点
(1)求证:四边形EBFD 为平行四边形。

(2)对角线AC 分别与DE 、BF 交于点M 、N ,求证:△ABN ≌△CDM
参考答案:解:(1)在□ABCD 中,AB ∥CD ,AB=CD
又∵E ,F 分别是AB ,CD 的中点 ∴DF ∥BE ,DF=BE ∴四边形EBFD 为平行四边形
(2)在□EBFD 中,DE ∥FB ,DF ∥EB
∴∠1=∠2=∠3,∠4=∠5 又∵AB=CD
∴△ABN ≌△CDN (ASA )
3.如图,在四边形纸片ABCD 中,AD ∥BC ,AD>CD ,将纸片沿国电D 的直线折叠,使点C 落在AD 上的点C ’处,折痕DE 交BC 于点E ,连接C ’E 。

你能确定四边形CDC ’E 的形状吗?证明你的结论。

M
N A B
C D E F 54321M N C D F
参考答案:菱形。

证明略
4.一个菱形的周长是20,一条对角线长是60,求:
(1)另一条对角线的长度
(2)菱形的面积
参考答案:(1)另一条对角线长为80
(2)菱形的面积为2400
5.如图,在△ABC中,∠BAC>90°,DC⊥DB,BE⊥EC,F为BC上的一个动点,猜想:当F位于BC上的什么位置时,△FDE是等腰三角形,并证明你的猜想是正确的。

参考答案:当F 为BC 上的中点时,△FDE 是等腰三角形,
证明:∵DC ⊥DB ,F 为BC 上的中点, ∴BC 2
1 =DF , ∵BE ⊥EC ,F 为BC 上的中点, ∴BC 2
1 =EF , ∴DF=EF ,
∴△FDE 是等腰三角形。

6.如图,在菱形ABCD 中,AB=2,∠BAD=60°,对角线AC ,BD 交于点O ,过点O 的直线EF 交AD 于点E ,交BC 于点F 。

(1)求证:△AOE ≌△COF ;
(2)若∠EOD=30°,求CE 的长。

参考答案:(1)略
(2
)2
7.如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE =PB .
(1)求证:△BCP ≌△DCP ;
(2)求证:∠DPE =∠ABC ;
(3)把正方形ABCD 改为菱形,其它条件不变,若∠ABC =58°,则∠DPE =
O F E D C
B A
参考答案:(1)证明:在正方形ABCD中,
BC=DC,∠BCP=∠DCP=45°,
∵PC=PC,
∴△BCP≌△DCP.
(2)证明:由(1)知△BCP≌△DCP.
∴∠CBP=∠CDP.
∵PE=PB
∴∠CBP=∠E.
∴∠CDP=∠E.
又∵∠1=∠2.
∴180°-∠1-∠CDP=180°-∠2-∠E.
即∠DPE=∠DCE.
∵AB∥CD
∴∠DCE=∠ABC.
∴∠DPE=∠ABC
(3)58.
8.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.
性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.
理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE 交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.
参考答案:(1)证明:∵ 四边形ABCD 为矩形,
∴AD∥BC,
∴∠EAO=∠BFO,
又∵∠AOE=∠FOB,AE=BF,
∴△AOE≌△FOB,
∴EO=BO.
∴△AOB 和△AOE 是“友好三角形”.
(2)∵△AOE 和△DOE 是“友好三角形”,
∴S △AOE =S △DOE ,AE=ED=21
AD=3.
∵△AOB 和△AOE 是“友好三角形”
∴S △AOB =S △AOE
∵△AOE≌△FOB,
∴S △AOE =S △FOB ,
∴S △AOD =S △ABF ,
∴S 四边形CDOF =S 矩形ABCD -2S △ABF =4×6-2×21
×4×3=12.
9.证明:菱形的面积等于其对角线长的乘积的一半
参考答案:略
10.如图,DE 是□ABCD 中∠ADC 的平分线,交AB 于点E ,EF ∥AD ,交DC 于点F ,
(1)求证:四边形AEFD 是菱形
(2)如果∠A=60°,AD=5,求菱形AEFD 的面积。

参考答案:(1)略
25
(2)3
2。

相关文档
最新文档