福州市初三数学质量检查(doc 12页)
福州市初三数学质量检查

福州市初三数学质量检查1. 背景介绍福州市教育局决定进行初三数学质量检查,以评估学生的数学水平和教师的教学质量,并为进一步改善数学教学提供参考。
本文档旨在对福州市初三数学质量检查进行详细介绍,包括检查的目的、内容和流程等。
2. 检查目的福州市初三数学质量检查的主要目的是:•了解学生在数学方面的掌握程度,以评估教育质量;•发现数学教学中存在的问题和困难,为改进教学提供参考;•鼓励学生对数学学科的兴趣和热爱;•为学生提供适当的学习支持和指导。
3. 检查内容福州市初三数学质量检查的内容主要包括以下方面:3.1. 知识与能力检查将涵盖初三数学课程中的各个知识点和能力要求,包括但不限于以下内容:•数的四则运算和整式的四则运算;•线性方程与一次不等式;•几何运算与证明;•数据分析与概率。
3.2. 解题能力与思维能力在检查中,将重点考察学生的解题能力和思维能力,包括但不限于以下方面:•分析问题的能力;•利用所学知识解决实际问题的能力;•运用正确的思维方法解决数学问题的能力;•掌握数学推理和证明的基本能力。
4. 检查流程福州市初三数学质量检查将按照以下流程进行:4.1. 准备阶段•教育局将组织编写检查试卷,并确定考试时间和地点;•学校将通知学生和家长,告知考试的相关信息。
4.2. 检查阶段•学生按照指定时间和地点到达考场;•监考人员发放试卷,并对考场进行监督和管理;•学生进行考试,按时完成试卷。
4.3. 评卷与分析阶段•监考人员收回试卷,进行评卷;•教育局根据评卷结果进行分析和统计;•教育局将根据分析结果制定相应的改进措施。
5. 检查结果与反馈5.1. 学生个人结果学生的个人成绩将由教育局进行统计和分析,并向学校和家长反馈。
5.2. 学校和教师反馈教育局将向学校和教师提供整体的检查结果和分析报告,以供学校和教师改进教学。
5.3. 改进措施教育局将根据检查结果和分析报告,制定相应的改进措施,包括但不限于:•提供教师培训和进修机会,提高教师教学水平;•定期举办教学研讨会,促进教学经验的分享;•优化教学资源,提供更好的学习环境。
2020年福州市九年级质量检测数学试题(含答案)

准考证号:姓名:(在此卷上答题无效)2020年福州市九年级质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,完卷时间120分钟,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数π4,227-,2.02002A .π4B .227-C .2.02002D2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图笛卡尔心形线科克曲线斐波那契螺旋线A BC D3.下列运算中,结果可以为3-4的是A .32÷36B .36÷32C .32×36D .(3-)×(3-)×(3-)×(3-)4.若一个多边形的内角和是540°,则这个多边形是A .四边形B .五边形C .六边形D .七边形5.若a<a +1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为A .911616x yx y -=⎧⎨+=⎩B .911616x y x y -=⎧⎨-=⎩C .911616x y x y+=⎧⎨+=⎩D .911616x y x y+=⎧⎨-=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是A .b 一定增大,c 可能增大B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m ),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作 EF,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是A.2π+B.3π+C.3πD.2π-10.小明在研究抛物线2()1y x h h =---+(h 为常数)时,得到如下结论,其中正确的是A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x 1-上C .当1-<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2ADBCFE46主视图76左视图俯视图第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.计算:12cos 60-+︒=.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是.13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于度.14.若m (m -2)=3,则(m -1)2的值是.15.如图,在⊙O 中,C 是 AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数k y x =(x >0)的图象上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解不等式组26312x x x ⎧⎪⎨+>⎪⎩,①②. 并把不等式组的解集在数轴上表示出来.12345-1-2-3-4-518.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .AF DE B C19.(本小题满分8分)先化简,再求值:22111121x x x x x +÷-++++,其中1x =-.AC FED Bxy BCDEAO如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象.(1)求甲,乙两人的速度;(2)求a ,b 的值.y x 1202Oxsb a O43图1图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.4048121620242832280220180a 6020月均用水量(单位:t )频数(户数)如图,在Rt △ABC 中,AC <AB ,∠BAC =90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在 BD上,连接BF 并延长交AC 的延长线于点G .(1)求证:DE 是⊙O 的切线;(2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°.(1)如图1,若AE =DE ,①求证:CD 平分∠ACB ;②求AD DB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.BACDEBACDE图1图225.(本小题满分14分)在平面直角坐标系xOy 中,抛物线C :22(4)y kx k k x =+-的对称轴是y 轴,过点F (0,2)作一直线与抛物线C 相交于P ,Q 两点,过点Q 作x 轴的垂线与直线OP 相交于点A .(1)求抛物线C 的解析式;(2)判断点A 是否在直线y =2-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C 上的任意一点(除顶点外)作该抛物线的切线l ,分别交直线y =2和直线y =2-于点M ,N ,求22MF NF -的值.A F D EB C数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂. 1.A 2.C 3.A 4.B 5.B 6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答. 11.1 12.1413.15 14.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答. 17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1 . ···························································································· 5分 ∴原不等式组的解集是1 <x ≤3, ··············································································· 6分 将该不等式组解集在数轴上表示如下:······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE CF ,∴BE EF CF EF , 即BF CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE,,, ∴△ABF ≌△DCE , ······························································································· 6分 ∴∠A ∠D . ······································································································· 8分12345-1-2-3 -4-519.(本小题满分8分)解:原式221(1)(1)(1)x x x x······················································································· 3分 2(1)(1)111x x x x x ·························································································· 4分 221111x x x x ·································································································· 5分 21x . ··········································································································· 6分当1x时,原式 ················································································· 7分. ····················································································· 8分 20.(本小题满分8分) 解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分 (2)证明如下:由(1)得BC ∥OA ,BC 12OA ,∴∠DBC ∠DAO ,∠DCB ∠DOA ,∴△DBC ∽△DAO , ············································································ 7分 ∴12DC BC DO AO , ∴OD 2CD . ····················································································· 8分21.(本小题满分8分) 解:(1)由图1可得甲的速度是1202=60 m/min . ································································ 2分由图2可知,当43x 时,甲,乙两人相遇,故4(60)2003v 乙,解得90v 乙m/min . ···························································································· 4分 答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b , ······························································································· 6分20010603a . ································································································ 8分∴a 的值为103,b 的值为209.22.(本小题满分10分) 解:(1)依题意得100a . ······························································································ 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x , ········· 6分∴估计这1000户家庭月均用水量的平均数是14.72.(2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有 40100180280600 (户), ···························································· 8分 ∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000,∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m , 而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m ,∴数据中不超过m 的频数应为700, ·························································· 8分 即有300户家庭的月均用水量超过m .又2060100160300 ,2060100220380300 ,∴m 应在16≤x <20内. ·········································································· 9分 而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分 23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB 90°,分∴∠ADC 90°.∵E 是AC 的中点,∴DE =AE ,∴∠EAD ∠EDA . ·分 ∵OA OD ,∴∠OAD ∠ODA . ······················································································· 3分 ∵∠OAD ∠EAD ∠BAC 90°, ∴∠ODA ∠EDA 90°,即∠ODE 90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点,∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF ,∴∠AHF 90°.∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB 90°, ∴∠BAF ∠ABF 90°.∵∠BAC 90°,∴∠G ∠ABF 90°, ∴∠G ∠BAF . ························································································· 6分 又∠AHF ∠GAB 90°,∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立. ∵AC <AB ,∴ BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合, ∴AF FH GB BA ≤12OF BA , ············································································ 10分即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG 90°,∴AM 12GB . ·分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°,∴∠AFG 90°,∴AF ⊥GB .分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立, 此时AF 垂直平分GB , 即AG =AB . ∵AC <AB ,∴ BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED 45°,AE DE ,∴∠EDA 18045267.5°. ······································································· 1分∵AB AC ,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°, ························································· 2分 ∴∠DCB 22.5°, 即∠DCA ∠DCB ,∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB 90°.∵∠BAC 90°, ∴DA ⊥CA . 又CD 平分∠ACB , ∴AD FD , ································································································· 4分 ∴AD FD DB DB. 在Rt △BFD 中,∠ABC 45°, ∴sin ∠DBF FD DB ················································································ 5分∴AD DB . ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE ,∠AGE 45°,∠AEC 135°, ·············································· 7分 ∴∠AGE ∠AEG , ∴AG AE . ······························································································· 8分 ∵AB AC ,∴△AGB ≌△AEC , ···················································································· 9分 ∴∠AGB ∠AEC 135°,CE BG ,∴∠BGE 90°. ························································································ 10分 ∵AE ⊥BE ,FB AC DE。
2019年福州市初中毕业班质量检测数学试卷及答案(word版)

2019年福州市初中毕业班质量检测数 学 试 卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-3的相反数是A .3B .-3C . 1 3D .- 132.今年参加福州市中考的总人数约为78000人,将78000用科学记数法表示为 A .78.0×104 B .7.8×104 C .7.8×105 D .0.78×105 3.某几何体的三种视图如图所示,则该几何体是A .三棱柱B .长方体C .圆柱D .圆锥 4.下列各图中,∠1与∠2是对顶角的是5.下列计算正确的是A .3a -a =2B .2b 3·3b 3=6b 3C .3a 3÷a =3a 2D .(a 3)4=a 76.若2-a +3+b =0,则a +b 的值是A .2B .0C .1D .-17.某班体育委员对七位同学定点投篮进行数据统计,每人投十个,投进篮筐的个数依次为:5,6,5,3,6,8,9.则这组数据的平均数和中位数分别是A .6,6B .6,8C .7,6D .7,88.甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路x m .依题意,下面所列方程正确的是A .120 x =100 x +10B .120 x =100 x -10C .120 x -10 = 100 xD .120 x +10 =100 x9.如图,△ABC 的中线BD 、CE 交于点O ,连接OA ,点G 、F 分别为OC 、OB 的中点,BC =4,AO =3,则四边形DEFG 的周长为A .6B .7C .8D .1210.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为C (1,k ),与y 轴的交点在(0,2)、(0,3)之间(不包含端点),则k 的取值范围是A .2<k <3B . 5 2<k <4C . 83<k <4 D .3<k <4二、填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:xy 2+xy =______________. 12.“任意打开一本200页的数学书,正好是第50页”,这是_______事件(选填“随机”,“必然”或“不可能”).13.已知反比例函数y = kx的图象经过点A (1,-2).则k =_________.A B C D1 2 1 2 12 12主视图左视图俯视图第3题图 A C D E O F G第9题图第10题图14.不等式4x -3<2x +5的解集是_______________.15.如图,已知∠AOB =60°,在OA 上取OA 1=1,过点A 1作A 1B 1⊥OA 交OB 于点B 1,过点B 1作B 1A 2⊥OB 交OA 于点A 2,过点A 2作A 2B 2⊥OA 交OB 于点B 2,过点B 2作B 2A 3⊥OB 交OA 于点A 3,…,按此作法继续下去,则OA 10的值是____________.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分) (1) 计算:16-( 1 3)-1+(-1)2019;(2) 先化简,再求值:(1+a )(1-a )+(a -2)2,其中a = 12.17.(每小题7分,共14分)(1) 如图,CA =CD ,∠1=∠2,BC =EC .求证:AB =DE .(2) 如图,已知点A (-3,4),B (-3,0),将△OAB 绕原点O 顺时针旋转90°,得到△OA 1B 1. ① 画出△OA 1B 1,并直接写出点A 1、B 1的坐标;② 求出旋转过程中点A 所经过的路径长(结果保留π).18.(满分12分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如下两幅不完整统计图,请根据图中提供的信息解答下列各题.(1) m =_______%,这次共抽取了_________名学生进行调查;并补全条形图; (2) 请你估计该校约有_________名学生喜爱打篮球;(3) 现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?19.(满分11分)某商店决定购进一批某种衣服.若商店以每件60元卖出,盈利率为20%(盈利率= 售价-进价 进价×100%).(1) 求这种衣服每件进价是多少元?(2) 商店决定试销售这种衣服时,每件售价不低于进价,又不高于70元,若试销售中销售量y (件)与每件售价x (元)的关系是一次函数(如图).问当每件售价为多少元时,商店销售这种衣服的利润最大?20.(满分12分)如图,在⊙O 中,点P 为直径BA 延长线上一点,直线PD 切⊙O 于点D ,过点B 作AB O A 1 B 1A 2B 2 第15题图A 3 AB CE 1 2 第17(1)题图第17(2)题图第19题图BH ⊥PD ,垂足为H ,BH 交⊙O 于点C ,连接BD .(1) 求证:BD 平分∠ABH ;(2) 如果AB =10,BC =6,求BD 的长;(3) 在(2)的条件下,当E 是⌒AB 的中点,DE 交AB 于点F ,求DE ·DF 的值.21.(满分13分)如图,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AB =7,AD =4,CA =5,动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C →D →A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 交于点E ,与折线A -C -B 的交点为Q ,设点M 的运动时间为t .(1) 当点P 在线段CD 上时,CE =_________,CQ =_________;(用含t 的代数式表示) (2) 在(1)的条件下,如果以C 、P 、Q 为顶点的三角形为等腰三角形,求t 的值;(3) 当点P 运动到线段AD 上时,PQ 与AC 交于点G ,若S △PCG ∶S △CQG =1∶3,求t 的值.22.(满分14分)已知抛物线y =ax 2+bx +c (a ≠0)经过点A (1,0)、B (3,0)、C (0,3),顶点为D . (1) 求抛物线的解析式;(2) 在x 轴下方的抛物线y =ax 2+bx +c 上有一点G ,使得∠GAB =∠BCD ,求点G 的坐标;(3) 设△ABD 的外接圆为⊙E ,直线l 经过点B 且垂直于x 轴,点P 是⊙E 上异于A 、B 的任意一点,直线AP 交l 于点M ,连接EM 、PB .求tan ∠MEB ·tan ∠PBA 的值.E第20题图第21题图 A B C D 备用图 B C D 备用图第22题图备用图学生体育活动条形统计图2019年福州市初中毕业班质量检测 数学试卷参考答案及评分标准一、选择题1.A 2.B 3.C 4.D 5.C 6.D 7.A 8.B 9.B 10.C 二、填空题11.xy (y +1) 12.随机 13.-2 14.x <4 15.49或218 三、解答题16.(1) 解:16-( 1 3)-1+(-1)2019=4-3+1 ···································································· 6分 =2. ·········································································· 7分(2) 解:原式=1-a 2+a 2-4a +4 ······················································· 4分=-4a +5,································································· 5分当a = 12时,原式=-2+5=3. ·········································· 7分17.(1) 证明:∵∠1=∠2, ∴∠1+∠ECA =∠2+∠ECA , ························································· 2分 即 ∠ACB =∠DCE . ······································································ 3分 又∵CA =CD ,BC =EC , ································································ 5分 ∴△ABC ≌△DEC . ····································································· 6分∴AB =DE . ················································································· 7分(2) ① 画图正确2分,A 1(4,3),B 1(0,3)……………4分;② 如图,在Rt △OAB 中,∵OB 2+AB 2=OA 2,∴OA =32+42 =5.…………………5分∴l = 90×5π 180= 5π 2. …………………6分 因此点A 所经过的路径长为 5π2.…………………7分18.(1) 20;50;如图所示; …………………………………6分 (2) 360;………………………8分 (3) 列树状图如下:……10分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种. …………………11分∴抽到一男一女的概率P =6 12 = 12. ··············································· 12分解法二:列表如下:………10分由列表可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的男1 男2 男3 女男1 男2,男1 男3,男1 女,男1 男2 男1,男2 男3,男2 女,男2 男3 男1,男3 男2,男3 女,男3 女 男1,女 男2,女 男3,女 女男3男2男1女男2男1女男3男1女男3男2男3男2男1情况有6种.………………………………11分∴抽到一男一女的概率P =6 12 = 12. ··············································· 12分19.解:(1) 设购进这种衣服每件需a 元,依题意得: ··························· 1分60-a =20%a , ··································································· 3分 解得:a =50. ···································································· 4分答:购进这种衣服每件需50元. ············································ 5分 (2) 设一次函数解析式为y =kx +b ,由图像可得: ································· 6分 ⎩⎨⎧60k +b =4070k +b =30,解得:k =-1,b =100, ·············································· 7分 ∴y =-x +100.∴利润为w =(x -50)(-x +100) ································ 8分=-x 2+150x -1500 =-(x -75)2+625. ······················································· 9分∵函数w =-(x -75)2+625的图像开口向下,对称轴为直线x =75, ∴当50≤x ≤70时,w 随x 的增大而增大, ······································· 10分 ∴当x =70时,w 最大=600.答:当销售单价定为70元时,商店销售这种衣服的利润最大. ……11分 20.解:(1) 证明:连接OD . ························································ 1分 ∵PD 是⊙O 的切线,∴OD ⊥PD . 又∵BH ⊥PD ,∴∠PDO =∠PHB =90°,……2分 ∴OD ∥BH ,∴∠ODB =∠DBH .……………………………3分 而OD =OB ,∴∠ODB =∠OBD ,……………4分 ∴∠OBD =∠DBH ,∴BD 平分∠ABH . ……………………………5分 (2) 过点O 作OG ⊥BC ,G 为垂足, 则BG =CG =3, ············································································ 6分 在Rt △OBG 中,OG =OB 2-BG 2 =4. ∵∠ODH =∠DHG =∠HGO =90°, ∴四边形ODHG 是矩形. ······························································ 7分 ∴OD =GH =5,DH =OG =4,BH =8. ············································· 8分 在Rt △DBH 中,BD =45. ···························································· 9分 (3) 连接AD ,AE ,则∠AED =∠ABD ,∠ADB =90°. 在Rt △ADB 中,AD =25. ··························································· 10分又∵E 是⌒AB 的中点,即⌒AE =⌒BE ,∴∠ADE =∠EDB , ∴△ADE ∽△FDB . ····································································· 11分 即 DE DB = AD FD,∴DE ·DF =DB ·AD =40. ······································· 12分 21.解:(1) CE =3-t , ··································································· 1分CQ =5- 53t ; ················································································ 3分(2) 当CP =CQ 时,得:5- 5 3t =t ,解得: t = 158;………………………………4分 当QC =QP 时(如图1), ∵QE ⊥CD , ∴CP =2CE ,……………………5分即:t =2(3-t ), 解得:t =2; ················································································· 6分 当QP =CP 时,由勾股定理可得:DC A BM Q lE P 图 1→←DC AB M QlEPN图 2→←DC A BQ G H F l M P图 3PQ 2=(2t -3)2+(4- 43t )2,∴(2t -3)2+(4- 43t )2=t 2, ······························································· 7分整理得:43t 2-204t +225=0,解得:t 1=3(舍去),t 2= 7543······························································ 8分解法二:如图2,当QP =CP 时,过点P 作PN ⊥CQ ,N 为垂足,则CN = 1 2CQ = 1 2(5- 5 3)∵△CPN ∽△CAD .∴ CP CA = CN CD , 即 t 3= 1 2(5- 5 3t )3, 解得:t = 7543. ·············································································· 8分因此当t = 15 8,t =2或t = 7543时,以C 、P 、Q 为顶点的三角形为等腰三角形.(3) 如图3,过点C 作CF ⊥AB 交AB 于点F ,交PQ 于点H . P A =DA -DP =4-(t -3)=7-t .在Rt △BCF 中,由题意得, BF =AB -AF =4. ∴CF =BF ,∴∠B =45°,…………………9分∴QM =MB =7-t , ∴QM =P A .又∵QM ∥P A , ∴ 四边形AMQP 为平行四边形. ∴PQ =AM =t . ··········································································· 10分∵S △PCG ∶S △CQG =1∶3,且S △PCG = 1 2PG ·CH ,S △CQG = 12QG ·CH ,∴PG ∶QG =1∶3. ······································································ 11分得: 3 4(7-t )= 14t , ······································································ 12分解得:t = 214. ············································································ 13分因此当t = 214时,S △PCG ∶S △CQG =1∶3.22.解:(1) 由抛物线y =ax 2+bx +c 经过点A 、B 、C ,可得: ⎩⎪⎨⎪⎧c =3a +b +c =09a +3b +c =0,解得:⎩⎪⎨⎪⎧a =1b =-4c =3, ····················································· 3分 ∴抛物线的解析式为y =x 2-4x +3. ················································· 4分 (2) 解:过点G 作GF ⊥x 轴,垂足为F .设点G 坐标为(m ,m 2-4m +3), ∵点D (2,-1), ··········································································· 5分 又∵B (3,0),C (0,3),∴由勾股定理得:CD =25,BD =2,BC =32, ∵CD 2=BC 2+BD 2,∴△CBD 是直角三角形,………………………6分∴tan ∠GAF = tan ∠BCD = 13.∵tan ∠GAF = GF AF = 13,∴ AF =3GF ……7分即 -3(m 2-4m +3)=m -1,解得:m 1=1(舍去),m 2= 83. ·························································· 8分∴点G 的坐标为( 8 3,- 59). ··························································· 9分(3)∵点D 的坐标为(2,-1), ∴△ABD 是等腰直角三角形,∴圆心E 是线段AB 的中点,即E (2,0),半径为1,………10分 设P (x 1,y 1)(1<x 1<3,y 1≠0),M (3,y 0),作PF ⊥x 轴,F 为垂足. ∵点A 、P 、M 三点在一条直线上, ∴ y 0 y 1=2x 1-1 ,即y 0=2y 1x 1-1 .∴tan ∠MEB = y 0 EB =2y 1x 1-1,…… 11分∵AB 为直径, ∴∠APB =90°,∴∠PBA =∠APF , ……………12分∴tan ∠PBA =tan ∠APF = x 1-1y 1,……………13分∴tan ∠MEB ·tan ∠PBA =2y 1x 1-1 · x 1-1y 1=2.……………14分 另解:同上,连接PE ,∵PE =1,PF =y 1, EF =x 1-2,在Rt △PEF 中, 根据勾股定理得:(x 1-2)2+y 21=1, 即1-(x 1-2)2=y 2 1, ………………………………………12分, ∵tan ∠PBA =y 13-x 1, ……………………………………13分∴tan ∠MEB ·tan ∠PBA =2y 2 1 -(x 21-4x 1+3) =2y 2 11-(x 1-2)2 =2.……14分 (没有加绝对值或没有分类讨论扣1分)。
2023-2024学年第二学期福建省福州市九年级质量抽测数学试卷参考答案

2023-2024学年第二学期福州市九年级质量抽测数学答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果学生的解法与本解答不同,可根据习题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当学生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示学生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题(本题共10小题,每小题4分,共40分) 1.A 2.B 3.A 4.A 5.C 6.D 7.B 8.B 9.C 10.B二、填空题(本题共6小题,每小题4分,共24分) 11.60−米 12.抽样调查 13.70° 14.23x > 15.396元16.DE三、解答题(本题共9小题,共86分)17.(本小题满分8分)解:原式π312=−++ ······································································································ 6分π=. ··············································································································· 8分18.(本小题满分8分)证明:∵BE CF =,∴BE EF CF EF +=+,∴BF CE =. ········································································································· 3分在△ABF 和△DCE 中AB DC =,············································································································ 4分 B C ∠=∠,············································································································ 5分 BF CE =, ∴△ABF ≌△DCE , ································································································ 6分 ∴A D ∠=∠. ········································································································ 8分19.(本小题满分8分)解法一:∵3a b=,∴3a b =, ········································································································· 1分∴原式222(3)233(2)3(3)b b b b b b b b −×⋅=−÷−− ······································································· 2分 222239(2)296b bb b b b −=−⋅− ··················································································· 4分 2238(2)23b b=−⋅ ····························································································· 6分 8123=× ······································································································ 7分 43=. ······································································································· 8分 B C DA E F ⎧⎪⎨⎪⎩解法二:原式22222()2a b a ab a b a b a ab−−=−⋅−−− ············································································· 2分 ()()2(2)a b a b a b a b a a b +−−=⋅−− ···················································································· 5分 a b a+=. ····································································································· 6分 ∵3a b=, ∴3a b =, ········································································································· 7分 ∴原式33b b b+=43=. ······································································································· 8分 20.(本小题满分8分)解:(1)400; ·············································································································· 2分72°; ··············································································································· 4分 (2)记两名男生为M ,N ,两名女生为P ,Q .6分由表(图)可知,所有可能出现的结果共有12种,且这些结果出现的可能性相等. ········· 7分 其中抽取的两名同学刚好为两位女同学的结果有2种.∴抽取的两名同学刚好为两位女同学是21126=. ······················································· 8分21.(本小题满分8分) 证明:连接OC ,CD. ····································································································· 1分∵CA CB =,∴A B ∠=∠.········································································································· 2分 ∵BD 是直径,∴90BCD ∠=°.分 ∵D 是OA 的中点, ∴AD OD =.分又OB OD =,∴AO BD =.分 ∵△AOC ≌△BDC , ································································································ 6分 ∴90ACO BCD ∠=∠=°, ························································································· 7分 ∴OC ⊥AC .∵点C 为半径OC 的外端点,∴AC 是⊙O 的切线. ······························································································ 8分22.(本小题满分10分) (1)····························································· 3分如图,O 为所求作的点. ··························································································· 4分(2)证明:∵D 是BC 的中点,∴12BD BC =. ······························································································ 5分∵△ABC 绕点O 旋转得到△DEF ,D ,E 分别是点A ,B 的对应点,∴OB OE =,90BOE AOD ∠=∠=°,△ABC ≌△DEF , ·········································· 6分∴90BOD ∠=°,BC EF =,ABC DEF ∠=∠.分 在△ODB 与△OGE 中 ABC DEF OB OE BOD BOE ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ODB ≌△OGE , ·分 ∴BD EG =,分∴12EG EF =,即EG FG =,∴G 是EF 中点. ··························································································· 10分 23.(本小题满分10分)解:(1)①a ; ················································································································ 1分②b ;················································································································· 2分 ③tan b α⋅; ········································································································ 3分 ④(tan )b a α⋅+; ································································································· 4分(2)先在该建筑物(MN )的附近较空旷的平地上选择一点A , 点B 为测量人员竖直站立时眼睛的位置,用自制测角仪获取最高处(M )的仰角MBC α∠=,然后由点A 朝点N 方向前进至点D 处,此时点E 为测量人员竖直站立时眼睛的位置,再用自制测角仪获取最高处(M )的仰角MEC β∠=; ················································ 5分 再用皮尺测得测量人员眼睛到地面的距离m AB a =,以及前进的距离m AD b =, ············· 6分 由实际背景可知四边形ABED ,四边形ABCN 为矩形, 故m NC DE AB a ===,m BE AD b ==.在Rt △BCM 和Rt △ECM 中,90BCM ∠=°,∴tan MC BC α=, ··································································································· 7分tan MC EC β=, ··································································································· 8分∴tan tan MC MC BE BC EC αβ=−=−,············································································ 9分即tan tan MC MC b αβ=−,∴tan tan tan tan b MC αββα⋅⋅=−,∴tan tan ()m tan tan b MN MC CN a αββα⋅⋅=+=+−. ······························································10分 24.(本小题满分12分)解:(1)①将A (2−,0),B (6,4)代入22y ax bx =+−,得422036624a b a b −−=⎧⎨+−=⎩,, ·························································································· 2分解得1412a b ⎧=⎪⎨⎪=−⎩,, ∴抛物线的解析式为211242y x x =−−. ······························································· 4分A BCMN α ABC D EMN②将0y =代入211242y x x =−−,得2112042x x −−=, 解得14x =,22x =−, ∵A (2−,0), ∴C (4,0). ································································································ 5分 根据题意,得8AD =,2CD =,6AC =,4BD =,90ADB ∠=°, ∴1tan tan 2BAD CBD ∠=∠=, ∴BAD CBD ∠=∠.分 ∵EAC ABC ∠=∠, ∴EAB EBA ∠=∠,∴EB EA =.分∵B (6,4), ∴设E (6,t ),∴4AE BE t ==−,DE t =−. ∵222AD DE AE +=,∴2228()(4)t t +−=−,∴6t =−,∴E (6,6−). ····························································································· 8分(2)5a <−或56a >. ······························································································· 12分25.(本小题满分14分)(1)证明:∵BE ⊥AD , ∴90AEB ∠=°. ······························································································ 1分 ∵90ACB ∠=°,ADC BDE ∠=∠, ∴CAE CBE ∠=∠. ························································································· 2分∵四边形AEFC 是平行四边形,∴CAE F ∠=∠, ····························································································· 3分 ∴CBE F ∠=∠. ····························································································· 4分(2)解:12S S =. ·········································································································· 5分理由如下:延长BE ,AC 交于点P ,过点E 作EQ ⊥AP 于点Q .∵AD 平分∠BAC ,∴BAD CAD ∠=∠. ············································································ 6分 ∵90AEP AEB ∠=∠=°, ∴APB ABP ∠=∠,∴AB AP =, ····················································································· 7分∴EB EP =,即12PE PB =.∵EQ ⊥AP , ∴90PQE PCB ∠=°=∠, ∴EQ ∥BC ,∴△PQE ∽△PCB , ············································································ 8分 ∴EQ PE BC PB=, ∴12EQ BC =, ·················································································· 8分∴2112S AC EQ AC BC S =⋅=⋅=.(3)证明:延长BE 交CF 于点T .∵四边形AEFC 是平行四边形, ∴AC ∥FG ,AE ∥CF ,AC EF =∴90BTC BED ∠=∠=°,90BHG BCA ∠=∠=°. ∴BT ⊥CF .A BCFE D A B CF E D P Q。
福州市初中毕业班质量检测数学试卷及答案

(ⅱ)李先生每天最迟7点10分出发,乘坐20路公交车比较合适.8分
理由如下:李先生每天7点10分出发,还有40分钟的乘车时间,由统计图可估计乘坐20路公交车不迟到的天数为 ,乘坐66路公交车不迟到的天数为 .因为一月上班22天,其中公司出于人文关怀允许两次迟到,所以,不迟到的天数应不少于20天,因此,李先生每天7点10分出发,乘坐20路公交车比较适合.10分
由(Ⅱ)得△FBE∽△FDA,
∴ ,11分
∵BE BF,
∴AD AF,
在Rt△ABD中,BD AD DF,
∴BE BD DF ( ห้องสมุดไป่ตู้)DF,
∴tan∠BDG tan∠BAE 1.12分
(25)解:(Ⅰ)A( ,0),B( , );4分
(Ⅱ)过点B作BF⊥x轴于F,
∴直线BF为抛物线的对称轴,
且F( ,0).
∵a>0,b<0,k>0,
∴BF ,AF OF ,
∴tan∠BAF= ,6分
∵直线y kx m过点B( , ),
∴m <0,
把y kx 代入y ax2 bx,
得ax2 bx kx ,
化简,得ax2 (b k)x 0,
Δ (b k)2 4a k2,
解得x1 ,x2 >0,
∵点D不与点A重合,
∴D点的横坐标为 ,
∴OC⊥CP.7分
∵OC是⊙O的半径,
∴PC是⊙O的切线.8分
证法二:过点O作OD⊥BC于D,则∠ODC 90°,1分
∴∠OCD ∠COD 90°.2分
福州市初中毕业班质量检查数学试卷与答案WORD

2013 年福州市初中毕业班质量检查数学试卷( 本卷共 4 页,三大题,共22 小题;满分150 分,考试时间120 分钟 )友谊提示:全部答案都一定填涂在答题卡的相应地点上,答在本试卷一律无效.一、选择题 ( 共 10 小题,每题 4 分,满分40 分 )1.计算- 3+ 3 的结果是A.0B.-6C.9D.-9BDA C2.如图, AB∥ CD,∠ BAC= 120°,则∠ C 的度数是第 2题图A. 30°B.60°C.70°D. 80°3.节俭是一种美德,节俭是一种智慧.据不完整统计,全国每年浪费食品总量折合粮食可养活约 3 亿 5千万人. 350 000 000 用科学记数法表示为A. 3.5 × 107 B . 3.5 ×108 C . 3.5 ×109 D . 3.5 × 10104.以下学惯器具中,不是轴对称图形的是0 1 2 340 1 2340 1 2 3 4 56ABCD 5.已知 b< 0,对于 x 的一元二次方程 (x - 1) 2= b 的根的状况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是x≥- 1x≤- 1x<- 1x>- 1A.x< 2B.x> 2C.x≥ 2D.x≤ 2-3-2-101237.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形( 以下图 ) .随机1在大正方形及其内部地区投针,若针扎到小正方形( 暗影部分 ) 的概率是9,则大、小两个正方形的边长之比是A.3∶1B.8∶1C.9∶1D.22∶ 1AB C第7题图第 8题图8.如,已知△ ABC,以点 B 心, AC半径画弧;以点C心,AB半径画弧,两弧交于点D,且 A、 D 在 BC同,接AD,量一量段AD的,A. 1.0cm B.1.4cm C.1.8cm D.2.2cm9.有一种公益叫“光”.所“光”,就是吃光你子中的食品,杜“舌尖上的浪” .某校九年展开“光行”宣活,根据各班参加活的人次拆,以下法正确的选项是A.极差是40B.中位数是58C.均匀数大于58D.众数是5总人次九年级宣传“光盘行动”总人次拆线统计图80807062605958504050453020101班2班3班4班5班6班班级第 9题图10.已知一个函数中,两个量x 与 y 的部分以下表:x⋯-2- 3⋯-2+ 3⋯2- 1⋯2+ 1⋯y⋯-2+ 3⋯-2- 3⋯2+ 1⋯2- 1⋯假如个函数象是称形,那么称可能是A. x B. y C.直x=1D.直 y= x二、填空A D211.分解因式:m- 10m= ________________ .12.如,∠ A+∠ B+∠ C+∠ D= ____________度.B C第12题图13.在一次函数 y= kx +2 中,若 y 随 x 的增大而增大,它的象不第______象限.x+y= 714.若方程3x-5y=-3, 3(x + y) - (3x - 5y) 的是 __________ .15.如, 6 的等三角形ABC中, E 是称 AD上的一个点,接EC,A 将段 EC点 C 逆旋60°获得 FC,接 DF.在点 E 运程中,DF的最小是 ____________.二、解答 ( 分 90 分;E16. ( 每小 7 分,共14 分)B CD(1) 算: ( π+ 3) 0― | ―2013| + 64×1F8第15题图(2) 已知 a2+ 2a=- 1,求 2a(a + 1) -(a + 2)(a - 2) 的.17.( 每题 8 分,共 16 分)(1)如图,在△ ABC中, AB= AC,点 D、 E、F 分别是△ ABC三边的中点.求证:四边形 ADEF是菱形.AD FB CE第 17(1)题图(2) 一艘轮船在静水中的最大航速为20 千米 / 时,它沿江以最大航速顺水航行100 千米所用时间与以最大航速逆流航行60 千米所用时间相等,江水的流速为多少?18. (10 分) 有一个袋中摸球的游戏.设置了甲、乙两种不一样的游戏规则:甲规则:第一次红 1红 2黄 1黄 2第二次红 2黄1 黄2红 1黄1 黄2红 1红2 黄2红1 红2 黄1乙规则:第一次红 1红 2黄 1黄 2第二次红 1(红 1,红 1)(红2,红 1)(黄 1,红 1)②红 2(红 1,红 2)(红2,红 2)(黄 1,红 2)(黄 2,红 2)黄 1(红 1,黄 1)①(黄 1,黄 1)(黄 2,黄 1)黄 2(红 1,黄 2)(红2,黄 2)(黄 1,黄 2)(黄 2,黄 2)请依据以上信息回答以下问题:(1)袋中共有小球 _______个,在乙规则的表格中①表示 _______,②表示 _______;(2)甲的游戏规则是:随机摸出一个小球后______( 填“放回”或“不放回” ) ,再随机摸出一个小球;(3)依据甲、乙两种游戏规则,要摸到颜色同样的小球,哪一种可能性要大,请说明原因.19.(10 分 ) 如图,由 6 个形状、大小完整同样的小矩形构成矩形网格.小矩形的极点称为这个矩形网格的格点.已知小矩形较短边长为1,△ ABC的极点都在格点上.BE(1)格点 E、 F 在 BC边上,AF的值是 _________;(2)按要求绘图:找出格点 D,连结 CD,使∠ ACD= 90°;(3)在 (2) 的条件下,连结 AD,求 tan ∠ BAD的值.ABECF第19题图20. (12 分) 如图,半径为 2 的⊙ E 交 x 轴于 A、B,交 y 轴于点 C、 D ,直线 CF交 x 轴负半轴于点 F,连结 EB、 EC.已知点 E 的坐标y为(1 , 1) ,∠ OFC= 30°.C(1)求证:直线CF是⊙ E的切线;E O(2)求证: AB=CD;F AD(3)求图中暗影部分的面积.第20题图21. (12 分 ) 如图, Rt △ ABC中,∠ C= 90°, AC= BC= 8, DE=2,线段 DE在 AC边上运动( 端点始 ) ,速度为每秒 1 个单位,当端点 E 抵达点 C时运动停止. F 为 DE中点, MF⊥ DE交 AB于点交 BC于点 N,连结 DM、 ME、EN.设运动时间为 t 秒.(1)求证:四边形 MFCN是矩形;(2)设四边形 DENM的面积为 S,求 S 对于 t 的函数分析式;当 S 取最大值时,求 t 的值;(3)在运动过程中,若以 E、 M、 N 为极点的三角形与△ DEM相像,求 t 的值.B xD从点A开M,MN∥ ACB BM NA C ACD F E第 21题图备用图22.(14 分) 如图,已知抛物线y= ax2+ bx+ c(a ≠ 0) 与 x 轴交于 A(1 ,0)、B(4,0) 两点,与 y 轴交于 C(0 ,2),连结 AC、 BC. (1) 求抛物线分析式;(2)BC 的垂直均分线交抛物线于 D、 E 两点,求直线 DE的分析式;(3)若点 P 在抛物线的对称轴上,且∠CPB=∠ CAB,求出全部知足条件的P 点坐标.y yC CO A B x O A B x第 22 题图备用图2013 年福州市初中班量一、( 每 4 分,分40 分)1.A 2.B3.B4.C5.C 二、填空 ( 每 4 分,分20 分 ) 11. m(m- 10)12.36013.四6.D7.A14.24158.B.1.59 . C10.D三、解答16. ( 每7 分,共14 分 )(1)=- 2011(2)原式= 317.( 每小 8 分,共 16 分)(2)解:江水的流速 x 千米 / ,依意,得:1006020+x=20-x,解得:x=5.:x=5是原方程的解.18.(10 分)(1) 4⋯⋯1分;(2,黄 1)⋯⋯2分;(黄 2, 1)⋯⋯3 分(2)不放回⋯⋯⋯5 分(3)乙游摸到色同样的小球的可能性更大.原因:在甲游中,从形看出,全部可能出的果共有12 种,些果出的可能性同样,而色同样的两个小球共有 4 种.⋯⋯⋯⋯6 分41⋯⋯⋯⋯7 分∴P(色同样 )==.123在乙游中,从列表看出,全部可能出的果共有16 种,些果出的可能性同样,而色同样的两个小球共有 8 种.⋯⋯⋯⋯⋯8 分81⋯⋯⋯⋯⋯9 分∴P(色同样 ) ==.16211∵3<2,∴乙游摸到色同样的小球的可能性更大.⋯⋯⋯⋯⋯ 10 分19. (12 分)1A(1)⋯5分接 CD.⋯⋯⋯7 分⋯3分 (2) 出点 D,2(3)解:接 BD,⋯⋯⋯8 分B EC∵∠ BED= 90°, BE= DE= 1,FD2222∴∠ EBD=∠ EDB= 45°, BD=⋯⋯9 分BE + DE=1+1= 2.由 (1) 可知 BF= AF= 2,且∠ BFA= 90°,∴∠ ABF=∠ BAF= 45°, AB= BF2+ AF2=22+ 22= 2 2.⋯⋯10分∴∠ ABD=∠ ABF+∠ FBD= 45°+ 45°= 90°.yCBD21∴tan ∠ BAD=AB=2 2=2.20. (12 分)GEF A O H B xD(3)接 OE,∴ OC=3+ 1.同理: OB=3+ 1.∴∠ OEB+∠ OEC= 210°.∴ S=210× π × 2217π⋯⋯⋯⋯⋯⋯ 12 分暗影360-2×( 3+1) ×1×2=3- 3-1.21. (12 分)(1) 明:∵ MF⊥ AC,∴∠ MFC= 90°.⋯⋯⋯⋯1 分∵MN∥ AC,∴∠ MFC+∠ FMN=180°.∴∠ FMN= 90°.⋯⋯⋯⋯2 分∵∠ C= 90°,∴四形MFCN是矩形.⋯⋯⋯⋯3 分( 若先明四形MFCN是平行四形,得 2 分,再明它是矩形,得(2) 解:当运t 秒, AD= t ,1∵F DE的中点, DE= 2,∴ DF=EF=2DE=1.∴AF=t + 1, FC= 8- (t + 1) = 7- t .∵四形 MFCN是矩形,∴ MN= FC= 7- t .3分 )BM N又∵ AC= BC,∠ C= 90°,∴∠ A= 45°.∴在 Rt △ AMF中, MF= AF= t + 1,11∴S=S△MDE+ S △MNE=2DE· MF+2MN· MF11129=2× 2(t + 1) +2(7 - t)(t+ 1) =-2t + 4t+21291225∵ S=-2t+ 4t +2=-2(t - 4) +2∴当 t = 4, S 有最大.( 若面 S 用梯形面公式求不扣分)(3)解:∵ MN∥AC,∴∠ NME=∠ DEM.A CD F ENM EM①当△ NME∽△ DEM,∴=.⋯⋯⋯⋯9 分DE ME7-t∴= 1,解得: t = 5.⋯⋯⋯⋯10分2② 当△ EMN ∽△ DEM ,∴NM EM.⋯⋯⋯⋯ 11 分=EM DE2∴ EM =NM · DE .22222在 Rt △ MEF 中, ME = EF +MF = 1+ (t + 1),∴ 1+ (t + 1) =2(7 - t) .解得: t 1= 2, t 2=- 6( 不合 意,舍去 )上所述,当 t2 秒或 5 秒 ,以 E 、 M 、 N 点的三角形与△DEM 相像.⋯⋯12 分22. (14 分)1 2 5∴ 个抛物 的分析式 y = 2x - 2x +2.⋯⋯⋯⋯4 分(2) 解法一:如 1, BC 的垂直均分DE 交 BC 于 M ,交 x 于 N , 接 CN , 点 M 作 MF ⊥ x 于 F .MF BF BM 1y∴△ BMF ∽△ BCO ,∴ = = = .CO BO BC 2∵B(4 ,0) ,C(0,2) , ∴CO = 2,BO = 4,∴ MF = 1,BF = 2,∴ M(2, 1)∵ MN 是 BC 的垂直均分 ,∴CN = BN ,ON = x , CN = BN = 4-x ,222在 Rt △ OCN 中, CN = OC + ON ,CMO A N FBx图 1∴ (4 - x) 2= 22+ x 2,解得: x = 3 ,∴ N( 3 ,0) .直 DE 的分析式 y = kx + b ,依 意,得:2 22k + b = 13 ,解得:k = 2.k + b = 0b =- 32∴直 DE 的分析式 y = 2x - 3. 解法二:如 2, BC 的垂直均分 DE 交 BC 于 M ,交 x 于 N , 接 CN , 点 C 作 CF ∥ x 交 DE 于 F . ∵ MN 是 BC 的垂直均分 ,∴CN = BN ,CM = BM .yON = x , CN = BN = 4-x ,222F在 Rt △ OCN 中, CN = OC + ON ,C∴ (4 - x) 2= 22+ x 2,解得: x = 3,∴ N(3,0).Mx2 2O A N B3 5∴ BN = 4- = .图 22 2∵ CF ∥ x ,∴∠ CFM =∠ BNM .∵∠ CMF =∠ BMN ,∴△ CMF≌△ BMN.∴ CF= BN.5∴F( 2,2).⋯⋯⋯⋯⋯⋯⋯6 分直 DE的分析式 y= kx+ b,依意,得:52k+b= 2k= 2 3,解得:b=- 3.k+ b= 02∴直 DE的分析式 y= 2x- 3.⋯⋯⋯⋯⋯⋯8 分1255 (3) 由(1)得抛物分析式 y=2x-2x+ 2,∴它的称直x=2.5①如 3,直DE交抛物称于点G,点 G( , 2) ,2以 G心, GA半径画交称于点P1,∠ CP1B=∠ CAB.⋯⋯⋯⋯9 分yC GO A B xP1图 3yP2C GN HO A B x图 45225 GA=( 2- 1)+2=2,∴点 P1的坐 (51⋯⋯⋯⋯ 10 分,-) .225②如 4,由 (2)得: BN=2,∴ BN= BG,∴ G、 N 对于直 BC称.⋯⋯⋯⋯ 11 分∴以 N心, NB半径的⊙ N 与⊙ G对于直 BC称.⋯⋯⋯⋯ 12 分⊙ N 交抛物称于点P2,∠ CP2B=∠ CAB.⋯⋯⋯⋯ 13 分5 3称与 x 交于点 H, NH=2-2= 1.52221∴HP2=(2) -1=2,521∴点 P2的坐 ( 2,2 ).上所述,当51) 或 (521⋯⋯⋯ 14 分P 点的坐(,-,) ,∠ CPB=∠ CAB.2222。
福州市初中毕业班质量检查数学试卷
福州市初中毕业班质量检查数学试卷(完卷时间:120分钟;总分值:150分)一、选择题(共10小题,每题3分,总分值30分)1、下面哪个式子可以用来验证小明的计算3-(-1)=4能否正确?A 、4-(-1);B 、4+(-1);C 、4×(-1);D 、4÷(-1).2、法国国度科研中心15日宣布,欧洲〝火星慢车〞探测器发回的少量数据显示,火星南极地域存在少量的冰,其含量大约为160万立方千米,用迷信记数法(保管二个有效数字)表示为A 、1.60×105立方千米;B 、1.60×106立方千米;C 、1.6×105立方千米;D 、1.6×106立方千米. 3、如图1所示,几何体的左视图是4、把不等式组2020x x +>⎧⎨-≤⎩的解集表示在数轴上,正确的选项是5、在以下长度的四根木棒中,能与长与4cm 、9cm 的两根木棒围成一个三角形的是 A 、4cm ; B 、5cm ; C 、9cm ; D 、14cm .6、假定一个正多边形的外角等于45°,那么这个多边形是A 、正八边形;B 、正六边形;C 、正五边形;D 、正三角形.7、有十八位同窗参与智力竞赛,且他们的分数互不相反,按分数上下选九位同窗进入下一轮竞赛.小华知道了自己的分数后,还需知道哪个统计量,就能判别自己能否进入下一轮竞赛.A 、中位数;B 、众数;C 、方差;D 、平均数.8、有一个质地平均的小正方体的六个面上区分标有数字1,2,3,4,5,6.假设恣意抛掷小正方体两次,那么以下说法正确的选项是A 、失掉的数字和肯定是6;B 、失掉的数字能够是7;C 、失掉的数字和不能够是12;D 、失掉的数字和有能够是1.9、如图2是小明自己入手做的圆柱形笔筒,笔筒的底面积直径为6cm ,高为10cm ,那么它的外表积为A 、156πcm 2;B 、120πcm 2;C 、69πcm 2;D 、60πcm 2. 10、一港口受潮汐的影响,某天24小时港内的水深大致如图3.港口规则:为了保证飞行平安,只要当船底与水底间的距离不少于4米时,才干进出该港.一艘吃水深度(即船底与水面的距离)为2米的轮船进出该港的时间最多为(单位:时) A 、18; B 、16; C 、13; D 、9. 二、填空题(共5小题,每题4分,总分值20分) 11、分解因式:x 2-4y 2=________________.ABC DA B CD 图2图3是___________________.13、如图5,点F 、C 在线段AD 上,且∠ACB =∠DFE ,BC =EF ,要使△ABC ≌△DEF ,那么需求补充一个条件,这个条件可以是____________________.(只需填写一个)14、十字路口的交通讯号灯红灯亮25秒,绿灯亮20秒,黄灯亮15秒,当你抬头看信号灯时,恰恰是黄灯的概率是__________________.15、如图6,矩形ABCD 的对角线BD 经过坐标原点,矩形的边区分平行于坐标轴,点C 在正比例函数ky x=的图象上,假定点A 的坐标为(-2,-2),那么k 的值为______________.三、解答题(总分值100分) 16、(每题8分,共16分)(1) 计算:211|5|(2)()3--+--; (2) 解方程:522112x x x+=--. 17、(每题8分,共16分)(1) 观察表一中数字的陈列规律,回答以下的效果: ① 第6行与第6列的交叉方格的数应为___________;② 表二是从表一中截取的一局部,试填出空格中的数,并用一个等式反映表二中四个数的某种数量关系.(2) 请你区分在下面的两个网格(小正方形的边长均为1cm )中,画出顶点在格点上,且边长和面积都是整数的三角形和四边形(如例如所示,但不能是正方形和矩形).18、(此题总分值10分)两会前期,群众普遍反映自行车丧失较为严重.为此,某校八年级局部先生在本市搞了一个调查,调查内容:〝能否丢过自行车,以及丢车后采取的对策〞,他们随机采访了600名群众,并将所得的数据制成了统计图.依据统计图,请你回答以下效果:(1) 请写出扇形统计图中〝丢过自行车〞和〝没有丢过自行车〞的百分比;(2) 假设该市常住人口约180万,那么请你预算该市常住人口中大约有多少人丢过自行车?图4ABCDEF图51 2 2 3 3 3 4 4 4 4 5 5 5 6 6 7 … … … … … … … … … 表一 a 表二19、(此题总分值10分)如图7,AB 是圆O 的直径,AD 是圆O 的切线,C 是圆O 上的一点,且CD ∥AB .(1) 求证:△ABC ∽△CAD;(2) 假定CD 1sin 3CAD ∠=,求AB 的长. 20、(此题总分值10分) 有一本«数学的微妙»科普书,每本定价15元,某校九年三班的同窗预备组织去购置.经了解,甲、乙两书店各有不同的优惠方案:在甲书店购置5本以上,超出局部按九折优惠;在乙书店购置10本以上,超出局部每本让利2元.(1) 假定需购置20本,应去哪家书店能取得更大优惠; (2) 购置多少本时,去乙书店比甲书店能取得更大优惠? 21、(此题总分值12分)如图8,是三个边长相反的正三角形拼成的图形,该图形绕着O 点旋转120°后能与自身重合.现将图8的正三角形区分涂上红、黄、蓝三种颜色,使它成为一个含颜色的图案.(1) 如图①标志出了一种着色方案,请你在图②~⑥中标志出其他不同的着色方案; (2) 假定一个图案绕着O 点旋转120°点后能失掉另一个图案,就将它们归为同一类,试对(1)中一切的图案停止分类,并用线把同一类图案的序号连起来;(3) 在(1)中,由图案①经过一次轴对称变换后能失掉的图案的序号是______________.22、(此题总分值12分)如图9,在直角三角形ABC 中,∠ACB =90°,区分以AB 、AC 为底边向三角形ABC 的外侧作等腰三角形ABD 和ACE ,且AD ⊥AC ,AB ⊥AE ,DE 和AB 相交于F .试探求线段FD 、FE 的数量关系,并加以证明.说明:假设你阅历重复探求,没有找到处置效果的方法,可以从以下图10、11中选取一个,并区分补充条件∠CAB =45°、∠CAB=30°后,再完成你的证明.留意:选取图9或10或11完成证明,区分得12分、8分、10分.23、(此题总分值14分)如图12,点A (4,m )在一次函数y =2x -4和二次函数y =ax 2的图象上,过点A 作直线y =n 的垂线, 捉小偷 忍无可忍 报案100200 300 400 丢车人的对策人数 A图7O 图8 O 图① O 图② O 图③O 图④ O 图⑤ O 图⑥ 黄 蓝 红A BC DE F 图9 A B C D E F 图10 A BC DE F图11(1) 求二次函数的解析式;(2) 务实数n的值;(3) 二次函数y=ax2的图象上能否存在点P,满足P A=PC,假定存在,试求出一切契合条件的点P 的坐标,假定不存在,请说明理由.图12。
2020年福州市九年级质量检测数学试题答案及评分参考
A F D EB C2020年福州市九年级质量检测数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂. 1.A 2.C 3.A 4.B 5.B 6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答. 11.1 12.1413.15 14.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答. 17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1-. ···························································································· 5分 ∴原不等式组的解集是1-<x ≤3, ··············································································· 6分······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE =CF ,∴BE +EF =CF +EF , 即BF =CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ABF ≌△DCE , ······························································································· 6分∴∠A =∠D . ······································································································· 8分19.(本小题满分8分)解:原式221(1)(1)(1)x x x x +=⋅+--+ ······················································································· 3分2(1)(1)111x x x x x -++=-++ ·························································································· 4分 221111x x x x +-=-++ ·································································································· 5分 21x =+. ··········································································································· 6分当1x =时,原式 ················································································· 7分=. ····················································································· 8分 20.(本小题满分8分) 解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分 (2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA , ∴△DBC ∽△DAO , ············································································ 7分 ∴12DC BC DO AO ==, ∴OD =2CD . ····················································································· 8分21.(本小题满分8分) 解:(1)由图1可得甲的速度是1202=60÷m/min . ································································ 2分由图2可知,当43x =时,甲,乙两人相遇,故4(60)2003v +⨯=乙,解得90v =乙m/min . ···························································································· 4分 答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b ==, ······························································································· 6分20010603a ==. ································································································ 8分∴a 的值为103,b 的值为209.22.(本小题满分10分) 解:(1)依题意得100a =. ····························································································· 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==, ········· 6分∴估计这1000户家庭月均用水量的平均数是14.72. (2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有40100180280600+++=(户), ···························································· 8分 ∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000⨯=,∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m , 而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m , ∴数据中不超过m 的频数应为700, ·························································· 8分 即有300户家庭的月均用水量超过m .又2060100160300++=<,2060100220380300+++=>, ∴m 应在16≤x <20内. ·········································································· 9分 而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB =90°, ······················································· 1分∴∠ADC =90°.∵E 是AC 的中点, ∴DE =AE ,∴∠EAD =∠EDA . ··················································· 2分 ∵OA =OD ,∴∠OAD =∠ODA . ······················································································· 3分 ∵∠OAD +∠EAD =∠BAC =90°, ∴∠ODA +∠EDA =90°, 即∠ODE =90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点, ∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF ,∴∠AHF =90°.∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB =90°, ∴∠BAF +∠ABF =90°.∵∠BAC =90°, ∴∠G +∠ABF =90°, ∴∠G =∠BAF . ························································································· 6分 又∠AHF =∠GAB =90°, ∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA=. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立. ∵AC <AB ,∴»BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合,∴AF FH GB BA =≤12OF BA =, ············································································ 10分 即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG =90°,∴AM =12GB . ······················································ 6分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB =90°, ∴∠AFG =90°, ∴AF ⊥GB . ························································· 7分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立, 此时AF 垂直平分GB , 即AG =AB . ∵AC <AB ,∴»BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA 180452︒-︒==67.5°. ······································································· 1分∵AB =AC ,∠BAC =90°, ∴∠ACB =∠ABC =45°,∠DCA =22.5°,························································· 2分 ∴∠DCB =22.5°, 即∠DCA =∠DCB , ∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA . 又CD 平分∠ACB , ∴AD =FD , ································································································· 4分 ∴AD FD DB DB=. 在Rt △BFD 中,∠ABC =45°, ∴sin ∠DBF FD DB==, ················································································ 5分∴AD DB = ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°. 又∠BAC =90°,∠AED =45°, ∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°,·············································· 7分 ∴∠AGE =∠AEG , ∴AG =AE . ······························································································· 8分 ∵AB =AC ,∴△AGB ≌△AEC , ···················································································· 9分F B A C D E。
福州市九年级第一次质量检测数学试卷及答案
福州市九年级第一次质量检测数 学 试 题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列天气预报的图标中既是轴对称图形又是中心对称图形的是ABCD2.地球绕太阳公转的速度约为110000千米/时,将110000用科学记数法表示,其结果是 A .61.110⨯B .51.110⨯C .41110⨯D .61110⨯3.已知△ABC ∽△DEF ,若面积比为4∶9,则它们对应高的比是 A .4∶9B .16∶81C .3∶5D .2∶34.若正数x 的平方等于7,则下列对x 的估算正确的是 A .1<x <2 B .2<x <3 C .3<x <4D .4<x <55.已知a ∥b ,将等腰直角三角形ABC 按如图所示的方式放置,其中锐角顶 点B ,直角顶点C 分别落在直线a ,b 上,若∠1=15°,则∠2的度数是 A .15° B .22.5°C .30°D .45°6.下列各式的运算或变形中,用到分配律的是 A.=B .222()ab a b = C .由25x +=得52x =-D .325a a a +=7.不透明的袋子中装有除颜色外完全相同的a 个白球、b 个红球、c 个黄球,则任意摸出一个球,是红球的概率是A21Ba bA .ba c+B .a ca b c+++ C .b a b c++ D .a c b+8.如图,等边三角形ABC 边长为5,D ,E 分别是边AB ,AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是A .247B .218C .3D .29.已知Rt △ABC ,∠ACB =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到射线AD 的距离是 A .2B .CD .310.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是 A .容易题和中档题共60道 B .难题比容易题多20道 C .难题比中档题多10道D .中档题比容易题多15道第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效. 2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.分解因式:34m m -=.12.若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是.13.如图是甲、乙两射击运动员10次射击成绩的折线统计图,则这10次射击成绩更稳定的运动员是. 14.若分式65m m -+-的值是负整数,则整数m 的值是.15.在平面直角坐标系中,以原点为圆心,5为半径的⊙O 与 直线23y kx k =++(0k ≠)交于A ,B 两点,则弦AB 长 的最小值是.16.如图,在平面直角坐标系中,O 为原点,点A 在第一象限,点B 是x 轴正半轴上一点,∠OAB =45°,双曲线k y x=过A EDCF点A ,交AB 于点C ,连接OC ,若OC ⊥AB ,则tan ∠ABO 的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)计算:3tan 30-+︒-(3.14π-)0.18.(本小题满分8分)如图,已知∠1=∠2,∠B =∠D ,求证:CB =CD . 19.(本小题满分8分)先化简,再求值:(11x -)2221x x x-+÷,其中1x .20.(本小题满分8分)如图,在Rt △ABC 中,∠ACB =90°,BD 平分∠ABC .求作⊙O ,使得点O 在边AB 上,且⊙O 经过B ,D 两点;并证明AC 与⊙O 相切.(要求尺规作图,保留作图痕迹,不写作法)21.(本小题满分8分)如图,将△ABC 沿射线BC 平移得到△A ′B ′C ′,使得点A ′落在∠ABC 的平分线BD 上,连接AA ′,AC ′. (1)判断四边形ABB ′A ′的形状,并证明; (2)在△ABC 中,AB =6,BC =4,若AC ′⊥A ′B ′,求四边形ABB ′A ′的面积.22.(本小题满分10分)为了解某校九年级学生体能训练情况,该年级在3月份进行了一次体育测试,决定对本次测试的成绩进行抽样分析.已知九年级共有学生480人.请按要求回答下列问题:(1)把全年级同学的测试成绩分别写在没有明显差别的小纸片上,揉成小球,放到一个不透明的袋子中,充分搅拌后,随意抽取30个,展开小球,记录这30张纸片中所写的成绩,得到一个样本.你觉得上面的抽取过程是简单随机抽样吗? 答:.(填“是”或“不是”)(2BC AD 21C ABDB AC A' B' C'DC 等级,x <70时记为D 等级,根据表格信息,解答下列问题: ①本次抽样调查获取的样本数据的中位数是;估计全年级本次体育测试成绩在A ,B 两个等级的人数是;②经过一个多月的强化训练发现D 等级的同学平均成绩提高15分,C 等级的同学平均成绩提高10分,B 等级的同学平均成绩提高5分,A 等级的同学平均成绩没有变化,请估计强化训练后全年级学生的平均成绩提高多少分?23.(本小题满分10分)某汽车销售公司销售某厂家的某款汽车,该款汽车现在的售价为每辆27万元,每月可售出两辆.市场调查反映:在一定范围内调整价格,每辆降低0.1万元,每月能多卖一辆.已知该款汽车的进价为每辆25万元.另外,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,超过的部分每辆返利1万元.设该公司当月售出x 辆该款汽车.(总利润=销售利润+返利)(1)设每辆汽车的销售利润为y 万元,求y 与x 之间的函数关系式;(2)当x >10时,该公司当月销售这款汽车所获得的总利润为20.6万元,求x 的值. 24.(本小题满分13分)在正方形ABCD 中,E 是对角线AC 上一点(不与点A ,C 重合),以AD ,AE 为邻边作平行四边形AEGD ,GE 交CD 于点M ,连接CG .(1)如图1,当AC 时,过点E 作EF ⊥BE 交CD 于点F ,连接GF 并延长交AC 于点H .①求证:EB =EF ;②判断GH 与AC 的位置关系,并证明;(2)过点A 作AP ⊥直线CG 于点P ,连接BP ,若BP =10,当点E 不与AC 中点重合时,求P A 与PC 的数量关系.图1备用图BCDAE G MF H BCDA25.(本小题满分13分)已知抛物线1(5)()2y x x m =-+-(m >0)与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .(1)直接写出点B ,C 的坐标;(用含m 的式子表示)(2)若抛物线与直线12y x =交于点E ,F ,且点E ,F 关于原点对称,求抛物线的解析式;(3)若点P 是线段AB 上一点,过点P 作x 轴的垂线交抛物线于点M ,交直线AC 于点N ,当线段MN 长的最大值为258时,求m 的取值范围.答案及评分标准一、选择题:每小题4分,满分40分.1.A 2.B 3.D4.B 5.C 6.D 7.C 8.B9.C10.B二、填空题:每小题4分,满分24分.11.(2)(2)m m m +- 12.正方体 13.甲14.415. 16注:12题答案不唯一,能够正确给出一种符合题意的几何体即可给分,如:某个面是正方形的长方体,底面直径和高相等的圆柱,等.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程和演算步骤.17.解:原式31=- ···································································· 6分 311=+- ············································································· 7分 3=.·················································································· 8分 18.证明:∵∠1=∠2,∴∠ACB =∠ACD . ···································· 3分 在△ABC 和△ADC 中,B D ACB ACD AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,2 1 C A B D∴△ABC ≌△ADC (AAS ), ························································· 6分 ∴CB =CD . ··········································································· 8分 注:在全等的获得过程中,∠B =∠D ,AC =AC ,△ABC ≌△ADC ,各有1分.19.解:原式22121x x x x x--+=÷ ································································· 1分 221(1)x x x x -=⋅-······································································ 3分 1x x =-, ············································································· 5分当1x =时,原式 ···················································· 6分==. ····················································· 8分20············································· 3分如图,⊙O 就是所求作的圆.························································· 4分 证明:连接OD .∵BD 平分∠ABC , ∴∠CBD =∠ABD . ···························································· 5分 ∵OB =OD ,∴∠OBD =∠ODB , ∴∠CBD =∠ODB , ···························································· 6分 ∴OD ∥BC , ∴∠ODA =∠ACB 又∠ACB =90°, ∴∠ODA =90°, 即OD ⊥A C . ····································································· 7分 ∵点D 是半径OD 的外端点, ∴AC 与⊙O 相切. ····························································· 8分注:垂直平分线画对得1分,标注点O 得1分,画出⊙O 得1分;结论1分. 21.(1)四边形ABB ′A ′是菱形. ································································· 1分证明如下:由平移得AA ′∥BB ′,AA ′=BB ′,∴四边形ABB ′A ′是平行四边形,∠AA ′B =∠A ′B C . ·············· 2分 ∵BA ′平分∠ABC , ∴∠ABA ′=∠A ′BC , ∴∠AA ′B =∠A ′BA , ····················································· 3分∴AB =AA ′,∴□ABB ′A ′是菱形. ······················································ 4分(2)解:过点A 作AF ⊥BC 于点F .由(1)得BB ′=BA =6.由平移得△A ′B ′C ′≌△ABC , ∴B ′C ′=BC =4, ∴BC ′=10. ···························· 5分 ∵AC ′⊥A ′B ′, ∴∠B ′EC ′=90°,∵AB ∥A ′B ′,∴∠BAC ′=∠B ′EC ′=90°. 在Rt △ABC ′中,AC′8==. ··································· 6分 ∵S △ABC ′1122AB AC BC AF ''=⋅=⋅,∴AF 245AB AC BC '⋅==', ··························································· 7分∴S 菱形ABB ′A ′1445BB AF '=⋅=,∴菱形ABB ′A ′的面积是1445. ·················································· 8分22.(1)是; ·························································································· 2分 (2)①85.5;336; ············································································· 6分②由表中数据可知,30名同学中,A 等级的有10人,B 等级的有11人, C 等级的有5人,D 等级的有4人. 依题意得,15410551101030⨯+⨯+⨯+⨯ ········································· 8分5.5=.······································································ 9分 ∴根据算得的样本数据提高的平均成绩,可以估计,强化训练后,全年 级学生的平均成绩约提高5.5分. ··········································· 10分23.解:(1)27250.1(2)0.1 2.2y x x =---=-+; ········································· 4分(2)依题意,得(0.1 2.2)0.5101(10)20.6x x x -++⨯+⨯-=, ·················· 7分 解得1216x x ==. ·································································· 9分答:x 的值是16. ································································ 10分注:(1)中的解析式未整理成一般式的扣1分. 24.(1)①证明:∵四边形ABCD 是正方形,∴∠ADC =∠BCD =90°,CA 平分∠BCD . ∵EF ⊥EB ,∴∠BEF =90°. 证法一:过点E 作EN ⊥BC 于点N , ··········· 1分 ∴∠ENB =∠ENC =90°.∵四边形AEGD 是平行四边形,∴AD ∥GE ,∴∠EMF =∠ADC =90°,∴EM ⊥CD ,∠MEN =90°, ∴EM =EN , ······················································· 2分B AC A' B'C'DF E BC D A E G MF NH∵∠BEF=90°,∴∠MEF=∠BEN,∴△EFM≌△EBN,∴EB=EF. ······················································· 3分证明二:过点E作EK⊥AC交CD延长线于点K, ················· 1分∴∠KEC=∠BEF=90°,∴∠BEC=∠KEF,∵∠BEF+∠BCD=180°,∴∠CBE+∠CFE=180°.∵∠EFK+∠CFE=180°,∴∠CBE=∠KFE.又∠ECK=12∠BCD=45°,∴∠K=45°,∴∠K=∠ECK,∴EC=EK, ······················································· 2分∴△EBC≌△EFK,∴EB=EF. ······················································· 3分证明三:连接BF,取BF中点O,连接OE,OC.················· 1分∵∠BEF=∠BCF=90°,∴OE=12BF=OC,∴点B,C,E,F都在以O为圆心,OB为半径的⊙O上.∵BE BE=,∴∠BFE=∠BCA=45°,·········2分∴∠EBF=45°=∠BFE,∴EB=EF. ······················································· 3分②GH⊥AC. ·············································································· 4分证明如下:∵四边形ABCD是正方形,四边形AEGD是平行四边形,∴AE=DG,EG=AD=AB,AE∥DG,∠DGE=∠DAC=∠DCA=45°,∴∠GDC=∠ACD=45°. ··········································· 5分由(1)可知,∠GEF=∠BEN,EF=EB.∵EN∥AB,∴∠ABE=∠BEN=∠GEF,∴△EFG≌△BEA, ·····················6分∴GF=AE=DG,∴∠GFD=∠GDF=45°,∴∠CFH=∠GFD=45°,∴∠FHC=90°,∴GF⊥AC.····························································· 7分CDGMFA ENBHBCDAEGMFOHGCDEMFKH(2)解:过点B 作BQ ⊥BP ,交直线AP 于点Q ,取AC 中点O ,∴∠PBQ =∠ABC =90°. ∵AP ⊥CG , ∴∠APC =90°.①当点E 在线段AO 上时,(或“当102AE AC <<时”)∠PBQ -∠ABP =∠ABC -∠ABP , 即∠QBA =∠PBC . ······························· 8分∵∠ABC =90°,∴∠BCP +∠BAP =180°. ∵∠BAP +∠BAQ =180°, ∴∠BAQ =∠BCP . ······························· 9分∵BA =BC ,∴△BAQ ≌△BCP , ······························ 10分 ∴BQ =BP =10,AQ =CP ,在Rt △PBQ 中,PQ==∴P A +PC =P A +AQ =PQ= ······································· 11分 ②当点E 在线段OC 上时,(或“当12AC AE AC <<时”)∠PBQ -∠QBC =∠ABC -∠QBC , 即∠QBA =∠PBC . ∵∠ABC =∠APC =90°,∠AKB =∠CKP ,∴∠BAQ =∠BCP . ······························ 12分 ∵BA =BC ,∴△BAQ ≌△BCP , ∴BQ =BP =10,AQ =CP ,在Rt △PBQ 中,PQ==∴P A -PC =P A -AQ =PQ= ··········· 13分综上所述,当点E 在线段AO 上时,P A +PC=当点E 在线段OC 上时,P A -PC=25.(1)B (m ,0),C (0,52m ); ···························································· 2分解:(2)设点E ,F 的坐标分别为(a ,2a ),(a -,2a -),························ 3分代入25111(5)()(5)2222y x x m x m x m =-+-=-+-+,得22511(5)2222511(5)2222a a m a m a a m a m ⎧-+-+=⎪⎨⎪---+=-⎩,①,② ········································ 4分由①-②,得(5)m a a -=. ∵0a ≠, ∴6m =, ············································································ 5分∴抛物线的解析式为2111522y x x =-++. ·································· 6分(3)依题意得A (5-,0),C (0,52m ),由0m >,设过A ,C 两点的一次函数解析式是y kx b =+,将A ,C 代入,得5052k b b m -+=⎧⎪⎨=⎪⎩.,解得1252k m b m ⎧=⎪⎨⎪=⎩,, ∴过A ,C 两点的一次函数解析式是5122y mx m =+. ···················· 7分设点P (t ,0),则5t m -剟(0m >), ∴M (t ,2511(5)222t m t m -+-+),N (t ,5122mt m +).①当50t -剟时,∴MN 255111(5)()22222t m t m mt m =-+-+-+25122t t =--. ···························································· 8分 ∵102-<,∴该二次函数图象开口向下,又对称轴是直线52t =-,∴当52t =-时,MN 的长最大,此时MN 2555251()()22228=-⨯--⨯-=. ································ 9分②当0t m <…时,∴MN 255111[(5)]22222mt m t m t m =+--+-+25122t t =+.··········· 10分∵102>,∴该二次函数图象开口向上, 又对称轴是直线52t =-,∴当0t m <…时,MN 的长随t 的增大而增大,∴当t m =时,MN 的长最大,此时MN 25122m m =+. ·············· 11分∵线段MN 长的最大值为258,∴25251228m m +…,······························································ 12分 整理得2550()24m +…,m ∵0m >,∴m的取值范围是0m <…. ······································· 13分。
2023福州市中考前质量检测数学试题word版附详细解答
2022-2023学年第二学期福州市九年级质量抽测数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,完卷时间120分钟,满分150分. 注意事项:1.答题前,考生务必在试卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束,考生必须将试卷和答题卡一并交回.第I 卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题自要求的) 1.−2的相反数是A.2B.−2C.12D.−122.下列交通标志图案中,是中心对称图形的是A. B. C. D.3.湿地被称为“地球之肾”.福州市现有湿地206 800公顷,将数据206 800用科学记数法表示,其结果是A.2 068×102B.206.8×103C.2.068×105D.0.206 8×106 4.如图所示的几何体,其主视图是5.如图,直线a ,b 被直线c 所截,若a∥b,∠1=70°,则∠2的大小是A.70°B.80°C.100°D.110° 6.下列运算正确的是A.a 3+a 2=a 5B.a 3−a 2=aC.a 3·a 2=a 6D.(a 3)2=a 67.林则徐纪念馆作为“福州古席”的典型代表,是全国重点文物保护单位.该纪念馆计划招聘一名工作人员,评委从内容、文化两个方面为甲、乙、丙、丁四位应聘者打分(具体分数如表),按内容占40%,文化占60%计算应聘者综合分,并录用综合分最高者,则最终录用的应聘者是丙 D.丁8.如图,在平面直角坐标系x Oy 中,已知点A(2,0),点A ´(−2,4).若点A 与点A ´关于直线l 成轴对称,则直线l 的解析式是A.y=2B.y=xC.y=x +2D.y=−x +2C. B.D.A. 主视方向5题图a b12c9.我国著名院士袁隆平被誉为“杂交水稻之父”,他在杂交水稻事业方面取得了巨大成就.某水稻研究基地统计,杂交水稻的亩产量比传统水稻的亩产量多400公斤,总产量同为3000公斤的杂交水稻种植面积比传统水稻种植面积少2亩,设传统水稻亩产量为x 公斤,则符合题意的方程是 A.3000x+400=3000x−2 B.3000x+400=3000x+2 C.3000x+2=3000x−400 D.3000x+2=3000x+40010.如图,△ABC 中,O 是BC 上一点,以0为圆心,OC 长为半径作半圆与AB 相切于点D.若∠BCD=20°,∠ACD=30°,则∠A 的度数是A.75°B.80°C.85°D.90°第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 二、填空题(本题共6小题,每小题4分,共24分)11.如图,点A 在数轴上对应的数是a ,则实数a 的值可以是__________.(只需写出一个符合条件的实数)12.不等式2x −3>0的解集是__________. 13.四边形的内角和度数是__________.10题图14.我国数学家祖冲之是第一个将圆周率的计算精确到小数点后七位的人,他将圆周率精确到3.1415926.若从该数据的8个数字中随机抽取一个数字,则所抽到的数字是1的概率是__________.15.两个正方形按如图所示的位置放置,若重叠部分是一个正八边形,则这两个正方形边长的比值是__________.16.已知直线y=− x +b(b >0)与x 轴,y 轴交于A ,B 两点,与双曲线y=k x(k >0)交于E ,F 两点.若AB=2EF ,且b <k <3b ,则b 的取值范围是__________.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分) 计算:√4+|−12|−2-1.18.(本小题满分8分)如图,点A ,B 在CD 的同侧,线段AC ,BD 相交于点E ,∠ECD=∠EDC,∠ECB=∠EDA,求证:AD=BC.19.(本小题满分8分) 先化简,再求值:(1x−1−1x+1)÷xx 2−1,其中x =√2.20.(本小题满分8分)ABECD11题图15题图荔枝是一种具有悠久历史的水果,深受广大人民群众喜爱,某超市现售卖桂味和黑叶两种荔枝,已知购买2千克桂味和1千克黑叶需要花费80元,购买1千克桂味和4千克黑叶需要花费96元.求桂味和黑叶每千克的价格. 21.(本小题满分8分)如图,AB 是半圆O 的直径,AC ̂=BC ̂,D 是BC ̂上一点,CD=12AB ,E 是AC 的中点,连接OC ,OD ,DE.(1)求∠COD 的大小; (2)求证:DE∥AB.22.(本小题满分10分)某学校食堂计划推行午餐套餐制,现随机抽取中午在学校食堂用餐的20名学生,收集到他们午餐消费金额x (单位:元)的数据,并对数据进行整理、描述和分析.下面给出部分信息:a.这20名学生午餐消费金额数据如下: 4 8 10 9 9 6 9 6 8 8 7 8 8 6 7 9 10 7 8 5b.这20名学生午餐消费金额数据的频数分布表:ABDCE(1)写出表中m,n,t的值;(2)为了合理膳食结构,学校食堂推出A,B,C三种价格不同的套餐.据调查,午餐消费金额在6≤x<8的学生中有50%选择B套餐,消费金额在8≤x<10的学生中有60%选择B套餐,其余学生选择A套餐或C套餐.若每天中午约有800名的学生在食堂用餐,估计食堂每天中午需准备B套餐的份数.23.(本小题满分10分)如图,已知∠MON=90°,A,B为射线ON上两点,且OB<BA.(1)求作菱形ABCD,使得点C在射线OM上(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接AC,OD,当△OAC∽△OCB时,求t an∠ODC的值.24.(本小题满分12分)如图1,Rt△ABC中,∠ABC=90°,AC=5,AB=4,将△ABC绕点B顺时针旋转得到△A´BC ´,其中A´是点A的对应点,且0°<∠AB A´<360°,连接AA´,CC´.(1)求证:CC´AA´=3 4;(2)如图2,当点C在线段AA´上时,求△CBC´的面积;(3)直线AA´与直线CC´交于点D,点E是边AB的中点,连接DE,在旋转过程中,求DE的最大值.25.(本小题满分14分)已知抛物线y=a x 2+b x −4与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,且OB=0C=20A.直线y=k x −2(k >0)与抛物线交于D ,E 两点(点D 在点E 的左侧).连接OD ,OE.(1)求抛物线的解析式;(2)若△ODE 的面积为4√2,求k 的值;(3)求证:不论k 取何值,抛物线上都存在定点F ,使得△DEF 是以DE 为斜边的直角三角形.AC ´CA ´图1´图22022-2023学年第二学期福州市九年级质量抽测数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,完卷时间120分钟,满分150分. 注意事项:1.答题前,考生务必在试卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束,考生必须将试卷和答题卡一并交回.第I 卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题自要求的) 1.−2的相反数是A.2B.−2C.12D.−121.解:负数的相反数是正数,故−2的相反数是2.下列交通标志图案中,是中心对称图形的是A. B. C. D.2.解:A 、C 是轴对称图形,B 既是轴对称又是中心对称图形,D 既不是轴对称也不是中心对称图形,故选B .3.湿地被称为“地球之肾”.福州市现有湿地206 800公顷,将数据206 800用科学记数法表示,其结果是A.2 068×102B.206.8×103C.2.068×105D.0.206 8×106 3.解:206 800=2.068×105,故选C .B 与D 不符合科学记数法规范. 4.如图所示的几何体,其主视图是解:A 是俯视图,B 是主视图,C 是左视图,D 不存在,故选B . 5.如图,直线a ,b 被直线c 所截,若a∥b,∠1=70°,则∠2的大小是A.70°B.80°C.100°D.110°5.解:∵a∥b,∴∠2与∠1的同位角互补,即为110°,故选D .6.下列运算正确的是A.a 3+a 2=a 5B.a 3−a 2=aC.a 3·a 2=a 6D.(a 3)2=a 6 6.解:a 3+a 2≠a 5,a 3−a 2≠a ,a 3·a 2=a 5,(a 3)2=a 6,故选D .7.林则徐纪念馆作为“福州古席”的典型代表,是全国重点文物保护单位.该纪念馆计划招聘一名工作人员,评委从内容、文化两个方面为甲、乙、丙、丁四位应聘者打分(具体分数如表),按内容占40%,文化占60%计算应聘者综合分,并录用综合分最高者,则最终录用的应聘者是C. B.D.A. 主视方向5题图a b12c丙 D.丁7.解:∵文化占60%,∴甲综合分高于乙,丁高于丙,又∵丁的文化分高于甲,内容分与甲相同,∴丁的综合分高于甲,故选D .8.如图,在平面直角坐标系x Oy 中,已知点A(2,0),点A ´(−2,4).若点A 与点A ´关于直线l 成轴对称,则直线l 的解析式是A.y=2B.y=xC.y=x +2D.y=−x +28.解:如图,作过A 点且平行于y 轴的直线,作过A 点且平行于x 轴的直线,可得一正方形,∵正方形对角线垂直平分,∴直线l 过点(0,2)、(-2,0),故直线l 的解析式是y=x +2,选C .9.我国著名院士袁隆平被誉为“杂交水稻之父”,他在杂交水稻事业方面取得了巨大成就.某水稻研究基地统计,杂交水稻的亩产量比传统水稻的亩产量多400公斤,总产量同为3000公斤的杂交水稻种植面积比传统水稻种植面积少2亩,设传统水稻亩产量为x 公斤,则符合题意的方程是 A.3000x+400=3000x−2 B.3000x+400=3000x+2 C.3000x+2=3000x−400 D.3000x+2=3000x+4009.解:传统水稻的种植面积=3000x,杂交水稻的种植面积=3000x+400,则有3000x+400+2=3000x,故选A .10题图8题图10.如图,△ABC 中,O 是BC 上一点,以0为圆心,OC 长为半径作半圆与AB 相切于点D.若∠BCD=20°,∠ACD=30°,则∠A 的度数是A.75°B.80°C.85°D.90°10.解:连接OD ,∵AB 与⊙O 相切,∴∠ODB=90°,∵OC=OD ,∴∠ODC=∠BCD=20°,∵∠CDB=∠ACD +∠A ,又∵∠CDB=∠ODC+∠ODB=110°,∴∠A=110°−∠ACD =80°,故选B .第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 二、填空题(本题共6小题,每小题4分,共24分)11.如图,点A 在数轴上对应的数是a ,则实数a 的值可以是__________.(只需写出一个符合条件的实数)11.解:由图知a <0,故a 可以为任何负数,比如−1. 12.不等式2x −3>0的解集是__________. 12.解:解2x −3>0得x >32.13.四边形的内角和度数是__________.13.解:四边形的内角和度数=(4−2)×180°=360°.14.我国数学家祖冲之是第一个将圆周率的计算精确到小数点后七位的人,他将圆周率精确到3.1415926.若从该数据的8个数字中随机抽取一个数字,则所抽到的数字是1的概率是__________.14.解:8个数字中有2个数字1,故抽到的数字是1的概率是28=14.15.两个正方形按如图所示的位置放置,若重叠部分是一个正八边形,则这两个正方形边长的比值是__________.15.解:正八边形的每一个内角=(8−2)×180°÷8=135°,故8个空白部分直角三角形均为等腰直角三角形,又∵它们的斜边均相等,∴它们均为全等三角形,令该等腰直角三角形的直角边长为a ,则斜边为√2a ,则两个正方形边长均为2a+√2a ,故这两个正方形边长的比值是1.16.已知直线y=− x +b(b >0)与x 轴,y 轴交于A ,B 两点,与双曲线y=k x(k >0)交于E ,F 两点.若AB=2EF ,且b <k <3b ,则b 的取值范围是__________.16.解:将x =0代入y=− x +b 得y=b ,则点B 坐标为(0,b),将y=0代入y=− x +b 得x =b ,则点A 坐标为(b,0),AB=√2OA=√2b ,联立y=kx 与y=− x +b 得方程x 2−b x +k=0,由题意知判别式Δ=b 2−4k >0,解得b >2√k ,由韦达定理知(设x 1<x 2)x 1+x 2=b ,x 1·x 2=k ,∵E ,F 两点在直线y=− x +b 上,∴EF=√2(x 2−x 1),∵AB=2EF ,∴AB 2=4EF 2,即2b 2=8(x 2−x 1)2,亦即b 2=4(x 2−x 1)2=4( x 1+x 2)2−16x 1·x 2,∴b 2=4b 2−16k ,即3b 2=16k ,k=316b 2,∵b <k <3b ,∴b <316b 2<3b ,解得163<b <16.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分) 计算:√4+|−12|−2-1.17.解:原式=2+12−12=2.18.(本小题满分8分)如图,点A ,B 在CD 的同侧,线段AC ,BD 相交于点E ,∠ECD=∠EDC,∠ECB=∠EDA,求证:AD=BC.11题图15题图18.解:∵∠ECD=∠EDC,∠ECB=∠EDA,∴∠ECD +∠ECB=∠EDC +∠EDA,即∠BCD=∠ADC 在△BCD 与△ADC 中,∵{∠BCD =∠ADCCD =DC∠ECD =∠EDC ,∴△BCD ≌△ADC(ASA),∴AD=BC . 19.(本小题满分8分) 先化简,再求值:(1x−1−1x+1)÷xx 2−1,其中x =√2.19.解:原式=(x+1(x−1)(x+1)−x−1(x−1)(x+1))÷x (x−1)(x+1)=2(x−1)(x+1)×(x−1)(x+1)x=2x代入x =√2,原式=2x =√2=√2. 20.(本小题满分8分)荔枝是一种具有悠久历史的水果,深受广大人民群众喜爱,某超市现售卖桂味和黑叶两种荔枝,已知购买2千克桂味和1千克黑叶需要花费80元,购买1千克桂味和4千克黑叶需要花费96元.求桂味和黑叶每千克的价格. 20.解:设桂味和黑叶每千克的价格分别为x 元、y 元{2x +y =80①1x +4y =96②②×2−①得7y=112,解得y=16 将y=16代入②得x +64=96,解得x =32答:桂味和黑叶每千克的价格分别为32元、16元. 21.(本小题满分8分)如图,AB 是半圆O 的直径,AĈ=BC ̂,D 是BC ̂上一点,CD=12AB ,E 是AC 的中点,连接OC ,OD ,DE.ABECD(1)求∠COD 的大小; (2)求证:DE∥AB.21.解:(1)∵CD=12AB ,OC=OD=12AB ,∴OC=OD=CD ,即△OCD 为等边三角形,∴∠COD =60°.(2) ∵AĈ=BC ̂,∴OC ⊥AB ,取OC 中点F ,连接EF 、DF ∵E 为AC 中点,∴EF ∥AB ,∴EF ⊥OC 由(1)知△OCD 为等边三角形,∴DF ⊥OC又∵EF ⊥OC ,∴E 、F 、D 三点共线,又∵EF ∥AB ,∴DE ∥AB . 22.(本小题满分10分)某学校食堂计划推行午餐套餐制,现随机抽取中午在学校食堂用餐的20名学生,收集到他们午餐消费金额x (单位:元)的数据,并对数据进行整理、描述和分析.下面给出部分信息:a.这20名学生午餐消费金额数据如下: 4 8 10 9 9 6 9 6 8 8 7 8 8 6 7 9 10 7 8 5b.这20名学生午餐消费金额数据的频数分布表:(1)写出表中m ,n ,t 的值;FABOD CE(2)为了合理膳食结构,学校食堂推出A,B,C三种价格不同的套餐.据调查,午餐消费金额在6≤x<8的学生中有50%选择B套餐,消费金额在8≤x<10的学生中有60%选择B套餐,其余学生选择A套餐或C套餐.若每天中午约有800名的学生在食堂用餐,估计食堂每天中午需准备B套餐的份数.22.解:(1)m=20−2−6−2=10,n=8,t=8.(2)20人中选择B套餐的人数=6×50%+10×60%=9人,800×920=360(份)答:估计食堂每天中午需准备B套餐的份数为360份.23.(本小题满分10分)如图,已知∠MON=90°,A,B为射线ON上两点,且OB<BA.(1)求作菱形ABCD,使得点C在射线OM上(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接AC,OD,当△OAC∽△OCB时,求t an∠ODC的值.23.解:(1)如图所示.(2)∵四边形ABCD为菱形,∴CD∥ON,∠DCA=∠BCA,∠BCA=∠BAC∵∠MON=90°,∴∠OCD=90°∵△OAC∽△OCB,∴∠BAC=∠OCB,∴∠BCA=∠OCB=∠DCA,∴∠OCB=13∠OCD=30°令OB=t,则CD=BC=2OB=2t,OC=BC×cos30°=√3t,故t an∠ODC=OCCD =√3t2t=√32.24.(本小题满分12分)如图1,Rt△ABC 中,∠ABC=90°,AC=5,AB=4,将△ABC 绕点B 顺时针旋转得到△A´BC ´,其中A ´是点A 的对应点,且0°<∠AB A ´<360°,连接AA ´,CC ´. (1)求证:CC ´AA ´=34;(2)如图2,当点C 在线段AA ´上时,求△CBC´的面积;(3)直线AA ´与直线CC ´交于点D ,点E 是边AB 的中点,连接DE ,在旋转过程中,求DE 的最大值.24.解:(1)证明:由勾股定理知BC=√AC 2−AB 2=3由旋转的性质知∠CBC ´=∠ABA ´,BC ´=BC=3,A ´B=AB=4,∴△CBC ´∽△ABA ´ ∴CC ´AA ´=BC BA =34.(2)由旋转的性质知∠A ´=∠A ,A ´B=AB=4,过B 作BM ⊥AA 于点M ,则AM=A ´M ∴BM=A ´B ×sin ∠A ´=AB ×sin ∠A=4×35=125,A ´M=A ´B ×cos ∠A ´=AB ×cos ∠A=4×45=165∴AA ´=2A ´M=325由(1)知CC ´AA ´=34,∴CC ´=34AA ´=245过B 作BN ⊥CC ´于N ,∵BC=BC ´,∴CN=C ´N=12CC ´=125由勾股定理知BN=√BC 2−CN 2=√32−(125)2=95故S △CBC´=12×C ´C ×BN=12×245×95=10825.E0 DAC ´BCA ´图1´图2(3)由(1)知△CBC ´∽△ABA ´,∴∠BA ´A=∠BC ´C∵∠BC ´D+∠BC ´C ,∴∠BA ´A+∠BC ´D=180°,∴∠D=∠A ´BC ´=90° 又∵∠ABC=90°,∴A 、B 、C 、D 四点共圆取AC 中点O ,则D 在以O 为圆心,12AC 长为半径的圆上运动连接OE ,当D 、O 、E 三点共线时,DE 有最大值∵OE=12BC=32,OD=12AC=52,∴DE max =OE+OD=32+52=4,即DE 的最大值为4.25.(本小题满分14分)已知抛物线y=a x 2+b x −4与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,且OB=0C=20A.直线y=k x −2(k >0)与抛物线交于D ,E 两点(点D 在点E 的左侧).连接OD ,OE.(1)求抛物线的解析式;(2)若△ODE 的面积为4√2,求k 的值;(3)求证:不论k 取何值,抛物线上都存在定点F ,使得△DEF 是以DE 为斜边的直角三角形.25.解:(1)将x =0代入y=a x 2+b x −4得y=−4,即点C 之比为(0, −4),∴OC=4 ∵OB=0C=20A ,∴点A 坐标为(−2,0),点B 坐标为(4,0) 将点A(−2,0),点B(4,0)分别代入y=a x 2+b x −4得{4a −2b −4=016a +4b −4=0,解得a=12,b=−1 ∴抛物线的解析式为y=12x 2−x −4.(2)令直线y=k x −2交y 轴于点G ,将x =0代入y=k x −2得y=−2,则OG=2 ∵S △ODE =12×OG ×(x E −x D )=12×2×(x E −x D )=4√2,∴x E −x D=4√2,则(x E −x D )2=32联立y=12x 2−x −4与y=k x −2得方程x 2−2(k +1)x −4=0则x E 与x D 为该方程的两个根,由韦达定理知x E +x D =2(k+1),x E ·x D =−4 ∵(x E −x D )2=32,∴x E 2+x D 2+2x E ·x D −4x E ·x D =32,即(x E +x D )2−4x E ·x D =32∴[2(k+1)]2−4×(−4)=32,解得k1=−3(舍去),k2=1 故k的值为1.(3)证明:设点D坐标为(m,12m2−m−4)、点E坐标为(n,12n2−n−4)由(2)知m+n=2(k+1),mn=−4抛物线y=12x2−x−4顶点坐标为(1,− 92),设点F坐标为(t,12t2−t−4)(m<t<n)过F作x轴平行线MN,过D作DM⊥MN于M,过E作EN⊥MN于N则DM=12m2−m−4−12t2+t+4=12(m−1)2−12(t−1)2=12(m+t−2)(m−t)EN=12n2−n−4−12t2+t+4=12(n+t−2)(n−t),FM=t−m,FN=n−t∵DF⊥EF,∴∠DFM+∠EFM=90°,又∵∠FEN+∠EFM=90°,∴∠DFM=∠FEN 又∵∠DMF=∠FNE=90°,∴△DFM∽△FEN∴DMFN =MFNE,即12(m+t−2)(m−t)n−t=t−m12(n+t−2)(n−t)整理得mn+n(t−2)+m(t−2)+(t−2)2+4=0代入m+n=2(k+1),mn=−4得(2k+2)(t−2)+(t−2)2=0当t=2时,无论k取何值,上式恒成立,定点F坐标为(2, − 4).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福州市初三数学质量检查(doc 12页)2010年福州市初中毕业班质量检查数学试卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡上,答在本试卷上无效.学校姓名考生号一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-2010的绝对值是().1 A.2010 B.-2010 C.2010 1D.-20102.2010年福州市参加中考的学生数约79000人,这BAC D第3第8题图个数用科学记数法表示为( ).A .3109.7⨯ B. 31079⨯ C. 4109.7⨯ D. 51079.0⨯3.如图是由4个大小相同的正方体搭成的几何体,其俯视图是( ).4.下列计算不正确的是( ).A .a +b =2abB .2a a ⋅=3aC .63a a ÷=3aD .()2ab =22b a5.已知⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=7,则⊙O 1和⊙O 2的位置关系是( ). A .外离 B .外切 C . 相交 D .内含6.下列事件中是必然事件的是( ). A .打开电视机,正在播新闻B .掷一枚硬币,正面朝下C .太阳从西边落下 D .明天我市晴天7.已知三角形的三边长分别为5,6,x ,则x 不可能是( ).A .5 B. 7 C. 9 D.118.若一次函数y=kx+b 的图象如图所示,则k 、b 的取值范围是( ).A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<09.在等边三角形、正方形、菱形、矩形、等腰梯形、圆这几个图形中,既是轴对称图形又是中心对称图形的有().A.3个 B.4个 C.5个D.6个10.如图,在平面直角坐标系中,△PQR可以看作是△ABC经过下列变换得到:①以点A为中心,逆时针方向旋转90;②向右平移2个单位;③向上平移4个单位.下列选项中,图形正确的是().第10二、填空题(共5小题,每小题4分,满分第第1520分.请将答案填入答题卡的相应位置)11.因式分解:=-42a .12.某电视台综艺节目从接到的500个热线电话中,抽取10名“幸运观众”,小英打通了一次热线电话.她成为“幸运观众”的概率是 .13.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOG=60°,则∠DCF 等于 .14.一次函数11+-=x y 与反比例函数x ky =2的图象交于点A(2,m ),则k 的值是 .15.如图,已知1A (1,0),2A (1,-1),3A (-1,-1),3A (-1,1),4A (2,1),…,则点2010A 的坐标是 .三、解答题(满分90分.请将解答过程填入答题卡的相应位置)16.(每小题7分,满分14分)(1)计算:9)3(2201+---+-π. (2)已知12=-x y ,求代数式)()1(22y x x ---的值.17.(每小题7分,满分14分)(1)如图,在4×4的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上.①填空:∠ABC= °;∠DEF= °;BC= ;DE= ;②判断△ABC与△DEF是否相似,并证明你的结论.(2)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.求证:△ADE≌△DCF.第18.(本题满分12分)“五一”期间,新华商场贴出促销海报.在商场活动期间,王莉同学随机调查了部分参与活动的顾客,并将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:(1)王莉同学随机调查的顾客有__________人;(2)请将统计图①补充完整;(3)在统计图②中,“0元”部分所对应的圆心角是_________度;(4)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?“五一”大派送为了回馈广大顾客,本商场在4月30日至5月6日期间举办有奖购物活动.每购买100元的商品,就有一次摸奖的机会,奖品为:第18题第1819.(本题满分11分)如图等腰梯形ABCD是⊙O的内接四边形,AD ∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD 的周长为15.(1)求证:BC是直径;(2)求图中阴影部分的面积.20.(本题满分12分)为了支援云南人民抗旱救灾,某品牌矿泉水有限公司主动承担了为灾区生产300吨矿泉水的任务.(1)由于任务紧急,实际加工时每天的工作效率比原计划提高了20%,结果提前2天完成任务.该厂实际每天加工生产矿泉水多少吨?(2)该公司组织A、B两种型号的汽车共16辆,将300吨矿泉水一次性运往灾区.已知A型号汽车每辆可装20吨,运输成本500元/辆.已知B型号汽车每辆可装15吨,运输成本300元/辆.运输成本不超过7420元的情况下,有几种符合题意的运输方案?哪种运输方案更省钱?21.(本题满分13分)第21第21题如图,已知Rt △ABC 中,∠A =30°,AC =6.边长为4的等边△DEF 沿射线AC 运动(A 、D 、E 、C 四点共线),使边DF 、EF 与边AB 分别相交于点M 、N (M 、N 不与A 、B 重合).(1)求证:△ADM 是等腰三角形;(2)设AD =x ,△ABC 与△DEF 重叠部分的面积为y ,求y 关于x 的函数解析式,并写出x 的取值范围;(3)是否存在一个以M 为圆心,MN 为半径的圆与边AC 、EF 同时相切,如果存在,请求出圆的半径;如果不存在,请说明理由.22.(本题满分14分)在平面直角坐标系xOy 中,抛物线c bx xy ++-=2与x 轴交于A (-1,0),B (-3,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且APD ACB∠=∠,求点P的坐标;(3)点Q在直线BC上方的抛物线上,且点Q到直线BC的距离最远,求点Q坐标.第22第22题2010年福州市初中毕业班质量检查数学试卷参考答案和评分标准评分标准说明:1. 标准答案只列出试题的一种或几种解法. 为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要步骤即可. 如果考生的解法与标准答案中的解法不同,可参照标准答案中的评分标准相应评分.2. 第一、二大题若无特别说明,每小题评分只有满分或零分.3. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅. 如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半.4. 标准答案中的解答右端所注分数,表示考生正确做到这一步应得的累加分数.5. 评分过程中,只给整数分数.一、选择题(共10小题,每题4分,满分40分.)题号1 2 3 4 5 6 7 8 9 10答案A CDA B C D B B A二、填空题:(共5小题,每题4分,满分20分.)11. )2)(2(+-a a ;12. 501; 13.30°; 14. -2;15. (503,-503) . 三、解答题:(满分90分) 16.(每小题7分,满分14分) (1)解:原式=31221+-+-------------------------------------------------4分 =214--------------------------------------------------------------7分 (2)解:原式=yx x x+-+-2212-------------------------------------4分 =12++-y x -----------------------------------------------5分∵12=-x y , ∴原式=1+1=2------------------------------------------------7分 17.(每小题7分,满分14分) 17(1)①135,135,22,2;------------------------------------------4分②△ABC与△DEF相似--------------------------------------------5分理由:由图可知,AB=2,EF=2第∴21==EF DE BC AB .------------------------------------------6分 ∵∠ABC =∠DEF =135°, ∴△ABC∽△DEF .--------------------------------------------7分 (2) 证明: ∵四边形ABCD 是正方形∴AD=DC, ∠ADC =90°, ∴∠ADG+∠CDG =90°.--------------------------------------2分又∵AE ⊥DG ,∴∠AED =∠AEF =90°. ∴∠DAE+∠ADE =90°, ∴∠DAE=∠CDG .-----------------------------------------------4分∵CF ∥AE ,∴∠CFD =∠AEG =90°. ∴∠AED =∠CFD .----------------------------------------------6分∴△ADE ≌△DCF .-----------------------------------------------7分 (注:如果学生有不同的解题方法,只要正确,可参考评分标准,酌情给分.) 18.(本题满分12分)解:⑴200------------------------------------------------------3分.(2)画图正确------------------------------------------------6分(3)216-----------------------9分(4)5.6200501020305400120=⨯+⨯+⨯+⨯=x .∴6.5×2000=13000(元)----------------------------12分 ∴估计商场一天送出的购物券总金额是13000元.19.(本题满分11分)解:(1)证明:∵等腰梯形ABCD 是⊙O 的内接四边形,∴∠ADC +∠ABC =180°.∴∠ABC =180°―∠ADC =180°―120°=60°.---------------1分 ∴∠DCB=∠ABC=60°.-----------------------------------------------2分 ∵AC 平分∠BCD , ∴∠ACD=∠ACB=30°.----------------------------------------------------3分∵∠ABC +∠ACB +∠BAC =180°,∴∠BAC=90°.----------------------------------------------------------4分∴BC是直径.--------------------------------------------------------------5分(2)∵AD∥BC,∴∠DAC=∠ACB=30°.∴∠DAC=∠DCA.∴AD=DC.---------------------------------------------------------------6分设CD=x,得AB=AD=DC=x,∵∠BAC=90°,∠ACB=30°,∴BC=2x.∵四边形ABCD的周长为15,∴x=3.----------------------------------------------8分∴BC=6,AO=DO=3.连接AO、DO,∠AOD=2∠ACD=∵△ADO 和△ADC 同底等高, ∴S△ADO =S△ADC .------------------------------------------------------10分∴图中阴影部分的面积=扇形AOD 的面积=ππ233360602=⨯⨯.------------------------------------------------11分(注:如果学生有不同的解题方法,只要正确,可参考评分标准,酌情给分.) 20. (本题满分12分)(1)设该厂实际每天加工生产矿泉水x 吨,依题意得:2%)201(300300++=xx ∴解得x =25------------------------------------------------------------5分经检验:x=25是原方程的解.-------------------------------------6分答:该公司原计划安排750名工人生产矿泉水。