第三章-参数曲面-第一基本形式
曲面的第一基本形式

第三章 曲面的第一基本形式本章将接触到曲面论的最基本概念.类比于曲线;但内容更加丰富,特别要注意两者的差异.首先要明确曲面的局部表示和相关的基本概念;其次要明确度量几何的基本要素——弧长元素.在学习的过程中,应该注意对概念的深入理解.§1 参数化曲面一.E 3 中参数化曲面的定义r : U →E 3(u , v )→ r (u , v ) = (x (u , v ), y (u , v ), z (u , v )) .C k 阶参数化曲面,简称参数曲面;参数,或称曲线坐标或曲纹坐标,简称坐标.点. u 坐标曲线,简称u 线; v 坐标曲线,简称 v 线;坐标曲线.坐标曲线网或参数网.自然切向分别表示为∂r ∂u = r u ,∂r ∂v= r v . 连续曲面,光滑曲面.参数化通常在曲面局部有意义,在整体不一定能做到.以后不声明时在局部总考虑 C 3 类参数曲面,并简称之为曲面.二.正则曲面定义1 奇(异)点;正则点.正则曲面,正则参数. 正则点的几何意义是当参数在该点处作微小变动时动点的轨迹构成二维实体;正则点附近总存在小邻域,使得参数值与其位置向量之间保持一一对应.例5 按定义直接计算可知例1和例2中的参数曲面都是正则的.对于例3中的参数曲面,有r u = (- v sin u , v cos u , 0) ,图3-1r v = (cos u , sin u , 1) ,r u ⨯r v = (v cos u , v sin u , - v ) = v (cos u , sin u , -1) ;r u ⨯r v 当且仅当参数 v = 0 时为零向量,故参数值 (u , 0) 对应于全部非正则点——锥顶.对于例4中的旋转面,当 f (v ) = 0 时,对应点不是正则的.例6 单位圆柱面具有存在奇点的下列参数化:r (t , z ) = (cos t 2 , sin t 2 , z ) . 一般地,存在奇点的参数曲面在奇点附近的性质需要单独加以讨论,并且往往比较复杂;而对于连续可微参数曲面,正则点附近总存在较小邻域使正则性得到满足.因此将曲面论的局部基本理论建立在正则曲面之上,是具有一般性的.三.正则曲面的切平面和法线已知正则曲面 S : r = r (u , v ) .考虑过点 r (u 0, v 0) , r (u 0+∆u , v 0) 和 r (u 0,v 0+∆v ) 的平面 ∏ 当 (∆u , ∆v )→(0, 0) 时的极限位置,亦即切平面的位置.正则性保证了平面 ∏ 的极限位置平面 ∏0的法向向量确定为r u (u 0, v 0)⨯r v (u 0, v 0) .曲面上的曲线在该点处的切向量总落在平面 ∏0 上面;任给坐标曲线自然切向量的线性组合,曲面上总存在曲线以之为点 r (u 0, v 0) 处的切向.定义2 切平面;法线,法向;单位法向特指为单位向量(1.2) n (u 0, v 0) = r u (u 0, v 0)⨯r v (u 0, v 0) |r u (u 0, v 0)⨯r v (u 0, v 0)|; 正定向,简称正向;负定向,简称负向.正则曲面是有正定向的曲面.在切点 P : r (u 0, v 0) 处的切平面通常记为 T P ,它按坐标曲线自然切向量的线性组合可以理解为二维向量空间(1.3) T P = {a r u (u 0, v 0) + b r v (u 0, v 0) | (a , b )∈R 2 } ≅ E 2 ,其中的向量称为曲面的切向量,两个切向量 a 和 b 的内积 (a , b ) 规定为 E 3 的诱导内积,即(1.4) (a , b ) = a ∙b , ∀ a , b ∈T P .图3-5此时,切平面同时具有向量空间结构和度量结构.切平面的基向量组{r u, r v} 通常称为自然基,而标架场{r;r u, r v, n} 通常称为自然标架场.用经典微积分的观点来看,切平面上的微元(1.5)d r(u, v) =r u(u, v)d u+r v(u, v)d v是位置向量增量 [r(u + d u , v + d v) -r(u, v)] 的线性主部,称为切向微元;按(1.3) 式所表示的同构,其按自然基分解的系数(d u, d v) 亦可视为切平面中的微元,其方向由比例d u:d v确定.例8已知半径为a > 0 的圆柱面的经纬参数方程为r(t, z) = (a cos t , a sin t , a z) .试求其过点 (a, 0, a) 的任意切向以及分别由比例 1:2 和 1:0 确定的切向.例9已知正则曲面由隐式方程F(x, y, z) = 0 确定,其中梯度向量∇F = (F x, F y, F z) ≠0.证明该曲面上点 (x, y, z) 处的法向确定为∇F(x, y, z) .四.参数变换定义3给定正则曲面S: r= r(u, v) ,若参数变换{u=u(u*, v*)v=v(u*, v*)满足①是连续可微的一一对应;②Jacobi行列式∂(u, v)∂(u*, v*)=∂u∂u*∂v∂u*∂u∂v*∂v∂v*处处非零,u*图3-6则称之为容许参数变换;当 ∂(u , v ) ∂(u *, v *) > 0 时称之为保向的,当 ∂(u , v ) ∂(u *, v *)< 0 时称之为反向的.注记 容许参数变换只有保向或反向两种.在容许参数变换 {u = u (u *, v *)v = v (u *, v *)下,有 (1.6) ⎝⎛⎭⎫ r u * r v * = ⎝ ⎛⎭⎪⎫∂u ∂u * ∂v ∂u *∂u ∂v * ∂v ∂v * ⎝⎛⎭⎫ r ur v, (1.7) r u *⨯r v * = ∂(u , v ) ∂(u *, v *)r u ⨯r v . 由此可知,在容许参数变换下,正则性和可微性保持不变,切平面不变;单位法向在保向容许参数变换下不变,在反向容许参数变换下变号.五.参数曲面的等价类似曲线的论断:① 一个曲面点集实体允许存在多种参数化方式,有参数变换.② 曲面实体的几何属性不依赖于其参数化的方式,也不依赖于空间直角坐标系的选取.③ 两个合同的曲面实体相当于同一曲面实体的不同位置表现形式. ④ 若两张正则曲面之间仅仅相差一个容许的参数变换,则它们表示同一个几何实体,称这两张正则曲面是相同的.相同的正则曲面实际上是指正则曲面的一种等价类,其在同一实点上的切平面、法线等等几何实体分别是重合的.⑤ 定向相同的;定向相反的.⑥ 定向相同的曲面的单位法向以及有向切平面,对于每个对应点都是唯一确定的.⑦ 曲面的整体概念和整体性质是复杂的,将留待于第八章中进行较为深入的讨论.约定:在以后讨论曲面局部性质的各章中,不声明时总考虑正则曲面和容许参数变换,并分别简称为曲面和参数变换.§2 直纹面与可展曲面直纹面可以由一族直线“织成”,即:过曲面上每一点都存在过该点的直线落在该曲面上.一.直纹面及其上的参数变换直纹面的直纹或(直)母线;准线.直纹的位置和直纹上的点的相对位置,给出直纹面 S 的下列自然参数化(2.1) S : r = r (u , v ) = a (u ) + v l (u ) ,其中准线为连续可微参数曲线(2.2) C : r * = a (u ) ,过准线上点 a (u ) 处的直纹方向确定为向量l (u ) ,且 l (u ) 连续可微.此时,(2.5) r u ⨯r v = [a '(u ) + v l '(u )]⨯l (u ) = a '(u )⨯l (u ) + v l '(u )⨯l (u ) .由此可确定正则条件.例1 直纹面可按 (2.1) 式准线与直纹方向的关系归为不同的子类. ① 柱面:各直纹平行.正则性条件即为准线不与直纹相切,单位法向沿着直纹是常向量,切平面沿着直纹重合.② 锥面:各直纹相交于锥顶点.准线可以“收缩”为锥顶.不妨设已经规范为a (u ) ≡ a 0 ,则正则性条件化为(2.7) r u ⨯r v = v l '(u )⨯l (u ) ≠ 0 .故锥顶是奇点;并且,当直纹单位方向向量在单位球面上为正则曲线时,也只有锥顶是奇点.其切平面沿着直纹也重合.③ 切线面:直母线族是某条准线的切线族,即直母线族有包络线可作为准线.不妨设已经规范为a '(u ) = l (u ) ≠ 0 ,且此时不妨设准线以 u 为弧长参数,则正则性条件化为(2.8) r u ⨯r v = v T '(u )⨯T (u ) ≠ 0 .图3-7① ② ③图3-8此时的准线称为切线面的脊线,其上点点为奇点.当脊线无逗留点时,切线面上除脊线外的各点都是正则点.其切平面沿着直纹也重合.④ 主法线面:直母线族是某条准线的主法线族.⑤ 从法线面:直母线族是某条准线的从法线族.例2 正螺旋面或正螺面;其准线可取为旋转轴.正螺面相应单位法向垂直于z 轴;旋转轴上各点处的切平面公交于旋转轴.例3 Möbius 带实体无所谓“正”的定向.直纹面按照准线和直母线族的自然参数化,具有明显的几何直观.准线的转换以及直纹方向向量长度的转换,在自然参数化下,就等价于适当的参数变换;这是一种具有几何意义的参数变换.设直纹面 S 的自然参数化由 (2.1)-(2.2) 式给出.作直母线方向向量的“伸缩”变换和准线变换分别为(2.9) l *(u ) = λ(u ) l (u ) , λ(u ) ≠ 0 ,(2.10) a *(u ) = a (u ) + μ(u ) l (u ) ,其中变换系数函数 λ(u ) 和 μ(u ) 都是连续可微的.令(2.12) {u * = uv * = [v - μ(u ) ] λ(u ) , 则得到容许参数变换,与原有方程的对应关系为(2.14) r = r (u , v ) = a (u ) + v l (u ) = r *(u *, v *) = a *(u *) + v * l *(u *) . 由此可以进一步考察准线和直母线是否允许有特殊关系.引理1 已知直纹面的自然参数化由 (2.1)-(2.2) 式给出,则存在新的参数化,使其准线与直母线处处正交,并且直纹方向向量为单位向量.二.可展曲面及其局部形状分类柱面、锥面、切线面的切平面分别沿着直纹重合;而从正螺面的图形观察到,沿着所给定的直纹移动时,切平面将发生扭转.图3-9 图3-11定义1若直纹面的切平面沿着每一条直纹都分别重合,则称该直纹面为可展曲面,或称该直纹面可展.例4柱面、锥面、切线面都可展.单叶双曲面和双曲抛物面都不可展——这从图形上可以观察到;也可以在任何直纹上展开计算,而由定义得到验证.定理1(直纹面可展的解析条件)设直纹面 S: r=r(u, v) =a(u) +v l(u) 正则.S可展的充要条件为a' , l , l'共面,即(2.15) (a' , l , l' ) ≡ 0 .对指定直纹族的直纹面而言,该解析条件不依赖于准线以及直纹方向向量长度的选取.要考虑可展曲面的其它特征;除了本节将继续讨论的以外,可展曲面的“内在特征”将在后续章节中出现.注记直纹面的直纹族并不一定是唯一的,比如单叶双曲面、双曲抛物面都有两族直纹,而平面的直纹族更加随意指定.以后可以证明,两族坐标曲线都是直线的正则曲面若可展,则只能是平面(或其局部).在“较好”的准线a(u) 和直纹方向向量l(u) 之下,解析条件可以进一步化简.特别当直纹方向向量规范为单位向量场时,即|l(u)|2≡ 1 时,有l'(u)∙l(u) ≡ 0 ;进而分两种情形:①当l'(u)⨯l(u) =0时,自然总有等价条件(a'(u) , l(u) , l'(u) ) = 0 ⇔l'(u) =0;②当l'(u)⨯l(u) ≠0时,l'(u) ≠0,便有等价条件(a'(u) , l(u) , l'(u) ) = 0 ⇔∃λ(u), μ(u) 使a'=λl'+μl;从此出发,利用准线变换,对可展曲面的局部形状可构造性地进行分类.参数变换的目标是确定如例1所给出的规范参数方程.在下面定理的证明中,可注意体会几何直观对证法的启发,以及如何明确地加以表述.定理2(可展曲面局部形状分类)可展曲面必是柱面、锥面和切线面之一或由它们沿直母线所适当拼接而成.证明由引理1和定理1,设可展曲面 S: r=r(u, v) =a(u) +v l(u) 满足|l(u)|2≡ 1 ;则由简化的解析条件,可完全分类为以下三种情形:①l'≡0,则l(u) = const. ≠0;此时S为柱面.②l'≠0,∃λ, μ使a'=λl'+μl;此时要证S为锥面或切线面.(注意:锥面存在新准线C*: a*(u) 使a* = const. ,而切线面存在新准线C*:a*(u) 使关于弧长的导数d a*d s C*=l,它们的共同特征是a*'(u)∥l.)作待定的新准线C*: a*(u) =a(u) +b(u) l(u) 使a*'(u)⨯l(u) ≡0,其中待定函数b(u)连续可微,则a*'=a'+b'l+b l'= (λ+b) l'+ (μ+b') l;故取b=-λ即可满足要求.此时,a*'= (μ-λ') l.由此,当a*'≡0即λ'≡μ时,a* = const. ,则S为锥面;当a*'≠0即λ'≠μ时,l=a*'μ-λ'=d a*d s C*,则S为切线面.③其他;由以上两种情形的讨论过程可知,l'以及 (μ-λ') 的例外零点对应于曲面上相应的直母线.综合各种情形,得证.三.单参数曲面族的包络观察例5管状面.定义2单参数曲面族Sλ的包络面S*,简称包络.例6可展曲面是其本身切平面族的包络,切平面族的单参数就取为某条正则准线的参数.在求解包络时的先验假定,反验.定理3给定连续可微单参数λ正则曲面族Sλ: r(u, v; λ) .如果判别式(2.21) (r u , r v , rλ ) = 0能够决定连续可微的两个函数u(λ, t) 和v(λ, t),那么,该曲面族的包络若存在则只能确定为判别曲面r(u(λ, t), v(λ, t); λ);而若判别式无解函数u(λ, t) 和v(λ, t) ,则该单参数曲面族没有包络.注记:①判别式所确定的函数同时明确了对应点的位置.②判别式如果是平凡的,则判别曲面r(u(λ, t), v(λ, t); λ) 有可能蜕化为非正则的;此时需要反验是否符合包络条件.③如果判别曲面r(u(λ, t), v(λ, t); λ) 是正则的,则其为包络面;此时在某些具体条件下,两个函数u(λ, t) 和v(λ, t) 允许存在反函数,此即为包络面上的特殊参数变换.④对包络面r(u(λ, t), v(λ, t); λ) ,当选定参数λ=λ0时,其上曲线r(u(λ0, t), v(λ0, t); λ0) 是与族中曲面S的公切点构成的曲线,称之为包络面λ0的特征线.例7已知具有包络S* 的连续可微单参数λ曲面族Sλ: r(u, v; λ) = (x(u, v; λ),y(u, v;λ) ,z(u, v;λ))是由隐式方程F(x, y,z; λ) =0 给出的,其中梯度向量∇F=(F x ,F y, F z) ≠0.试证S* 的隐式方程为(2.22) {F(x, y, z; λ) = 0 ,Fλ(x, y, z; λ) = 0 .单参数曲面族由隐式方程给出时,其包络的判别曲面由特征线族方程(2.22) 式给出.有时,隐式方程对于表示曲面整体非常有效,比如球面、双叶双曲面等等;此时,由 (2.22) 式讨论包络是较为方便的.例8求单参数λ球面族x2+y2+ (z-λ)2= 1 的包络.定理4给定连续可微单参数t平面族T t: n(t)∙r-p(t) = 0 ,|n|≡ 1 ,n'(t) ≠0.如果 {T t} 的包络面S存在,则S可展.§3曲面的第一基本形式在指定的曲面上,测量曲线的长度并确定弧长元素、面积元素等等几何量,是曲面几何学基本的问题之一.勾股定理确定了三维 Euclid 空间的基本度量规则,作为该空间的几何子体,曲线和曲面上的度量规则由空间的度量规则而“诱导”确定;子体和原有 Euclid 空间的几何属性将在这种方式之下自然地联系在一起,构成空间几何属性的整体.本节将讨论曲面在这种方式之下的基本结果;而关于其他方式之下的讨论,将在第六章中和第八章中逐步引出和深入进行.本节总记正则曲面S的参数方程为r=r(u, v) , (u, v)∈U⊂R2.一.曲面上的弧长元素首先考虑曲面S上的曲线段的长度和弧长元素.设 C : r = r (u (t ), v (t )) , t ∈[a , b ]是 S 的正则曲线上的一个弧段.通常也用平面区域 U 上的参数方程 {u = u (t )v = v (t ), t ∈[a , b ] 表示曲线 C ;但要注意区分该表示式的双重含义:既表示平面区域 U上的一条参数曲线 C -1 ,同时也表示在曲面 S 上的对应曲线 C .为了区别不同的所在场合,当表示曲线 C时往往强调“在曲面 S 上”.记曲面上的量(3.1) E = E (u , v ) = r u ∙r u = |r u |2 , F = F (u , v ) = r u ∙r v , G = G (u , v ) = r v ∙r v = |r v |2 ,则对曲线 C 有d s 2 = d r ∙d r = [E (u , v ) d u 2 + 2F (u , v ) d u d v + G (u , v ) d v 2 ]| u =u (t ), v =v (t ) = [E ⎝⎛⎭⎫ d u d t 2 + 2F ⎝⎛⎭⎫ d u d t d v d t + G ⎝⎛⎭⎫ d v d t 2 ]d t 2 , d s = | d r d t| d t = E ⎝⎛⎭⎫ d u d t 2 + 2F ⎝⎛⎭⎫ d u d t d v d t + G ⎝⎛⎭⎫ d v d t 2 | u =u (t ), v =v (t ) d t , 则有s (b ) - s (a ) = ⎰b ad s d t d t = ⎰b a | d r d t | d t = ⎰b a E ⎝⎛⎭⎫ d u d t 2 + 2F ⎝⎛⎭⎫ d u d t d v d t + G ⎝⎛⎭⎫ d v d t 2| u =u (t ), v =v (t ) d t . 可见,使用平面区域 U 上的参数方程以及曲面的相应量,就可以得到曲面上的曲线的弧长元素和弧段长度;至于曲面及其上的曲线的位置向量如何,在上述算式中并不直接影响结果.曲面上的量对其上曲线的影响程度,将在进行进一步抽象之后,得到更明确的了解.对此应注意体会.二.第一基本形式定义1 对正则曲面 S : r = r (u , v ) , (u , v )∈U ⊂R 2 ,称二次微分式(3.2) Ⅰ = d s 2 = E (u , v ) d u 2 + 2F (u , v ) d u d v + G (u , v ) d v 2为曲面 S 的第一基本形式,或称线素,其中系数由 (3.1) 式给出.图3-13注记: 第一基本形式系数也称为第一基本量.第一基本形式是由 E 3 的欧氏度量在曲面上所诱导出来的一种Riemann 度量.曲面第一基本形式d s 2 = d r ∙d r 的几何意义可用逼近的观点解释为:切向微元 d r 是位置差向量 [r (u +d u , v +d v ) - r (u , v )] 的线性主部,而弧长元素 d s = |d r | 是相应两点之间的距离微元的主部.第一基本形式在容许参数变换下不变,且在刚体运动下不变.第一基本形式的计算较为简单;但这是关于曲面的最基本和最重要的计算.下例展示了基本运算途径;同时,所得到的结论也是基本的.例1 已知平面 ∏: r (u , v ) = r 0 + u a + v b ,其中三个常向量 r 0, a , b 满足规范条件 |a | = |b | = 1 , a ∙b = 0 .观察其第一基本形式的三种系数行为.① 平面 ∏ 的第一基本形式为d s 2 = d r ∙d r = (a d u + b d v )∙(a d u + b d v ) = d u 2 + d v 2 .② 若在平面 ∏ 上采用极坐标系 (ρ, θ) ,即 {u = ρ cos θ v = ρ sin θ,则 r ρ = a cos θ + b sin θ ,r θ = (- a ρsin θ + b ρcos θ ) ;E (ρ, θ) = r ρ∙r ρ = (a cos θ + b sin θ)∙(a cos θ + b sin θ) = 1 ,F (ρ, θ) = r ρ∙r θ = (a cos θ + b sin θ)∙(- a ρsin θ + b ρcos θ) = 0 ,G (ρ, θ) = r θ∙r θ = (- a ρsin θ + b ρcos θ)∙(- a ρsin θ + b ρcos θ) = ρ2 ;此时,平面 ∏ 的第一基本形式(在极点无意义)为d s 2 = E (ρ, θ) d ρ2 + 2F (ρ, θ) d ρd θ + G (ρ, θ) d θ 2 = d ρ2 + ρ2 d θ 2 .③ 在平面 ∏ 上取任意一条无逗留点弧长 w 参数化曲线 C : ξ(w ) ,则其切线面r (w , t ) = ξ(w ) + t T (w ) 可表示一部分平面区域,其中 T 为 C 的单位切向.局部可得r w = T + t κ N ,r t = T ;E (w , t ) = r w ∙r w = (T + t κ N )∙(T + t κ N ) = 1 + t 2κ 2 ,F (w , t ) = r w ∙r t = (T + t κ N )∙ T = 1 ,G (w , t ) = r t ∙r t = T ∙ T = 1 ;此时,在平面 ∏ 上相应区域内,第一基本形式为d s 2 = E (w , t ) d w 2 + 2F (w , t ) d w d t + G (w , t ) d t 2= [1 + t 2κ 2(w )]d w 2 + 2d w d t + d t 2 .第一基本形式系数在容许参数变换下必须满足一定的变换规律.改写(3.3) Ⅰ = d s 2 = (d u , d v ) ⎝⎛⎭⎫E F F G ⎝⎛⎭⎫d u d v ;(3.4) d r = (d u , d v )⎝⎛⎭⎫r u r v ,(3.5) d r ∙d r = (d u , d v )⎝⎛⎭⎫r u r v ⎝⎛⎭⎫r u r v T ⎝⎛⎭⎫d u d v ,(3.6) ⎝⎛⎭⎫E F F G = ⎝⎛⎭⎫r u r v ⎝⎛⎭⎫r u r v T = ⎝⎛⎭⎫r u r v ∙ (r u , r v ) ,其中各式之中的位置向量视为行向量,分块矩阵之间用“∙”表示数量积.定义2 对正则曲面 S : r = r (u , v ) ,称二次型 (3.2) 或 (3.3) 的系数矩阵,即 (3.6) 式左端,为曲面 S 的第一基本形式系数矩阵;其行列式(3.7) E F F G= EG - F 2 = |r u |2|r v |2 - (r u ∙r v )2 = |r u ⨯r v |2 > 0 , 称为曲面 S 的第一基本形式系数行列式.性质 ① 正则曲面 S 的第一基本形式 (3.2) 是正定的二次型,即:d s 2 ≥ 0 ,且等号当且仅当 d u = d v = 0 时成立;② 正则曲面 S 的第一基本形式系数矩阵是正定的.在容许参数变换 {u = u (u *, v *)v = v (u *, v *)下记Jacobi 矩阵和Jacobi 行列式分别为 (3.8) J = ⎝ ⎛⎭⎪⎫∂u ∂u * ∂v ∂u *∂u ∂v * ∂v ∂v * ,∂(u , v ) ∂(u *, v *) = |J | ; 记参数 (u *, v *) 下曲面 S 的第一基本形式为d s 2 = E *(u *, v *) d u *2 + 2F *(u *, v *) d u *d v * + G *(u *, v *) d v *2.则由 (1.6) 式和 (1.7) 式分别代入 (3.6) 式和 (3.7) 式可得(3.9) ⎝⎛⎭⎫E * F *F * G * = ⎝⎛⎭⎫ r u * r v * ⎝⎛⎭⎫ r u * r v *T = J ⎝⎛⎭⎫ r u r v ⎝⎛⎭⎫ r u r v T J T = J ⎝⎛⎭⎫E F F G J T , (3.10) E *G * - F *2 = |J |2(EG - F 2) .这是两个具有理论意义的等式.第一个等式说明,第一基本形式系数矩阵服从所谓“张量”的变换规律,从而成为张量概念的直观背景之一.第二个等式将在下一段用来支持面积元素的概念,等价地写为(3.11) E *G * - F *2 = ||J || EG - F 2 . 例2 以平面弧长参数曲线为准线作柱面 S ,考察其第一基本形式;并证明其第一基本形式在某正则参数 (u , v ) 下可以表示为 d s 2 = d u 2 + d v 2 .三.交角与面积元素确定交角和面积等几何量.交角,有向交角.在自然标架下,有关曲面以及其上曲线的交角问题和面积问题,都可以利用自然基向量的数量积或向量积进行计算,从而转化为如何用第一基本形式表述或求解的问题.一般化的算法,体现在下面的较为具体的抽象计算过程中;而计算结果的意义,需要特别注意体会.1.曲面上的曲线的交角假设曲面 S 的第一基本形式以 (3.2) 式确定;设点 (u , v ) 处的两个切向微元在自然基 {r u , r v } 下分别为 d u :d v 和 δu :δv ,确定其间夹角余弦(3.12)式——曲面上的曲线的交角,由曲面的第一基本形式以及曲线在交点处的切方向完全确定;而曲线的切方向只由参数区域上的原像即可确定.参数区域上的曲线原像之间的交角取决于区域本身,而与曲面上的交角没有必然的联系.可参考图3-13观察这个事实.定理1 对正则曲面而言,两族坐标曲线处处正交的充要条件为其第一基本形式系数矩阵处处是对角阵.定义2 正交参数,正交参数网或正交网.定理1确定了曲面正交参数网的第一基本形式特征.例3 对正则曲面 S : r = r (u , v ) ,求两族坐标曲线的二等分角轨线 C 的微分方程.2.曲面的面积元素和区域面积曲面的面积元素可以表示为(3.13) d σ = |r u ⨯r v | d u d v= EG - F 2 d u d v .任一有界区域 r (U 0) 的面积 A (U 0)可以表示为(3.14) A (U 0) = ⎰⎰ U 0 d σ = ⎰⎰ U 0 |r u ⨯r v | d u d v = ⎰⎰ U 0EG - F 2 d u d v . 在参数变换下面积元素对应相同,面积也对应相同.v )图3-14定理2正则曲面的面积元素和区域面积由第一基本形式可完全确定.§4局部等距对应曲面间的正则对应.“贴广告”的体验:保持弧长以及由弧长所完全确定的几何量都不变.一.局部等距对应定义1局部等距对应;局部等距.等距对应;等距.等距与局部等距的区别.目前通常只考虑曲面间的局部等距对应,并简称为等距对应.定理1(局部等距对应充要条件)两张曲面局部等距的充要条件是按对应关系具有相同的第一基本形式.等距的曲面之间能够作为容许参数变换的对应关系,并不一定具有明显的解析表达式;同时,第一基本形式按对应关系相同,并不意味着它们的参数已经对应相同,即它们的第一基本形式系数并不总是相等,而只是在对应关系下以变换规律 (3.9) 式相联系.一般而言,寻求等距曲面之间的等距对应关系可以归结为求解由 (3.9) 式所给定的偏微分方程组,但其求解过程往往是困难重重和具有技巧的.从定理1看,通过计算第一基本形式即可验证对应关系是否为等距对应.而对于较为直观和简单的等距对应,通过分析几何直观及其所提供的启示,也可以找到相应的对应关系.例1悬链面与正螺面之间的局部等距对应悬链面与正螺面.悬链面去掉一条母线而“剪开”后,与正螺面的“一个螺纹”之间的等距对应.定理2可展曲面总存在与平面的局部等距对应.分析这个定理的结论和证明过程,可见可展曲面局部存在到平面之间的连续变形,使得变形过程中的每一张中间曲面都是可展的,并且在对应关系下直纹总变到直纹,同时每一张也都是互相等距对应的.这就是平整的“纸张”能够“不撕破”“不褶皱”地“贴合”在可展曲面上的原因.这个定理的逆定理也是成立的,其证明在后续两章给出.形象地说,可展曲面名副其实地“可展”成平面.一般而言,讨论曲面在保持等距意义下的连续形变,是较为复杂的.二.曲面的内蕴几何学概念定义2内蕴量,内蕴性质(内在性质);内蕴几何体.内蕴几何学.内蕴几何学的核心是讨论第一基本形式的不变量以及相关的几何属性.例如,球面与平面之间不存在局部等距对应,从而具有不同的内蕴几何学;而这个事实的证明,将在第五章利用所谓的Gauss绝妙定理给出.从内蕴几何角度来看,可展曲面的代表就是平面;有理由认为它的“内在弯曲”状况是“平坦”的,尽管有许多可展曲面的“外在弯曲”状况是“弯曲”的.而球面既是“外在弯曲”的,也是“内在弯曲”的.内蕴量和内蕴性质,还可以提示和帮助确定等距对应关系.§5局部正交参数网与等温参数适当坐标系的选取是非常重要的.简化计算.另一种作用是,根据场合选取具有特定几何意义的坐标系,有时会成为揭示和解决问题的关键.本节将给出一个基础性结论,它经常用于建立所需要的局部坐标系,包括确定一些具有特定几何意义的参数曲线网的局部存在性.一.一般结论与正交网定理1设二阶连续可微正则曲面S: r=r(u, v) , (u, v)∈D上已给出两个处处线性无关的连续可微切向量场a(u, v) , b(u, v) ,则对任何点 (u0, v0)∈D满足r u*∥a , r v*存在其邻域D0⊂D,使在D0内存在参数变换{u* =u*(u, v)v* =v*(u, v)∥b,即切向量场a(u, v) , b(u, v) 的积分曲线族分别为u*, v* 曲线族.定理2在二阶连续可微正则曲面上的任一点邻近总可取到正交网.证明对曲面S: r=r(u, v) , (u, v)∈D,取a(u, v) =r u(u, v) ,b(u, v) =r v(u, v) -FEr u(u, v) ,则a, b是两个处处线性无关的连续可微切向量场,并且处处正交.由定理1,可分别取切向量场a, b的积分曲线族为局部的两族坐标曲线,则此两族坐标曲线构成正交网.□注记①曲面正交网的存在性是局部性质;至于大范围内是否存在正交网,往往受到曲面整体性质的约束.②曲面上的处处正交的单位切向量场总是存在的;但是,定理并没有保证它们可以成为自然切向量场,而只是保证它们可以处处平行于某个自然切向量场.二.等温参数定义1曲面的等温参数.在等温参数下,内蕴量的计算较为简单.同时,从(3.12) 式可见,曲面上的曲线的交角,总等于其在等温参数区域中的原像(当视为欧氏平面上的曲线时)的交角.曲面与欧氏平面在等温参数下的这种对应关系,是一类共形对应,或称为保角对应或等角对应.例1Mercator地图.等温参数的存在性是较难证明的.定理3在二阶连续可微正则曲面上的任一点邻近,总可取到等温参数网.推论二阶连续可微正则曲面局部共形对应于平面;二阶连续可微正则曲面之间总可局部共形对应.。
§1 参数化曲面

图 3-1
的点是指向径 r(u0, v0) = OP(u0, v0) 的终点
P(u0, v0) = (x(u0, v0), y(u0, v0), z(u0, v0)) ∈ E3 ,
通常表示为向量值 r(u0, v0) 或参数值 (u0, v0) .曲线r(u, v0) 称为参数曲面 S
上过点 P(u0, v0) 的 u 坐标曲线,简称 u 线;而曲线r(u0, v) 称为参数曲面 S
正则曲面的意义还在于能够方便
地确定曲面的所谓切向量和切平面,
以及法向量.
已知正则曲面 S: r = r(u, v) .考虑
过 点 r(u0, v0) , r(u0+Δu, v0) 和 r(u0, v0+Δv) 的平面 Π 当 (Δu, Δv)→(0, 0) 时 的极限位置,亦即切平面的位置.由
图 3-5
r = r(u, v) = (cos u , sin u , v) ,(u, v)∈R2 ;
-2-
作者:王幼宁
其中参数值与位置向量的对应不是一一对应,但适当缩小定义域则可保证 一一对应.其整体也能定义成参数曲面,例如
r = r(w, t) = (
w w2 + t2 ,
t w2 + t2 , ln
w2 + t2 ) ,(w, t)∈R2−{(0, 0)} .
曲线,类似于球面上的称呼,通常分别称为纬线和经线;此参数化方式,
通常称为旋转面的经纬参数化.球面、圆柱面、正圆锥面都是旋转面.
二.正则曲面 参数曲面比参数曲线更复杂,同样需要引进正则性.
定义 1 给定参数曲面 S: r = r(u, v) , (u, v)∈U .若自然切向在点 (u0, v0) 满足 ru(u0, v0)×rv(u0, v0) = 0 ,则称 (u0, v0) 或其对应点 r(u0, v0) 为 S 的一个奇 (异)点;若 ru(u0, v0)×rv(u0, v0) ≠ 0 ,则称 (u0, v0) 或其对应点 r(u0, v0) 为 S 的一个正则点.若 S 之上点点正则,则称 S 为正则曲面,并称参数 (u, v) 为正则参数.
最新微分几何 陈维桓 第三章讲稿

微分几何陈维桓第三章讲稿目录第三章曲面的第一基本形式 (27)§ 3.1 正则参数曲面 (27)一、参数曲面 (27)二、参数变换 (28)三、正则曲面 (28)四、正则曲面的例子 (29)§ 3.2 切平面和法线 (33)一、曲面的切空间,切平面和法线 (33)二、连续可微函数的等值面 (34)三、微分«Skip Record If...»的几何意义 . (34)§ 3.3 第一基本形式 (35)§ 3.4 曲面上正交参数曲线网的存在性 (37)§ 3.5 保长对应和保角对应 (38)一、曲面到曲面的连续可微映射 (38)二、切映射 (38)三、保长对应(等距对应) (40)四、保角对应(共形对应) (41)§ 3.6 可展曲面 (42)第三章 曲面的第一基本形式本章内容:曲面的定义,参数曲线网,切平面,单位法向量,第一基本形式,正交参数网,等距对应和共形对应,可展曲面计划学时:12学时,含习题课4学时.难点:正交参数网的存在性,等距对应和共形对应§ 3.1 正则参数曲面一、参数曲面从平面«Skip Record If...»的一个区域(region ,即连通开集)«Skip Record If...»到«Skip Record If...»中的一个连续映射«Skip Record If...»的象集«Skip Record If...»称为«Skip Record If...»中的一个参数曲面(parameterized surface). 在«Skip Record If...»中取定正交标架«Skip Record If...»«Skip Record If...»,建立笛卡尔右手直角坐标系. 则参数曲面«Skip Record If...»可以通过参数(parameter)«Skip Record If...»表示成参数方程«Skip Record If...» «Skip Record If...», (1.1)或写成向量参数方程«Skip Record If...»,«Skip Record If...». (1.2)为了使用微积分工具,本书中要求向量函数«Skip Record If...»都是3次以上连续«Skip Record If...»-曲线:让«Skip Record If...»固定,«Skip Record If...»变化,向量«Skip Record If...»的终点描出的轨迹.«Skip Record If...»-曲线,参数曲线网.直观上,参数曲面«Skip Record If...»就是将平面中的区域«Skip Record If...»经过伸缩、扭曲等连续变形后放到欧氏空间«Skip Record If...»中的结果.曲纹坐标«Skip Record If...»,即«Skip Record If...».r 00(,)r u v一般来说,由(1.1)给出的连续映射并不能保证曲面上的点«Skip Record If...»与该点的参数«Skip Record If...»之间是一一对应的. 为了使得曲纹坐标能真正起到坐标的作用,需要对参数曲面加上正则性条件.定义设«Skip Record If...»为«Skip Record If...»中的参数曲面. 如果在«Skip Record If...»点,两条参数曲线的切向量«Skip Record If...»,«Skip Record If...» (1.3)线性无关,即«Skip Record If...»,则称«Skip Record If...»或«Skip Record If...»是«Skip Record If...»的正则点(regular point). 如果«Skip Record If...»上每一点都是正则点,则称«Skip Record If...»是正则参数曲面.以下总假定«Skip Record If...»是正则曲面. 在正则曲面上每一点«Skip RecordIf...»,由于«Skip Record If...», (1.4)通过重新选取正交标架«Skip Record If...»,不妨设«Skip Record If...».根据反函数定理,存在«Skip Record If...»的邻域«Skip Record If...»,使得«Skip Record If...»有连续可微的反函数«Skip Record If...»,«Skip Record If...»,即有«Skip Record If...».此时有«Skip Record If...»的邻域«Skip Record If...»和同胚映射«Skip Record If...». 从而有连续映射«Skip Record If...». 于是«Skip Record If...»在«Skip Record If...»的邻域«Skip Record If...»内可用参数方程表示为«Skip Record If...», (*) 或表示为一个二元函数«Skip Record If...»的图像,其中«Skip Record If...». (1.5)上式称为曲面片«Skip Record If...»的Monge形式,或称为«Skip Record If...»的显式方程.从(*)式可见«Skip Record If...»是一一对应,从而«Skip Record If...»也是一一对应. 这说明正则性条件至少保证了«Skip Record If...»局部是一一对应. 为了确定起见,以下约定正则曲面«Skip Record If...»与其定义域«Skip Record If...»之间总是一一对应的,从而参数«Skip Record If...»可以作为曲面上点«Skip Record If...»的曲纹坐标.反之,由显式方程«Skip Record If...»表示的曲面总是正则的:如果«Skip Record If...», (1.6)则«Skip Record If...»,«Skip Record If...»,从而«Skip Record If...».二、参数变换曲面的定向(orientation):对于曲面«Skip Record If...»,规定«Skip Record If...»所指的一侧为«Skip Record If...»的正侧.由于参数曲面的参数方程中,参数的选择不是唯一的,在进行参数变换(transformation of parameter)时,要求参数变换«Skip Record If...» (1.8) 满足:(1) «Skip Record If...»是«Skip Record If...»的3次以上连续可微函数;(2) «Skip Record If...»处处不为零.这样的参数变换称为可允许的(compatible)参数变换. 当«Skip Record If...»时,称为保持定向(preserve the orientation)的参数变换.根据复合函数的求导法则,在新的参数下,«Skip Record If...», «Skip Record If...».因此«Skip Record If...». (1.10) 上式说明在可允许的参数变换下,正则性保持不变;在保持定向的参数变换下,曲面片的正侧保持不变.三、正则曲面正则参数曲面在具体应用总是十分方便,十分广泛的. 但是有的曲面不能够用一张正则参数曲面来表示,例如球面.将«Skip Record If...»与«Skip Record If...»等同,赋予普通的度量拓扑,即以«Skip Record If...»的标准度量确定的拓扑.定义1.1设«Skip Record If...»是«Skip Record If...»的一个子集,具有相对拓扑. 如果对任意一点«Skip Record If...»,存在«Skip Record If...»在«Skip Record If...»中的一个邻域«Skip Record If...»(«Skip Record If...»,其中«Skip Record If...»是«Skip Record If...»在«Skip Record If...»中的邻域),和«Skip Record If...»中的一个区域«Skip Record If...»,以及同胚«Skip Record If...»,使得«Skip Record If...»是«Skip Record If...»中一个正则参数曲面«Skip Record If...»,则称«Skip Record If...»是«Skip Record If...»中的一张正则曲面(regular surface),简称曲面. 上述的邻域«Skip Record If...»和同胚«Skip Record If...»的逆映射«Skip Record If...»合在一起,将«Skip Record If...»称为该曲面的一个局部参数化(local parameterization),或坐标卡(coordinate chart).注 «Skip Record If...»的拓扑是作为«Skip Record If...»的子集从«Skip Record If...»诱导的相对拓扑,即作为«Skip Record If...»的拓扑子空间的拓扑.如果两个局部参数化«Skip Record If...»,«Skip Record If...»满足«Skip Record If...»,那么正则参数曲面«Skip Record If...»就有两个参数表示«Skip Record If...»和«Skip Record If...». 由此自然产生了参数变换«Skip Record If...».利用正则参数曲面«Skip Record If...»的3次以上连续可微性和正则性,可以证明上述参数变换是可允许的.直观上看,正则曲面«Skip Record If...»是由一些正则参数曲面“粘合”而成的. 只有那些与参数的选择无关的量才是曲面本身的几何量. 如果一个正则曲面有一族保持定向的局部参数化«Skip Record If...»(«Skip Record If...»为指标集),使得«Skip Record If...»构成«Skip Record If...»的开覆盖,则称该曲面是可定向的(orientable).除非特别指出,本课程一般是研究正则参数曲面的几何性质,称之为“局部微分几何学”. 以下所说的“曲面”一般都是正则参数曲面,包括习题中出现的“曲面”.例1.1 圆柱面(cylinder) «Skip Record If...»«Skip Record If...»,«Skip Record If...». (1.15)其中«Skip Record If...».当«Skip Record If...»时,圆柱面上少了一条直线«Skip Record If...».如果取«Skip Record If...»,上面的直线在参数曲面上,但是又少了一条直线«Skip Record If...».显然«Skip Record If...»是任意阶连续可微的. 又«Skip Record If...»,«Skip Record If...»,«Skip Record If...».所以圆柱面是正则曲面.圆柱面也可以用一个坐标卡表示:(,)r u v 121(r U U -⋂1r 2r 21r«Skip Record If...»,«Skip Record If...». 例1.2 球面(sphere) «Skip Record If...»,参数方程为«Skip Record If...»,«Skip Record If...». (1.16)其中«Skip Record If...». 由于«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,所以球面是正则曲面.例1.3 旋转面(revolution surface)设«Skip Record If...»是«Skip Record If...»平面上一条曲线,其中«Skip Record If...». 将«Skip Record If...»绕«Skip Record If...»轴旋转得到的旋转面«Skip Record If...»参数方程为«Skip Record If...»,«Skip Record If...». (1.18)旋转面«Skip Record If...»上的u -曲线称为纬线圆,v -曲线称为经线. 因为«Skip Record If...»,«Skip Record If...»,(,)r u v (,)r θϕ«Skip Record If...»,«Skip Record If...»,所以当«Skip Record If...»是正则曲线,并且«Skip Record If...»时,«Skip Record例1.4 正螺面(hericoid)设两条直线«Skip Record If...»和«Skip Record If...»垂直相交. 将直线«Skip Record If...»一方面绕«Skip Record If...»作匀速转动,同时沿«Skip Record If...»作匀速滑动,«Skip Record If...»的运动轨迹叫做正螺面(螺旋面). 取初始位置的直线«Skip Record If...»为x轴,«Skip Record If...»为z轴,建立右手直角坐标系. 则正螺面的参数方程为«Skip Record If...»,«Skip Record If...». (1.19) 由«Skip Record If...»,«Skip Record If...»,«Skip Record If...»可知正螺面是正则曲面.简单来说,直纹面就是由单参数直线族«Skip Record If...»构成的曲面.设«Skip Record If...» («Skip Record If...»)是一条空间正则曲线. 在«Skip RecordIf...»上对应于参数«Skip Record If...»的每一点有一条直线«Skip Record If...»,其方向向量为«Skip Record If...». 这条直线的参数方程可以写成«Skip Record If...».让«Skip Record If...»在区间«Skip Record If...»内变动,所有这些直线就拼成一个曲面«Skip Record If...»,称为直纹面. 它的参数方程为«Skip Record If...»,«Skip Record If...». (1.20)曲线«Skip Record If...»称为该直纹面的准线(directrix),而这个单参数直线族中的每一条直线«Skip Record If...»都称为直纹面的一条直母线(generating line),也就是直纹面«Skip Record If...»的«Skip Record If...»-曲线.为了保证直纹面的正则性,要求«Skip Record If...». (1.21)因为直母线的方向向量«Skip Record If...»,通过参数变换«Skip Record If...»,«Skip Record If...»,可设«Skip Record If...».再通过选取新的准线«Skip Record If...»,其中«Skip Record If...»是待定的函数,使得直母线处处与准线垂直相交,即«Skip Record If...». 因为«Skip Record If...»,只须取«Skip Record If...»即可.1. 当«Skip Record If...»为常向量时,所有的直母线互相平行,直纹面«SkipRecord If...»称为柱面(cylindrical surface).2. 当所有的直母线都经过一个定点时,直纹面«Skip Record If...»称为锥面(cone). ()a u ()a u3. 当«Skip Record If...»时,«Skip Record If...»称为切线曲面(tangent surface),由准线«Skip Record If...»的所有切线构成.这3种直纹面有共同的特征,在§3.6还要进一步讨论.课外作业:习题2,5§ 3.2 切平面和法线一、曲面的切空间,切平面和法线设«Skip Record If...»是«Skip Record If...»中一个正则曲面,«Skip Record If...»是曲面上点的曲纹坐标. 设«Skip Record If...»是«Skip Record If...»上任意一个固定点. 则«Skip Record If...»上过«Skip Record If...»点的一条可微(参数)曲线«Skip Record If...»可以表示为«Skip Record If...», (2.2)其中«Skip Record If...» (2.1)是«Skip Record If...»中一条可微曲线(不一定是正则曲线),满足«Skip Record If...»,«Skip Record If...». 因此«Skip Record If...»,正是«Skip Record If...»点的位置向量. 曲线«Skip Record If...»在«Skip Record If...»点的切向量为 定义2.1 曲面«Skip Record If...»上过«Skip Record If...»点的任意一条连续可微曲线在该点的切向量称为曲面«Skip Record If...»在«Skip Record If...»点的一个切向量(tangent vector).命题 曲面«Skip Record If...»在«Skip Record If...»点的切向量全体记为«Skip Record If...»,它是一个2维实向量空间,«Skip Record If...»是«Skip Record If...»的一个基. 事实上,«Skip Record If...»,称为曲面«Skip Record If...»在«Skip Record If...»点的切空间(tangent space).证明 记«Skip Record If...». 由(2.3)可见«Skip Record If...». 反之,对任意«Skip Record If...»,令«Skip Record If...». 则«Skip Record If...»是过«Skip Record If...»的可微曲线,并且 r x 00(,)r u v v =«Skip Record If...».所以«Skip Record If...». 因此«Skip Record If...»,从而«Skip Record If...».显然«Skip Record If...»按照向量的加法和数乘构成一个向量空间. 由于«SkipRecord If...»线性无关,它们构成«Skip Record If...»的基. □在空间«Skip Record If...»中,经过点«Skip Record If...»,以两个不共线向量«Skip Record If...»为方向向量的平面称为曲面«Skip Record If...»在«Skip Record If...»点的切平面(tangent plane). 切平面的参数方程为«Skip Record If...»,«Skip Record If...». (2.6)它的单位法向量(unit normal vector)为«Skip Record If...». (2.7)经过点«Skip Record If...»且垂直于«Skip Record If...»在«Skip Record If...»点的切平面的直线称为曲面«Skip Record If...»在«Skip Record If...»点的法线(normal line). 它的参数方程为«Skip Record If...»,«Skip Record If...». (2.8)曲面«Skip Record If...»在«Skip Record If...»点的切空间、切平面、法线这三个概念都是与参数选择无关的几何概念. (为什么?) 二、连续可微函数的等值面 设«Skip Record If...»是一个区域,«Skip Record If...»是定义在«Skip Record If...»上的连续可微函数. 对于一个常数«Skip Record If...»,集合«Skip Record If...»称为函数«Skip Record If...»的等值面. 如果在«Skip Record If...»的每一点,都有«Skip Record If...», (2.9)则等值面«Skip Record If...»是一个正则曲面. 事实上,设在«Skip Record If...»,有«Skip Record If...»,则方程«Skip Record If...» (2.10)在«Skip Record If...»点的邻近确定了一个隐函数«Skip Record If...»,使得«Skip Record If...»,«Skip Record If...».nu r vr于是等值面«Skip Record If...»局部地可以用参数方程表示为«Skip Record If...». (2.11) 由于«Skip Record If...»,等值面«Skip Record If...»是正则曲面.在等值面上每一点«Skip Record If...»,梯度向量«Skip Record If...»是一个法向量,即是与切平面垂直的向量.事实上,由(2.11)可得切空间的基底«Skip Record If...».由(2.10)两边分别对«Skip Record If...»求偏导数并注意«Skip Record If...»,得«Skip Record If...»,«Skip Record If...»,即有«Skip Record If...»,«Skip Record If...».三、微分«Skip Record If...»的几何意义设曲面«Skip Record If...»的参数方程为«Skip Record If...».微分得到«Skip Record If...». (2.13)将«Skip Record If...»看作4个独立的变量,则对于(2.13)中«Skip Record If...»的不同取值,就得到不同的切向量.有时也用比值«Skip Record If...»来表示曲面上的一个切方向.自然,这时要求«Skip Record If...»不能全为0.变量«Skip Record If...»是切向量«Skip Record If...»关于切空间«Skip Record If...»的基底«Skip Record If...»的分量,因此是向量空间«Skip Record If...»上的线性函数,即«Skip Record If...»(对偶空间). 事实上,按照定义«Skip Record If...».同理,«Skip Record If...».注. 由于切空间的自然基底«Skip Record If...»一般不是单位正交的,在把«Skip Record If...»看作切向量在这个基底下的分量计算内积时,不能将它当作笛卡尔坐标系下的分量来进行运算,而应当顾及自然基底«Skip Record If...»的度量系数(参看下一节).课外作业:习题1,3,5.§ 3.3 第一基本形式设«Skip Record If...»是«Skip Record If...»中一个正则参数曲面. 则«Skip Record If...» (3.1) 是曲面上任意一点«Skip Record If...»处的切向量,这个向量作为«Skip Record If...»中的向量可以计算它的长度. 令«Skip Record If...»,«Skip Record If...»,«Skip Record If...». (3.2) 这三个函数«Skip Record If...»称为曲面«Skip Record If...»的第一类基本量.而矩阵«Skip Record If...» (3.3) 称为切空间(关于基底«Skip Record If...»)的度量矩阵(metric matrix).由于«Skip Record If...»的度量是正定的,这是一个正定矩阵. 事实上,它的2个顺序主子式均«Skip Record If...»:«Skip Record If...»,«Skip Record If...». (Lagrange 恒等式)利用第一类基本量«Skip Record If...»的定义,有«Skip Record If...».这是一个关于变量«Skip Record If...»的二次型,称为曲面«Skip Record If...»的第一基本形式(first fundamental form),记为«Skip Record If...». (3.4) 对曲面«Skip Record If...»作可允许的参数变换«Skip Record If...»,«Skip Record If...», (3.5) 并记«Skip Record If...».则由微分形式的不变性得«Skip Record If...». (*)记参数变换(3.5)的Jacobi矩阵为«Skip Record If...». (3.10) 则有«Skip Record If...», (3.7, 3.9)«Skip Record If...». (3.8) 因此在新的参数«Skip Record If...»下,度量矩阵成为«Skip Record If...», (3.12) 从而第一类基本量之间的关系为«Skip Record If...» (3.13) 在新的参数«Skip Record If...»下,第一基本形式保持不变:«Skip Record If...».因此第一基本形式与参数选择无关,也与«Skip Record If...»的标架选择无关,是一个几何量. 其实,这一结论也可由微分形式不变性,也就是(*)式直接得到:«Skip Record If...».如果«Skip Record If...»和«Skip Record If...»是«Skip Record If...»处的两个切向量,则它们的内积为«Skip Record If...». (3.15) 因此切向量«Skip Record If...»的长度为«Skip Record If...». (3.16) 两个切向量«Skip Record If...»和«Skip Record If...»之间的夹角«Skip Record If...»满足«Skip Record If...». (3.17) 它们相互正交的充分必要条件是«Skip Record If...». (3.18) 定理3.1 在参数曲面«Skip Record If...»上,参数曲线网是正交曲线网«Skip Record If...». □对于参数曲面«Skip Record If...»上的一条曲线«Skip Record If...»,它的弧长为«Skip Record If...». (3.21) 定义称«Skip Record If...»为曲面«Skip Record If...», «Skip Record If...»的面积元素,称«Skip Record If...» (3.18) 为曲面«Skip Record If...»的面积.命题 曲面上曲线的弧长«Skip Record If...»,曲面的面积元素«Skip Record If...»以及曲面的面积«Skip Record If...»都是几何量. 证明 假设参数变换为«Skip Record If...»,其中«Skip Record If...».则在新参数«Skip Record If...»下,«Skip Record If...»的参数方程«Skip Record If...»与原参数方程«Skip Record If...»之间满足«Skip Record If...».1. 曲线的参数方程由«Skip Record If...»变成了«Skip Record If...».所以«Skip Record If...».2. 由(3.12)可见,在新参数«Skip Record If...»下,第一类基本量«Skip Record If...»满足«Skip Record If...».其中«Skip Record If...»是«Skip Record If...»的逆映射«Skip Record If...»的Jacobi 行列式. 另一方面根据二重积分的变量代换公式,«Skip Record If...».所以在新参数«Skip Record If...»下的面积元素«Skip Record If...».3. 根据二重积分的变量代换公式,有«Skip Record If...». □例1 求旋转面«Skip Record If...»的第一基本形式.解 «Skip Record If...»,«Skip Record If...».所以«Skip Record If...»,«Skip Record If...»,«Skip Record If...».这说明在旋转面上,经线和纬线构成正交曲线网. 第一基本形式为«Skip Record If...». (3.24)这说明在旋转面上经线(v -曲线)和纬线(u -曲线)构成正交参数曲线网. □例2 求曲面上参数曲线网的二等分角轨线的微分方程.解 设正则参数曲面«Skip Record If...»的第一基本形式是«Skip Record If...».再设二等分角轨线的切向量为1r r ϕ=1r 1D α«Skip Record If...».由题意,它与u-曲线的夹角要等于它与v-曲线的夹角,而u-曲线的切方向为«Skip Record If...»,v-曲线的切方向为«Skip Record If...»,所以«Skip Record If...».将«Skip Record If...»和«Skip Record If...»代入上式,得«Skip Record If...»,即«Skip Record If...».由于«Skip Record If...»,即«Skip Record If...»,所以上式可化简为«Skip Record If...», (3.25) 或等价地,参数曲线网的二等分角轨线的微分方程为«Skip Record If...».□注求解一阶常微分方程初值问题«Skip Record If...»,«Skip Record If...»(«Skip Record If...»)得到的解«Skip Record If...»是曲面«Skip Record If...»上过«Skip Record If...»点的一条曲线«Skip Record If...»,在«Skip Record If...»的每一点«Skip Record If...»,切方向«Skip Record If...»与该点处的两条参数曲线的切方向夹角相等.固定«Skip Record If...»,让初始条件«Skip Record If...»变动,就得到2族这样的曲线,它们就是参数曲线网的二等分角轨线.课外作业:习题2,5,8§ 3.4 曲面上正交参数曲线网的存在性在正交参数曲线网下,第一基本形式比较简单:«Skip Record If...».问题:曲面上是否存在正交参数曲线网?引理设«Skip Record If...»是定义在区域«Skip Record If...»上的连续可微的1次微分形式,且«Skip Record If...»处处不为零. 则对于任意一点«Skip Record If...»,«Skip Record If...»在«Skip Record If...»的某个邻域«Skip Record If...»内存在积分因子,即有定义在«Skip Record If...»上的非零连续可微函数«Skip Record If...»,使得«Skip Record If...»是某个定义在«Skip Record If...»上的连续可微函数«Skip Record If...»的全微分:«Skip Record If...».引理的证明见附录§1定理1.2.定理4.1假定在曲面«Skip Record If...»上有两个处处线性无关的、连续可微的切向量场«Skip Record If...», «Skip Record If...». 则对每一点«Skip Record If...»,必有«Skip Record If...»点的一个邻域«Skip Record If...»,使得在«Skip Record If...»上存在新的参数«Skip Record If...»,满足«Skip Record If...»,«Skip Record If...».分析:设«Skip Record If...»,«Skip Record If...». (4.2) 则由«Skip Record If...»线性无关可知«Skip Record If...». (4.3)如果这样的可允许参数变换«Skip Record If...»存在,则应有函数«Skip Record If...»使得«Skip Record If...»,«Skip Record If...», (4.5) 即有«Skip Record If...». (4.7) 在上述等式两边取逆矩阵得«Skip Record If...». (4.8) 因此逆参数变换«Skip Record If...»应满足«Skip Record If...» (4.9)定理4.1的证明:考虑两个1次微分形式«Skip Record If...»,«Skip Record If...». (4.10)由引理可知存在积分因子«Skip Record If...»使得«Skip Record If...»是全微分,即有函数«Skip Record If...»,«Skip Record If...»使得«Skip Record If...» (4.11) 由此可见«Skip Record If...». (4.12) 因为«Skip Record If...»,参数变换«Skip Record If...»是可允许的. 在新的参数«Skip Record If...»下,«Skip Record If...»同理有«Skip Record If...». □注满足条件的新参数仅是局部存在的,并且不能使得«Skip Record If...».定理4.2 在曲面«Skip Record If...»上每一点«Skip Record If...»,有«Skip Record If...»点的一个邻域«Skip Record If...»,使得在«Skip Record If...»上存在新的参数«Skip Record If...»,满足«Skip Record If...».证明. 取向量场«Skip Record If...». 则«Skip Record If...»线性无关,且«Skip Record If...». □注在曲面«Skip Record If...»上,令«Skip Record If...»,«Skip Record If...».则«Skip Record If...»是曲面上的单位正交切向量场,称为«Skip Record If...»的Schmidt正交化.课外作业:习题1,3§ 3.5 保长对应和保角对应一、曲面到曲面的连续可微映射设有两个曲面«Skip Record If...»和«Skip Record If...». 因为曲面上的点«Skip Record If...»与它的参数(曲纹坐标)是一一对应的,从曲面«Skip Record If...»到曲面«Skip Record If...»的映射«Skip Record If...»可以通过它们的参数表示出来,即有映射«Skip Record If...»使得«Skip Record If...»,或«Skip Record If...».«Skip Record If...» «Skip Record If...»«Skip Record If...» «Skip Record If...» «Skip Record If...»将映射«Skip Record If...»通过它们的参数用两个函数表示出来,则有«Skip Record If...» (5.1)如果(5.1)中的两个函数都是连续可微的,则称映射«Skip Record If...»是连续可微的. 这一概念在曲面的可允许参数变换下保持不变,因此与这两个曲面的参数取法无关.以下总假定映射«Skip Record If...»有足够的连续可微性.二、切映射设两个曲面«Skip Record If...»的参数方程分别为«Skip Record If...»和«Skip Record If...»,«Skip Record If...». 映射«Skip Record If...»是连续可微的,它的参数表示为«Skip Record If...»,其中«Skip Record If...». (5.1)’则对每一点«Skip Record If...»,可以通过下面的方法定义一个线性映射«Skip Record If...»,其中«Skip Record If...»«Skip Record If...»«Skip Record If...». (5.9)上面定义的映射«Skip Record If...»称为由连续可微映射«Skip Record If...»诱导的切映射. 由上面的定义可见切映射«Skip Record If...»把«Skip Record If...»映为«Skip Record If...».在(5.9)中令«Skip Record If...»,可知«Skip Record If...»在切映射«Skip Record If...»下的象是«Skip Record If...». (5.9)’由于每个切向量«Skip Record If...»都是«Skip Record If...»上的某一过«Skip Record If...»点的曲线«Skip Record If...»,«Skip Record If...» (5.2)在«Skip Record If...»点的切向量:«Skip Record If...»,其中«Skip Record If...»为«Skip Record If...»点的曲纹坐标,且«Skip Record If...»,«Skip Record If...»(见(2.3)式),切映射也可以用另一种方法来定义:«Skip Record If...»将«Skip Record If...»上的曲线«Skip Record If...»映为«Skip Record If...»上的曲线«Skip Record If...»,«Skip Record If...». (5.3)定义«Skip Record If...»为«Skip Record If...»在«Skip Record If...»处的切向量,即«Skip Record If...» (5.5)«Skip Record If...»«Skip Record If...». (5.4)在(5.3)’中分别取«Skip Record If...»和«Skip Record If...»,可得«Skip Record If...». (5.7)1D因此切映射«Skip Record If...»在自然基«Skip Record If...»下的矩阵恰好是映射«Skip Record If...»的Jacobi 矩阵. 由此可知在«Skip Record If...»点切映射«Skip Record If...»是线性同构,当且仅当在«Skip Record If...»点映射(5.1)’的Jacobi 行列式«Skip Record If...».定理5.1 设映射«Skip Record If...»是(3次以上)连续可微的. 如果在«Skip RecordIf...»点切映射«Skip Record If...»是线性同构,则分别有«Skip Record If...»点的邻域«Skip Record If...»和«Skip Record If...»点的邻域«Skip Record If...»,«Skip RecordIf...»,以及«Skip Record If...»上的参数系«Skip Record If...»和«Skip Record If...»,使得映射«Skip Record If...»的参数表示为«Skip Record If...»,其中«Skip Record If...». 这种参数系称为映射«Skip Record If...»的适用参数系.证明 设«Skip Record If...»的参数方程分别为«Skip Record If...»和«Skip RecordIf...»,«Skip Record If...»的参数表示为«Skip Record If...».由条件,«Skip Record If...». 设«Skip Record If...»点的曲纹坐标为«Skip Record If...»,«Skip Record If...»点的曲纹坐标为«Skip Record If...».由于«Skip Record If...»是连续的,存在«Skip Record If...»在«Skip Record If...»中的邻域«Skip Record If...»,使得在«Skip Record If...»上«Skip Record If...»,且在«Skip Record If...»上«Skip Record If...»有连续可微的反函数«Skip Record If...»,其中«Skip Record If...»是«Skip Record If...»在«Skip Record If...»中的邻域. 在«SkipRecord If...»上对曲面«Skip Record If...»作参数变换«Skip Record If...». 在«Skip Record If...»上对曲面«Skip Record If...»作参数变换«Skip Record If...». 则在新的参数下,«Skip Record If...»的参数表示为«Skip Record If...».«Skip Record If...» «Skip Record If...» «Skip Record If...» «Skip Record If...»«Skip Record If...» «Skip Record If...» «Skip Record If...» «SkipRecord If...»«Skip Record If...» «Skip Record If...» «Skip Record If...» «Skip Record If...» «Skip Record If...»三、保长对应(等距对应)设«Skip Record If...»是连续可微映射,«Skip Record If...»和«Skip Record If...»分别是«Skip Record If...»的曲纹坐标. «Skip Record If...»的参数表示为«Skip Record If...».因为«Skip Record If...»,对于曲面«Skip Record If...»上的任意一个二次微分式«Skip Record If...», (5.11)ψ1|U ϕ1Ωψ11(,)u v 22(,)(,)u v u v =我们可定义曲面«Skip Record If...»上的一个二次微分式«Skip Record If...», (5.12) 其中«Skip Record If...»,«Skip Record If...». (5.15) 其中«Skip Record If...»作为复合函数,是«Skip Record If...»的函数,即«Skip Record If...»«Skip Record If...»(5.13)«Skip Record If...»二次微分式«Skip Record If...»称为«Skip Record If...»上的二次微分式«Skip Record If...»经过映射«Skip Record If...»拉回(pull back)到«Skip Record If...»上的二次微分式.简单来说,«Skip Record If...»就是将«Skip Record If...»代入(5.11)右端而得.例曲面«Skip Record If...»上的第一基本形式«Skip Record If...»是一个二次微分式. 拉回到«Skip Record If...»上,«Skip Record If...»由于«Skip Record If...»,上式可以简单地写成«Skip Record If...» (*)定义5.1设映射«Skip Record If...»是3次以上连续可微的. 如果对每一点«Skip Record If...»,切映射«Skip Record If...»都保持切向量的长度,即«Skip Record If...»,«Skip Record If...»,«Skip Record If...».则称«Skip Record If...»是从«Skip Record If...»到«Skip Record If...»的保长对应(correspondence preserving length),或称等距对应(isometry).注1. 保持向量长度的线性映射一定保持内积,因此若«Skip Record If...»是等距对应,则有«Skip Record If...»,«Skip Record If...»,«Skip Record If...».反之,保持内积的线性映射也一定保持向量的长度.而且,保长对应也保持连续可微曲线的弧长,即有«Skip Record If...».注2. 保持内积的线性映射必定是线性同构. 因此对于保长对应«Skip Record If...»,在每一点«Skip Record If...»,切映射«Skip Record If...»都是线性同构,从而局部地«Skip Record If...»是微分同胚,存在适用参数系.由(5.9)’可知«Skip Record If...».利用(*)得到«Skip Record If...»,其中«Skip Record If...»是«Skip Record If...»的第一基本形式. 于是有定理5.2设映射«Skip Record If...»是3次以上连续可微的. 则«Skip Record If...»是等距对应的充分必要条件是。
§3 曲面的第一基本形式

第三章 曲面的第一基本形式§3 曲面的第一基本形式在指定的曲面上,测量曲线的长度并确定弧长元素、面积元素等等几何量,理所当然是曲面几何学基本的问题之一.第二章已经提到,勾股定理确定了三维 Euclid 空间的基本度量规则,确定了这个空间中的长度的概念以及关于距离的几何学.作为该空间的几何子体,曲线和曲面上的度量规则由空间的度量规则而“诱导”确定,这是一种直观的自然方式;子体和原有空间——三维 Euclid 空间的几何属性,将在这种方式之下自然地联系在一起,构成空间几何属性的整体.本节将讨论曲面在这种方式之下的基本结果;而关于其他方式之下的讨论,将在第六章中和第八章中逐步引出和深入进行.本节总记正则曲面 S 的参数方程为 r = r (u , v ) , (u , v )∈U ⊂R 2 .一.曲面上的弧长元素首先考虑曲面 S 上的曲线段的长度和弧长元素.设 C : r = r (u (t ), v (t )) , t ∈[a , b ]是 S 的正则曲线上的一个弧段.通常也用平面区域 U 上的参数方程 {u = u (t )v = v (t ), t ∈[a , b ] 表示曲线 C ;但要注意区分该表示式的双重含义:既表示平面区域 U上的一条参数曲线 C −1 ,同时也表示在曲面 S 上的对应曲线 C .为了区别不同的所在场合,当表示曲线 C时往往强调“在曲面 S 上”.对曲线 C 而言,有23图3-13 d r = r u d u + r v d v = r u d u d t t + r v d v d t d t ,d r d t = ⎝⎛⎠⎞r u d u d t+ r v d v d t | u =u (t ), v =v (t ) , d s 2 = d r •d r = (r u •r u ) d u 2 + 2(r u •r v ) d u d v + (r v •r v ) d v 2= d r d t • d r d t d t 2 = [ |r u |2 ⎝⎛⎠⎞ d u d t 2 + 2(r u •r v ) ⎝⎛⎠⎞ d u d t d v d t + |r v |2 ⎝⎛⎠⎞ d v d t 2 ]d t 2 . 按照经常通用的记号,记曲面上的量(3.1) E = E (u , v ) = r u •r u = |r u |2 , F = F (u , v ) = r u •r v , G = G (u , v ) = r v •r v = |r v |2 ,则进一步对曲线 C 有d s 2 = d r •d r = [E (u , v ) d u 2 + 2F (u , v ) d u d v + G (u , v ) d v 2 ]|u =u (t ), v =v (t ) = [E ⎝⎛⎠⎞ d u d t 2 + 2F ⎝⎛⎠⎞ d u d t d v d t + G ⎝⎛⎠⎞ d v d t 2 ]d t 2 , 此时取d s = | d r d t | d t =E ⎝⎛⎠⎞ d u d t 2 + 2F ⎝⎛⎠⎞ d u d t d v d t +G ⎝⎛⎠⎞ d v d t 2 | u =u (t ), v =v (t ) d t ,则有s (b ) − s (a ) = ∫b a d s d t d t = ∫b a | d r d t | d t = ∫b a E ⎝⎛⎠⎞ d u d t 2 + 2F ⎝⎛⎠⎞ d u d t d v d t + G ⎝⎛⎠⎞ d v d t 2 | u =u (t ), v =v (t ) d t .由此可见,使用平面区域 U 上的参数方程以及曲面的相应量,就可以得到曲面上的曲线的弧长元素和弧段长度;至于曲面及其上的曲线的位置向量如何,在上述算式中并不直接影响结果.曲面上的量对其上曲线的影响程度,将在进行进一步抽象之后,得到更明确的了解.对此应注意体会.二.第一基本形式定义1 对正则曲面 S : r = r (u , v ) , (u , v )∈U ⊂R 2 ,称二次微分式(3.2) Ⅰ = d s 2 = E (u , v ) d u 2 + 2F (u , v ) d u d v + G (u , v ) d v 2为曲面 S 的第一基本形式,或称线素,其中系数由 (3.1) 式给出.注记: 曲面的第一基本形式系数也称为其第一基本量. 用进一步的几何语言来说,第一基本形式是由 E 3 的欧氏度量在曲面上所诱导出来的一种Riemann 度量.按照定义,曲面第一基本形式d s 2 = d r •d r 的几何意义可用逼近的观点解释为:切向微元 d r 是位置差向量 [r (u +d u , v +d v ) − r (u , v )] 的线性主部,而弧长元素 d s = |d r | 是相应两点之间的距离微元的主部(略去的是高阶无穷小).可证(留作习题)第一基本形式在容许参数变换下不变,且在刚体运动下不变;因而确实是曲面的几何量.从定义出发,第一基本形式的计算较为简单;但这是关于曲面的最基本和最重要的计算,一定要熟练掌握.下例展示了基本运算途径;同时,所得到的结论也是基本的.例1 已知平面 Π: r (u , v ) = r 0 + u a + v b ,其中三个常向量 r 0, a , b 满足规范条件 |a | = |b | = 1 , a •b = 0 .观察其第一基本形式的三种系数行为.① 平面 Π 的第一基本形式为d s 2 = d r •d r = (a d u + b d v )•(a d u + b d v ) = d u 2 + d v 2 .② 若在平面 Π 上采用极坐标系 (ρ, θ) ,即 {u = ρ cos θ v = ρ sin θ,则 r ρ = a cos θ + b sin θ ,r θ = (− a ρsin θ + b ρcos θ ) ;E (ρ, θ) = r ρ•r ρ = (a cos θ + b sin θ)•(a cos θ + b sin θ) = 1 ,F (ρ, θ) = r ρ•r θ = (a cos θ + b sin θ)•(− a ρsin θ + b ρcos θ) = 0 ,G (ρ, θ) = r θ•r θ = (− a ρsin θ + b ρcos θ)•(− a ρsin θ + b ρcos θ) = ρ2 ;此时,平面 Π 的第一基本形式(在极点无意义)为d s 2 = E (ρ, θ) d ρ2 + 2F (ρ, θ) d ρd θ + G (ρ, θ) d θ 2 = d ρ2 + ρ2 d θ 2 .③ 在平面 Π 上取任意一条无逗留点弧长 w 参数化曲线 C : ξ(w ) ,则其切线面r (w , t ) = ξ(w ) + t T (w ) 可表示一部分平面区域,其中 T 为 C 的单位切向.局部可得r w = T + t κ N ,r t = T ;E (w , t ) = r w •r w = (T + t κ N )•(T + t κ N ) = 1 + t 2κ 2 ,F (w , t ) = r w •r t = (T + t κ N )• T = 1 ,G (w , t ) = r t •r t = T • T = 1 ;此时,在平面 Π 上相应区域内,第一基本形式为d s 2 = E (w , t ) d w 2 + 2F (w , t ) d w d t + G (w , t ) d t 2= [1 + t 2κ 2(w )]d w 2 + 2d w d t + d t 2 .基于第一基本形式的不变性,需要注意,第一基本形式系数在容许参数变换下必须满足一定的变换规律.为了简便,可将第一基本形式 (3.2) 改写为形式矩阵,表示为(3.3) Ⅰ = d s 2 = (d u , d v ) ⎝⎛⎠⎞E F F G ⎝⎛⎠⎞d u d v ;相关各量分别表示为(3.4) d r = (d u , d v )⎝⎛⎠⎞r u r v, (3.5) d r •d r = (d u , d v )⎝⎛⎠⎞r u r v ⎝⎛⎠⎞r u r vT ⎝⎛⎠⎞d u d v , (3.6) ⎝⎛⎠⎞E F F G = ⎝⎛⎠⎞r u r v ⎝⎛⎠⎞r u r v T = ⎝⎛⎠⎞r u r v • (r u , r v ) ,其中各式之中的位置向量视为行向量,分块矩阵之间用“•”表示数量积.定义2 对正则曲面 S : r = r (u , v ) ,称二次型 (3.2) 或 (3.3) 的系数矩阵,即 (3.6) 式左端,为曲面 S 的第一基本形式系数矩阵;其行列式(3.7) E F F G = EG − F 2 = |r u |2|r v |2 − (r u •r v )2 = |r u ×r v |2 > 0 ,称为曲面 S 的第一基本形式系数行列式.性质 ① 正则曲面 S 的第一基本形式 (3.2) 是正定的二次型,即:d s 2 ≥ 0 ,且等号当且仅当 d u = d v = 0 时成立;② 正则曲面 S 的第一基本形式系数矩阵是正定的.这两条性质是等价的;它们的证明已经隐含在定义之中.下面具体考虑它们在容许参数变换下的行为.在容许参数变换 {u = u (u *, v *)v = v (u *, v *)下,记Jacobi 矩阵和Jacobi 行列式分别为(3.8) J = ⎝⎜⎛⎠⎟⎞∂u ∂u * ∂v ∂u *∂u ∂v * ∂v ∂v * ,∂(u , v ) ∂(u *, v *) = |J | ; 记参数 (u *, v *) 下曲面 S 的第一基本形式为d s 2 = E *(u *, v *) d u *2 + 2F *(u *, v *) d u *d v * + G *(u *, v *) d v *2 .则由 (1.6) 式和 (1.7) 式分别代入 (3.6) 式和 (3.7) 式可得(3.9) ⎝⎛⎠⎞E * F *F * G * = ⎝⎛⎠⎞ r u * r v * ⎝⎛⎠⎞ r u * r v *T= J ⎝⎛⎠⎞ r u r v ⎝⎛⎠⎞ r u r vT J T = J ⎝⎛⎠⎞E F F G J T , (3.10) E *G * − F *2 = |J |2(EG − F 2) .这是两个具有理论意义的等式.第一个等式说明,第一基本形式系数矩阵服从所谓“张量”的变换规律,从而成为张量概念(将在后续几何或代数课程中出现)的直观背景之一.第二个等式将在下一段用来支持面积元素的概念,等价地写为(3.11) E*G* −F*2=||J||EG−F2.例2以平面弧长参数曲线为准线作柱面S,考察其第一基本形式;并证明其第一基本形式在某正则参数 (u, v) 下可以表示为 d s2= d u2+ d v2.解:平面弧长参数曲线设为C: a(s*) ,设S: r(s*, v) =a(s*) +v l , l= const. , |l|= 1 .则其第一基本形式为d s2=|d r|2=|a′(s*) d s* +l d v|2= d s*2+ 2[a′(s*)•l] d s*d v+ d v2.当直纹与准线C所在平面垂直时,a′(s*)•l≡ 0 ,则令 (u, v) = (s*, v) ,便可满足要求.当直纹与准线C所在平面不垂直时,可选取新的平面弧长参数曲线使直纹与新准线所在平面垂直(想想理由并自行给出解析论证),故可转化为上一种情形.三.交角与面积元素作为应用,下面考虑如何利用曲面的第一基本形式,以确定交角和面积等几何量.对于不同的曲线或曲面,它们在公共点的交角总是指它们在该点处的切线或切平面之间的夹角,而有向交角通常是指它们在该点处的单位切向或有向切平面之间的有向夹角.在自然标架下,有关曲面以及其上曲线的交角问题和面积问题,都可以利用自然基向量的数量积或向量积进行计算,从而转化为如何用第一基本形式表述或求解的问题.一般化的算法,体现在下面的较为具体的抽象计算过程中;而计算结果的意义,需要特别注意体会.1.曲面上的曲线的交角假设曲面S的第一基本形式以 (3.2) 式确定;曲面S上的两条曲线C i: {u=u i(t i)v=v i(t i)相交于点P0: r(u0, v0) ,(u0, v0) = (u i(t i0), v i(t i0)) ,i= 1, 2 .C i在点P0处的自然切向为r u(u0, v0) u i′(t i0) +r v(u0, v0) v i′(t i0) .简记a i= u i′(t i0) ,b i= v i′(t i0) ,E0=E(u0, v0) , F0=F(u0, v0) , G0=G(u0, v0) .则C i在点P0处的交角θ0的余弦确定为r u(u0, v0) u1′(t10) +r v(u0, v0) v1′(t10) |r u(u0, v0) u1′(t10) +r v(u0, v0) v1′(t10)|•r u(u0, v0) u2′(t20) +r v(u0, v0) v2′(t20) |r u(u0, v0) u2′(t20) +r v(u0, v0) v2′(t20)|=a1a2E0+ (a1b2+ b1a2)F0+ b1b2G0a12E0+ 2a1b1F0+ b12G0a22E0+ 2a2b2F0+ b22G0.利用微分形式的不变性,可知(d u i : d v i )|u i= u i(t i) , v i= v i(t i) ; t i=t i0=u i′(t i0) : v i′(t i0) =a i : b i,从而 cosθ0确定为E d u1d u2+F(d u1d v2+ d v1d u2) + G d v1d v2E d u12+ 2F d u1d v1+G d v12E d u22+ 2F d u2d v2+ G d v22|u i= u i(t i) , v i= v i(t i) ; t i=t i0.此式自然推广到一般切方向之上;即,设点(u, v) 处的两个切向微元在自然基 {r u, r v} 下分别为 d u:d v和δu:δv,则其间夹角余弦确定为(3.12) cosθ=E d uδu+F(d uδv+ d vδu) + G d vδvE d u2+ 2F d u d v+G d v2Eδu2+ 2Fδuδv+ Gδv2.该式表明:曲面上的曲线的交角,由曲面的第一基本形式以及曲线在交点处的切方向完全确定;而曲线的切方向只由参数区域上的原像即可确定.此处要注意,参数区域上的曲线原像之间的交角取决于区域本身,而与曲面上的交角没有必然的联系.可参考图3-13观察这个事实.将 (3.12) 式用于坐标曲线族,将得到有价值的推论,列为如下定理.定理1对正则曲面而言,两族坐标曲线处处正交的充要条件为其第一基本形式系数矩阵处处是对角阵.证明(从自然切向的数量积出发,直接易证;下述过程是为了帮助理解 (3.12) 式) 在本节通用记号下,两族坐标曲线的切线分别为 1:0 和0:1 ,代入 (3.12) 式即得坐标曲线夹角余弦cosθ=FEG;从而两族坐标曲线处处正交的充要条件为F≡ 0 ,即得结论.定义2对正则曲面S: r=r(u, v) ,若两族坐标曲线处处正交,则称参数(u, v) 为曲面S的一组正交参数,同时称这两族坐标曲线构成曲面S的一组正交参数网或正交网.定理1确定了曲面正交参数网的第一基本形式特征.在计算问题中,简短的第一基本形式显然会带来许多方便;因此,正交参数无疑是曲面上的一种较好的参数.关于曲面上较“好”参数(不一定正交)的讨论,将在 §5 以及第四章和第六章中多处出现.例3对正则曲面S: r=r(u, v) ,求两族坐标曲线的二等分角轨线C的微分方程.解:对于两族坐标曲线的自然切向r u和r v,二等分角向量场为r u |r u|±r v|r v|=r uE±r vG.故轨线C的切向微元r u d u+r v d v处处与该向量场平行,即沿C有d u:d v=1E:±1G,从而所求微分方程为E d u±G d v= 0 .例4已知正则曲面S: r=r(u, v) 的第一基本形式确定为 (3.2) 式.设微分方程α(u, v) d u2+ 2β(u, v) d u d v+γ(u, v) d v2= 0 在定义区域内过点 (u0, v0)有且仅有不相切的正则解曲线Γi: {u=u i(t i)v=v i(t i),i= 1, 2 ;两条曲面S上的曲线C i: {u=u i(t i)v=v i(t i)相交于点P0: r(u0, v0) .试证:两条曲线C i正交于点P0的充要条件为(Eγ− 2Fβ+Gα)|(u, v) = (u0, v0)= 0 .证明:记α0=α(u0, v0) , β0=β(u0, v0) ,γ0=γ(u0, v0) .记两条曲线C i在点 (u0, v0) 处的两个切向微元分别为a i : b i,则由正则性可知a i2+b i2≠ 0 ;由微分方程可知α0 a i2+ 2β0a i b i+γ0b i2= 0 .而由 (3.12) 式,C i之间正交条件写为a1a2E0+ (a1b2+ b1a2)F0+ b1b2G0= 0 .以下分两种情形讨论.情形①:α0=γ0= 0 ,则β0≠ 0 ;否则过点 (u0, v0) 的正则曲线都是解曲线,而与已知矛盾.此时,由微分方程知a i b i= 0 ,故只能有两组解{a1= 0, b1≠ 0 ,a2≠ 0 , b2= 0 ;或{b1= 0 , a1≠ 0 ,b2≠ 0 , a2= 0 ;对应正交条件等价化为F0= 0 ,即为所论条件.情形②:α0和γ0不同时为 0 ,不妨设α0≠ 0 ;则由微分方程可知,必有b i≠ 0 ;此时,不妨规范为b i= 1 ,则方程转化为α0 a i2+ 2β0a i+γ0= 0 .此时,由一元二次方程系数的性质,得知a1+a2=−2β0α0,a1a2=γ0α0,从而a 1a 2E 0 + (a 1b 2 + b 1a 2)F 0 + b 1b 2G 0 = a 1a 2E 0 + (a 1 + a 2)F 0 + G 0= γ0 α0 E 0 + −2β0 α0F 0 +G 0 = 1 α0 (γ0E 0 −2β0F 0 + α0G 0) . 此式说明所论条件为充要条件.以上情形是完全分类,故结论得证.2.曲面的面积元素和区域面积现考虑曲面 S 的面积在已知第一基本形式之时的求解问题.在参数区域 U 内,任取矩形使其分别以点 (u , v ), (u +d u , v ),(u , v +d v ), (u +d u , v +d v ) 为顶点,则在曲面 S 上对应形成以点 P 1:(u , v ), P 2: (u +d u , v ), P 3: (u , v +d v ),P 4: (u +d u , v +d v ) 为顶点的坐标曲线四边形.按照微积分理论,在略去更高阶无穷小量时,该曲边四边形的面积就等于直边三角形 P 1P 2P 3 面积的二倍,从而就等于由向量 P 1P 2 和 P 1P 3 所张成的平行四边形的面积.而在略去更高阶无穷小量时,图3-14P 1P 2×P 1P 3 = [r (u +d u , v ) − r (u , v )]×[r (u , v +d v ) − r (u , v )]≈ [r u (u , v )d u ]×[r v (u , v )d v ] = EG − F 2 d u d v n (u , v ) ,故曲面的面积元素可以表示为(3.13) d σ = |r u ×r v | d u d v = EG − F 2 d u d v ,其中第二个等号是根据 (3.7) 式.进而,曲面上任一有界区域 r (U 0) 的面积 A (U 0) 可以表示为(3.14) A (U 0) = ∫∫ U 0 d σ = ∫∫ U 0 |r u ×r v | d u d v = ∫∫ U 0EG − F 2 d u d v . 在参数变换下,根据 (3.8) 和 (3.10) 式以及二重积分的变量代换公式,易知面积元素对应相同,面积也对应相同;这与几何属性是相容的.以上结果的核心,列为如下定理.定理2 正则曲面的面积元素和区域面积由第一基本形式可完全确定.习 题⒈ 证明正则曲面的第一基本形式在容许参数变换下不变.⒉ 证明正则曲面的第一基本形式在 E 3 的正交标架变换下不变.⒊ 试求下列曲面的第一基本形式:① 单位球面 r (u , v ) = (2u u 2 + v 2 + 1 , 2v u 2 + v 2 + 1 , u 2 + v 2 − 1 u 2 + v 2 + 1) ; ② 悬链面 r (u , t ) = (t , cos u ch t , sin u ch t ) .⒋ 在螺面 r = (u cos v , u sin v , ln cos u + v ) 上,试证:每两条螺线(v 线)在任一 u 曲线上截取等长的曲线段.⒌ 球面上的斜驶线是指与经线交成定角的轨线,试在经纬参数化下确定其微分方程.⒍ 已知正则曲面 S : r (u , v ) 之上有两族正则曲线 ϕ( u , v ) = a 和 ψ( u , v ) = b ,其中a 和b与 (u , v ) 无关.试证:它们互相正交的充要条件为E ϕv ψv −F (ϕu ψv + ϕv ψu ) +G ϕu ψu = 0 .⒎ 已知曲面的第一基本形式为 d s 2 = d u 2 + (u 2 + 4) d v 2 .试求:① 其上两条曲线 C 1: u + v = 0 与 C 2: u − v = 0 的交角;② 其上三条曲线 C 1: u = v 2 , C 2: u = − v 2 与 C 3: v = 1 所围成的曲边三角形的边长和各个内角;③ 其上三条曲线 C 1: u = v , C 2: u = − v 与 C 3: v = 1 所围成的曲边三角形的面积.。
第三章 参数多项式的插值与逼近

第三章 参数多项式的插值与逼近2009年8月29日10时35分 1本章内容•几何不变性与参数变换•参数多项式插值与逼近的基本概念•参数多项式插值曲线与逼近曲线•张量积曲面•参数双三次曲面片2009年8月29日10时35分 22009年8月29日10时35分 3第一节 几何不变性和参数变换 • 一、几何不变性:1、定义:指曲线曲面不依赖于坐标系的 选择,或者说在旋转与平移变化下不变 的性质。
2、曲线曲面的基表示: 0 n i i i P a j = = å r r 其中: 为矢量系数,修改它可以改变曲线曲面的形状i a r i j 为单参数(表示曲线时)或双参数(表示曲面时) 的基函数,决定曲线曲面的几何性质2009年8月29日10时35分 43、基表示的分类:(1)规范基表示:即满足Cauchy 条件 也称权性。
这种表示下,曲线 (面)上的点是矢量系数的一个重心组 合,重心坐标是基函数。
其中 一、几何不变性:0 1n i i j = º å 我们常见的线性插值就是一种规范基表示。
(2)部分规范基表示:即满足 0 1,0 ki i k n j = º£< å 如: 01 () p u a a u =+ r r r 0 1j =一、几何不变性:(3)非规范基表示:除规范基表示和部分规范基表示以外的其它基表示。
4、基表示与几何不变性的关系:曲线曲面的规范基表示具有仿射不变性, 其余两种只具有几何不变性。
5、几何不变性的意义: (1)方便局部坐标与整体坐标之间的转换;(2)便于平移和旋转变换;(3)节省了计算量。
2009年8月29日10时35分 5• 1、概述• 曲线的参数域总是有界的。
• 曲线的参数可能有某种几何意义,也可能没有。
• 曲线的参数化:即确定曲线上的点与参数域中的参数值之间的一种对应关系。
• 这种对应关系可以是一一对应的,也可以不是一一对应的,后者称为奇点(Singularpoint),如曲线的自交点。
第三章曲面的第二基本形式

第三章 曲面的第二基本形式§3.1第二基本形式1、设下列曲面的第二基本形式:(1))sin ,sin cos ,cos cos (ϕθϕθϕb a a r = (2)+=)(21,,22v u v u r (3))2),(),((uv v u a v u a r −+=2、求曲线r =r (s )的切线面的第二基本形式,其中s 是曲线的弧长参数。
3、求曲面),(y x f z =的第一、第二基本形式。
4、证明:当曲面在空间E 3中作刚体运动时,它的第一基本形式和第二基本形式是不变的。
5、直接证明:如果在可展曲面S 上存在两个不同的单参数直线族,则S 必定是平面(本题同时说明了在非平面的可展曲面上不可能存在两个不同的单参数直线族)。
§3.2 法曲率1、设悬链面的方程为))ln(,sin ,cos (222222a u u a v a u v a u r ++++=求它的第一基本形式和第二基本形式,并求它在点(0,0),沿切向量dr =2r u +r v 的法曲率。
2、证明:曲面上一条曲线在任意一点的法曲率等于该曲线在该点、由其切向量决定的法截面上的投影曲线在该点的相对曲率。
3、求下列曲面上的渐近曲线:(1)正螺旋面:),sin ,cos (bv v u v u r =(2)双曲抛物面:−+=2,2,2uv v u v u r 4、设C 是曲面上一条非直线的渐近曲线,其参数方程为u =u (s ),v =v (s ),其中s 为弧长参数。
证明:C 的挠率等于N M L G F E u v u v F EG 222)()(1&&&&−−=τ 5、设n 是正整数,则)||,sin ,cos (n n t signt t r t r ⋅=α落在圆柱面x 2+y 2=r 2上,试求曲线n α在t =0处的法曲率。
验证:当n ≥2时,曲线n α在t =0处的曲率中心在一个圆周上。
课件:第三章 参数曲面 切平面

切向量
• 曲面 S上过 p(u0,v0)点的任意一条连续可微曲 线在该点的切向量称为S 曲p面 在 点的一个 切向量(tangent vector).
v
v v0 r (u0,v0 ) r
(u0 , v0 )
x D
u
图3.1
u u0
z y
曲面的切空间
• 曲面S 在p 点的切向量全体记Tp为S ,它是 一个2维实向量ru空(u0,间v0 ),,rv (u0,v0 ) TpS 是 的一个基. 事实上,
X (t) r (u,v) tn(u,v)
曲面的切空间,切平面和法线
• 曲面上的自然标架r:(u,v);ru (u,v),rv (u.v),n(u,v)
n
z ቤተ መጻሕፍቲ ባይዱv
ru
x
图3.6
y
连续可微函数的等值面
• 设 D E是3 一个区域,f (x, y, z) 是定义在D 上的 连续可微函数. 对于一个c 常R 数 ,集合
dr (u,v) ru (u,v)du rv (u,v)dv
将 u,v,du,dv看作4个独立的变量,则对d于u,dvdu : dv 的不同取值,就得到不同的切向量.有时也du用: dv 比值 来表示曲面上的一个切方向. 自然,这 时要求 不能全为0.
• 作业:1,3,5
切平面的参数方程为
X (, ) r (u,v) ru (u,v) rv (u,v),(, ) R2
法向量
• 切平面的单位法向量(unit normal vector)为
n(u,v) ru rv (u,v) | ru rv |
法线
• 经过点p(u,v)S 且垂直于S 在p 点的切平面 的直线称为S 曲p面 在 点的法线(normal line). 它的参数方程为
微分几何(第三版)【梅向明_黄敬之_编】第三章课后题答案[1]
![微分几何(第三版)【梅向明_黄敬之_编】第三章课后题答案[1]](https://img.taocdn.com/s3/m/ec2031ed524de518974b7d0c.png)
§4.直纹面和可展曲面1. 证明曲面r =}32,2,31{2432v u u uv u v u +++是可展曲面.证法一: 已知曲面方程可改写为r =},2,{432u u u +v }32,,31{2u u ,令()a u =},2,{432u u u ,()b u =}32,,31{2u u ,则r =()a u + v ()b u ,且()b u ≠0,这是直纹面的方程 ,它满足(',,')a b b =23226412334013u u u u u u =0 ,所以所给曲面为可展曲面。
证法二:证明曲面的高斯曲率为零。
(略)2。
证明曲面r={cosv-(u+v)sinv, sinv+(u+v)cosv,u+2v}是可展曲面。
证法一: 曲面的方程可改写为 r=()a v + u ()b v ,其中()a v ={cosv-vsinv,sinv+vcosv, 2v},()b v ={-sinv, cosv,1} ,易见()b v ≠0,所以曲面为直纹面,又因为(',,')a b b =2sin cos 2cos sin 2sin cos 1cos sin 0v v v v v v v v vv ------=0,所以所给曲面为可展曲面。
证法二:证明曲面的高斯曲率为零。
(略)3.证明正螺面r={vcosu,vsinu,au+b}(a ≠0)不是可展曲面。
证法一:原曲面的方程可改写为r=()a u + v ()b u ,其中()a u ={0,0,au+b},()b u ={cosu,sinu,0}.易见()b u ≠0, 所以曲面为直纹面,又因为(',,')a b b =00cos sin 0sin cos 0au u u u -=a ≠0.故正螺面不是可展曲面。
证法二:证明曲面的高斯曲率为零。
(略)4.证明挠曲线的主法线曲面与副法线曲面不是可展曲面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它们相互正交的充分必要条件是
Edu u F (du v dv u) Gdv v 0 .
正交曲线网
在参数曲面 S : r r (u, v) 上,参数曲线网是正交 曲线网 F 0 . 对于参数曲面 S : r r (u, v) 上的一条曲线 C : u u(t ), v v(t ), t [a, b] ,它的弧长为
第一基本形式
两个切向量 dr rudu rvdv 和 r ru u rv v 之间的 夹角 (dr , r ) 满足
cos (dr , r ) dr r | dr || r | Edu u F (du v dv u ) Gdv v Edu 2 2 Fdudv Gdv 2 E u 2 2F u v G v 2
L | dr | | r (u(t ), v(t )) | dt
a a b b b
a
Eu2 2 Fuv Gv 2 (t )dt
.
面积元素
定义 称 d EG F 2 dudv 为曲面 S 的面积元 素,称
A d
D D
EG F 2 dudv
2 2
第一类基本量之间的关系为
u 2 u v v 2 E ru 2 E u 2 F u u G u , u u u v u v v F ru rv E u v F u v v u G u 2 u 2 u v v 2 G r E 2 F G v v . v v v v v
为曲面 S 的面积.
曲面的几何量
曲面上曲线的弧长 L ,曲面的面积元素 d 以 及曲面的面积 A 都是几何量.
[a, b]
D
r r1
C S
D1
1
r1
,
新的参数 u, v 下,第一基本形式保持不变:
E F du E F T du E F du I (du, dv ) ( du , dv ) J J ( du , dv ) F G dv F G dv I dv F G
第一基本形式
设 S : r r (u, v) 是 E 3 中一个正则参数曲面. 则 dr (u, v) ru (u, v)du rv (u, v )dv 是曲面上任意一点 r (u, v ) 处的 切向量,这个向量作为 E 3 中的向量可以计算它的长度. 令 E (u, v) ru (u, v) ru (u, v) : ru ru (u, v) , F (u, v) ru rv (u, v) rv ru (u, v) , G(u, v ) rv rv (u, v ) . 这三个函数 E, F , G 称为曲面 S 的第一类基本量.
.
第一基本形式
第一基本形式与参数选择无关,也与 E 3 的标 架选择无关,是一个几何量. 其实,这一结论也可 由微分形式不变性直接得到: I dr dr | dr | .
2
第一基本形式
如果 dr rudu rvdv 和 r ru u rv v 是 r (u, v) 处的 两个切向量,则它们的内积为
第一基本形式
利用第一类基本量 E, F , G 的定义,有
dr dr (ru du rv dv )2 Edu 2 2Fdudv Gdv 2 .
这是一个关于变量 du, dv 的二次型,称为曲面 S 的 第一基本形式(first fundamental form),记为
E F du I dr dr Edu 2 Fdudv பைடு நூலகம்dv (du, dv) F G dv .
E F du dr r (du, dv ) Edu u F (du v dv u) Gdv v F G dv
. 因此切向量 dr rudu rvdv 的长度为
| dr | Edu 2 2Fdudv Gdv 2 .
第一基本形式
而矩阵 F
E F G
称为切空间(关于基底 ru , rv )的度
量矩阵(metric matrix). 由于 E 3 的度量是正定的, 这是一个正定矩阵. 事实上, 它的 2 个顺序主子式 均 0: 2 2 E ru ru 0 , EG F 2 ru ru rv rv ru rv ru rv 0 . (Lagrange 恒等式)