人教版八下数学平行四边形复习教案
新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)

论的个数是
()
• A.2
• B.3
• C.4
• D.5
7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥
AB 于点 E,PF⊥AC 于点 F,M 为 EF 中点,则 AM 的最小值为
(D )
A.54
B.45
C.53
D.65
8.如图,ABCD 是正方形,E、F 分别是 DC 和 CB 的延长
∠CBF,∴BF平分∠ABC.
• (3)解:△BEF是等腰三角形.理由如下:过 点F作FG⊥BE于点G.∵AD∥BC,FG⊥BE,
BE⊥AD,∴FG∥AD∥BC.∵F为CD的中点,
∴EG=BG,∴EF=BF,∴△BEF是等腰三
• ★集训2 特殊平行四边形的性质与判定的相 关计算与证明
• 7.已知四边形ABCD中,对角线AC与BD相A 交于点O,AD∥BC,下列判断中错误的是 ()
D.4 个
(B )
• 二、填空题(每小题5分,共20分)
• 9.已知一个菱形的两条对角线的长分别为 5210和24,则这个菱形的周长为______.
• 10.【湖北武汉中考】以正方形ABCD的边 A30D°或作15等0°边△ADE,则∠BEC的度数是 _______________.
• 11.如图,矩形ABCD的对角2线0 BD的中点为 O,过点O作OE⊥BC于点E,连接OA,已知 AB=5,BC=12,则四边形ABEO的周长为 ______.
• 4.如图,在□ABCD中,E、F分别是AB、
DC边上的点,AF与DE相交于点P,BF与CE 相41交于点Q.若S△APD=16 cm2,S△BQC=25 cm2,则图中阴影部分的面积为______cm2.
人教初中数学八下 18.1.1 平行四边形的性质教案2 【经典教学设计合编】

平行四边形性质课标解读与教材分析【课标要求】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.教学内容分析:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等、对角线互相平分的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.教学目标知识与技能1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.过程与方法培养学生发现问题、解决问题的能力及逻辑推理能力.情感态度价值观1、培养学生观察、分析、猜想、归纳知识的自学能力.2、使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.3、初步达到演绎数学论证过程的能力.教学重点与难点重点平行四边形的定义,平行四边形对角、对边相等、对角线互相平分的性质,以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.媒体教具三角板课时1课时教学过程修改栏教学内容师生互动配套练习P23-251、典型例题讲析2、基础演练运用平行四边形的性质进行有关的论证和计算.板书设计作业布置教学反思平行四边形的判定——三角形的中位线课标解读与教材分析【课标要求】1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.教学内容分析:一、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?二、定义:连接三角形两边中点的线段叫做三角形的中位线.【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)三、例题分析例1如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形. 方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC .(也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE到F ,使EF=DE ,连接CF 、CD和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形. 分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.∵ AH=HD ,CG=GD , ∴ HG ∥A C ,HG=21AC (三角形中位线性质). 同理EF ∥AC ,EF=21AC .∴ HG ∥EF ,且HG=EF . ∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.板 书设 计作业布置教 学反 思18.1.1 平行四边形的性质一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:18.1.1 平行四边形的性质三、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.四、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:。
人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。
通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。
二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。
但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。
在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。
三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。
2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:平行四边形的性质及其应用。
2.难点:对角线的性质和判定平行四边形的方法。
五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。
六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。
2.课件:平行四边形的性质及其应用。
七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。
2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。
设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。
3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。
学生互相检查,教师巡回指导。
设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。
4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。
设计意图:巩固所学知识,提高学生的判断能力。
人教版八年级下册数学《正方形》平行四边形研讨复习说课教学课件

A
B
O
D
C
阶段归纳
正方形判定的常用方法:
+
一个角是直角 或对角线相等
先判定菱形
矩形条件(二选一)
先判定矩形
+
一组邻边相等, 或对角线垂直
菱形条件(二选一)
正方形 正方形
阶段归纳
平行四边形、矩形、菱形、正方形的判定总结
矩形
5种判定方法 四边形
平行四边形
一个角是直角且一组邻边相等
正方形
菱形
当堂练习
6.对角线互相平分,垂直,相等的四边形是正方形
几何语言表示 ∵AC⊥BD,AC平分BD,BD平分AC,AC=BD, ∴四边形ABCD是正方形
知识点四:正方形,菱形矩形平行四边形之间的关系
归纳总结:正方形是特殊的平行四边形,还是特殊的矩
形、特殊的菱形,因此正方形具有这些图形的所有性质. 判定正方形有两个思路:(1)先判定四边形是矩形,再判定
这个矩形是菱形;(2)先判定四边形是菱形,再判定这个菱形 是矩形.
例1 求证:正方形的两条对角线把这个正方形分成四个全等的 等腰直角三角形.
已知:如图,正方形ABCD中,对角线AC、BD相交于O。 求证:△ABO,△BCO,△CDO,△DAO是全等的等腰直角三角形。
证明:∵四边形ABCD是正方形。
知识点二:正方形的性质(从边,角,对角线,对称性四个方面研究)
1.角:正方形的四个角都是直角; 几何语言表示:在正方形ABCD中,∠ABC=∠BCD=∠CDA=∠DAB=90° 2.边:正方形的四条边都相等;对边平行。
几何语言表示:在正方形ABCD中,AB=BC=CD=DA,AB∥CD,AD∥BC
证一证
对角线互相垂直的矩形是正方形.
人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义

辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科老师:授课类型T 平行四边形的概念、性质T 平行四边形的断定C中位线定理授课日期时段教学内容一、同步学问梳理学问点1:平行四边形的定义:两组对边分别平行的四边形是平行四边形.表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD,记作ABCD”,读作“平行四边形ABCD”.留意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.学问点2:平行四边形的性质:(1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.邻角互补(3)对角线:平行四边形的对角线相互平分对称性:平行四边形是中心对称图形,两条对角线的交点是对称中心;二、同步题型分析题型1:平行四边形的边、角例1:已知,如图1,四边形ABCD为平行四边形,∠A+∠C=80°,平行四边形ABCD的周长为46 cm,且AB-BC=3 cm,求平行四边形ABCD的各边长和各内角的度数.分析:由平行四边形的对角相等,邻角互补可求得各内角的度数;由平行四边形的对边相等,得AB+BC=23 cm,解方程组即可求出各边的长.解:由平行四边形的对角相等,∠A+∠C=80°,得∠A=∠C=40°又DC∥AB,∠D及∠A为同旁内角互补,∴∠D=180°-∠A=180°-40°=140°.∴∠B=140°.由平行四边形对边相等,得AB=CD,AD=BC.因周长为46 am,因此AB+BC=23 cm,而AB-BC=3 cm,得AB=13 cm,BC=10 cm,∴CD=13 am.AD=10 cm.题后反思:留意充分利用性质解题.例2:如图2,在平行四边形ABCD中,E、F是直线BD上的两点,且DE=BF,你认为AE=CF吗?试说明理由.分析:本题主要考察平行四边形的性质.要证明AE=CF,可以把两线段分别放在两个三角形里,然后证明两三角形全等.解:AE=CF.理由:在平行四边形ABCD中,∵AB=CD且AB∥CD.∴∠ABE=∠CDF.∵DE=BF,∴ DE+BD=BF+BD,即BE=DF:∴△ABE≌△CDF ∴ AE=CF题后反思:利用平行四边形的性质解题时,一般要用到三角形全等学问,此题还可以证明其他三角形全等来证明两线段相等.题型2:平行四边形的周长例1:如图3,在平行四边形ABCD中,AC、BD相交于点O,作OE⊥BD于O,交CD于E,连接BE,若△BCE的周长为6,则平行四边形ABCD的周长为( B )图3A. 6B. 12C. 18D. 不确定分析:本题主要考察平行四边形的性质:对角线相互平分。
数学人教版八年级下册§18.1.2 平行四边形的判定(第一课时)教案

问题2:要求学生作业本上写出来。再口答。
教师多媒体出示图形和内容,学生在回顾问题1的基础上,写出几何语言。
自主达标题,学生当堂考试,评出成绩。
借助图形来理解,总结.
各抒己见,不拘泥于形式,师生互相补充,使语言表达的更准确完美,同时教师引导学生通过对平行四边形的判定的探索。
让学生体会到知识的获取过程,以及由性质引发出来的结论来。
学生自主练习
教师多媒体出示平行四边形性质定理的三个逆命题:(即平行四边形的判定定理),学生用几何语言写出定理。
要求学生口答,引导学生逐步会用几何语言书写规范的推理的过程。
(1)你有什么收获?
掌握了哪些平行四边形的判定方法?
(2)积累了哪些解题经验,在数学思想方法上有哪些收获?
如何用判定定理证明四边形是否为平行四边形?
1.边的关系:
(1)证明两组对边分别平行
(2)证明两组对边分别相等
2.角的关系:证明两组对角分别相等.
3.对角线的关系:证明两条对角线互相平分.(多媒体出示图形)
教
学目Leabharlann 标1、知识与技能:(1)在探索平行四边形的判别条件中,理解并掌握用边、角、对角线来判定平行四边形的方法.
(2)会综合运用平行四边形的判定方法和性质来解决问题.
2、过程与方法:经历平行四边形判定条件的探索过程,发展学生合情推理意识和表述能力。
3、情感态度与价值观:培养学生合情推理能力,经过严谨的规范书写表达,体会几何证明的逻辑关系,养成严谨的推理证明习惯。
2.根据下列条件,不能判定一个四边形为平行四边形的是( )
(A)两组对边分别相等
(B)两条对角线互相平分
(C)两条对角线相等
最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-

第 1 题图
第 2 题图
2.(4分)如图,在四边形ABCD中,E是BC边的中点,
连接DE并延长,交AB的延长线于F点,AB=BF.添
加一个条件,使四边形ABCD是平行四边形.你认为
下面四个条件中可选择的是( D )
A.AD=BC;
B.CD=BF;
C.∠A=∠C;
D.∠F=∠CDE。
3.(8分)(2013·镇江)如图,AB∥CD,AB=CD,点
6.(5分)小玲的爸爸在钉制平行四边形框架时,采用了
一种方法:如图所示,将两根木条AC,BD的中点
重叠,并用钉子固定,则四边形ABCD就是平行四
边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形 7.(8分)如图,在▱ABCD中,点E,F是对角线AC上两
四边形的个数为( ) A.4个; B.3个; C.2个; D.1个
9.已知三条线段的长分别为10 cm, 14 cm和8 cm, 如 果以其中的两条为对角线, 另一条为边, 那么可以 画出所有不同形状的平行四边形的个数为( ) A. 1个; B. 2个; C. 3个; D. 4个.
10.如图, 在▱ABCD中, 对角线AC, BD相交于点O, E,
∠CFD+∠DFE=180°,∴∠AEF=∠DFE.∴AE∥DF.∴四边形 AFDE 为平行四边形
4.(4分)如图,在▱ABCD中,点E,F分别在AD,BC
上,且BE∥DF,若∠EBF=45°,则∠EDF的度数
为 45 。
5.(A41第B分8C2.)1D如课.2为图时平,平行四行平四边边四行形形边四A,B形边C则D形的可中的判添,性定加AB的质∥条与C件D判,是定要的使四综边合形应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18章平行四边形
【教学目标】
1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法,三角形的中位线定理等;
2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;
3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
【教学重点】
1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形、三角形的中位线定理的知识体系及应用方法。
【教学难点】
平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学模式】
以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率。
【教具准备】三角板、实物投影仪、电脑、自制课件。
【教学过程】
一、以题代纲,梳理知识
(一)开门见山,直奔主题
同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。
(二)诊断练习
1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:
(1)AB=CD,AD=BC (平行四边形)
(2)∠A=∠B=∠C=90°(矩形)
(3)AB=BC,四边形ABCD是平行四边形(菱形)
(4)OA=OC=OB=OD ,AC⊥BD (正方形)
(5)AB=CD, ∠A=∠C ( ?)
2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。
3、顺次连结矩形ABCD各边中点所成的四边形是菱形。
4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。
5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。
(三)归纳整理,形成体系
1、性质判定,列表归纳
2、基础练习:
(1)矩形、菱形、正方形都具有的性质是(C)
A.对角线相等(距、正)
B. 对角线平分一组对角(菱、正)
C.对角线互相平分
D. 对角线互相垂直(菱、正)(2)正方形具有,矩形也具有的性质是(A)
A.对角线相等且互相平分
B. 对角线相等且互相垂直
C. 对角线互相垂直且互相平分
D.对角线互相垂直平分且相等(3)如果一个四边形是中心对称图形,那么这个四边形一定(D)
A.正方形
B.菱形
C.矩形
D.平行四边形
都是中心对称图形,A、B、C都是平行四边形
(4)矩形具有,而菱形不一定具有的性质是(B)
A. 对角线互相平分
B. 对角线相等
C. 对边平行且相等
D. 内角和为3600
问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。
(5)正方形具有而矩形不具有的特征是(D)
A. 内角为3600
B. 四个角都是直角
C. 两组对边分别相等
D. 对角线平分对角
问:那么正方形具有而菱形不具有的特征是什么?对角线相等
2、集合表示,突出关系
二、查漏补缺,讲练结合 (一)一题多变,培养应变能力 〖例题1〗
已知:如图1,□ABCD 的对角线AC 、BD 交于点O ,
EF 过点O 与AB 、CD 分别交于点E 、F . 求证:OE=OF .
证明: ∵
变式1.在图1中,连结哪些线段可以构成新的平行四边形?为什么?
对角线互相平分的四边形是平行四边形。
变式2.在图1中,如果过点O 再作GH ,分别交AD 、BC 于G 、H ,你又能得到哪些新的平行四边形?为什么?
对角线互相平分的四边形是平行四边形。
B
B
B
变式3.在图1中,若EF 与AB 、CD 的延长线分别交于点E 、F ,这时仍有OE=OF 吗?你还能构造出几个新的平行四边形?
对角线互相平分的四边形是平行四边形。
变式4.在图1中,若改为过A 作AH ⊥BC ,垂足为H ,连结HO 并延长交AD 于G ,连结GC ,则四边形AHCG 是什么四边形?为什么?
可由变式1可知四边形AHCG 是平行四边形, 再由一个直角可得四边形AHCG 是矩形。
变式5.在图1中,若GH ⊥BD ,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?为什么?
可由变式1可知四边形BGDH 是平行四边形, 再由对角线互相垂直可得四边形BGDH 是菱形。
变式6.在变式5中,若将“□ABCD”改为“矩形ABCD ”,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?若AB=6,BC=8,你能求出GH 的长吗?(这一问题相当于将矩形ABCD 对折,使B 、D 重合,求折痕GH 的长。
)
略解:∵AB=6,BC=8 ∴BD=AC=10。
设OG = x ,则BG = GD=252 x .
在Rt △ABG 中,则勾股定理得:
B
B
B
C
A
G
AB 2 + AG 2 = BG 2 , 即(
)()
2
2
2
2
2
252586+=
+-+x
x ,
解得 4
15
=
x . ∴GH = 2 x = 7.5.
(二)一题多解,培养发散思维
〖例题2〗
已知:如图,在正方形ABCD ,E 是BC 边上一点,
F 是CD 的中点,且AE = DC + CE .
求证:AF 平分∠DAE .
证法一:(延长法)延长EF ,交AD 的延长线于G (如图2-1)。
∵四边形ABCD 是正方形,
∴AD=CD ,∠C=∠ADC=90°(正方形四边相等,四个角都是直角) ∴∠GDF=90°,
∴∠C =
∠GDF
在△EFC 和△GFD 中 ⎪⎩
⎪⎨⎧=∠=∠∠=∠DF CF GDF C 2
1 ∴△EFC ≌△GFD (ASA )
∴CE=DG ,EF=GF ∵AE = DC + CE ,
∴AE = AD + DG = AG , ∴AF 平分∠DAE .
证法二:(延长法)延长BC ,交AF 的延长线于G (如图2-2) ∵四边形ABCD 是正方形,
∴AD // BC ,DA=DC ,∠FCG=∠D=90°
(正方形对边平行,四边相等,四个角都是直角) ∴∠3=∠G ,∠FCG=90°,
∴∠FCG =∠D
E
B C G
在△FCG 和△FDA 中 ⎪⎩
⎪⎨⎧=∠=∠∠=∠DF CF D
FCG 2
1 ∴△△FCG 和△FDA (ASA ) ∴CG=DA
∵AE = DC + CE ,
∴AE = CG + CE = GE ,
∴∠4 =∠G ,
∴∠3 =∠4,
∴AF 平分∠DAE .
思考:如果用“截取法”,即在AE 上取点G ,
使AG=AD ,再连结GF 、EF (如图2-3),这样能证明吗?
三、综合训练,总结规律 (一) 综合练习,提高解题能力
1.在例2中,若将条件“AE = DC + CE”和结论“AF 平分∠DAE”对换, 所得命题正确吗?为什么?你有几种证法?
2.已知:如图,在□ABCD 中,AE ⊥BD 于E ,CF ⊥BD 于F ,
G 、H 分别是BC 、AD 的中点.
求证:四边形EGFH 是平行四边形.(用两种方法)
(二)课堂小结,领悟思想方法 1.一题多变,举一反三。
经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获。
也只有这样,才能做到举一反三,提高应变能力。
2.一题多解,触类旁通。
在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你的思维,达到触类旁通的目的。
3.善于总结,领悟方法。
数学题目本身蕴含着许多数学思想方法,只要你善于总结,就能真正掌握、提炼出其中的数学方法,才能不断提高自己分析问题、解决问题的能力。