第五章《相交线与平行线》期末复习材料
相交线与平行线期末复习课课件(精细版)

进阶练习题
详细描述
这些题目难度适中,需要学生具备一 定的推理和证明能力。通过这些题目 ,学生可以锻炼自己的思维能力和解 决问题的能力。
详细描述
这些题目适合用于课堂上的深入练习 或课后作业,帮助学生加深对相交线 与平行线性质和判定方法的理解,提 高他们的解题能力。
综合练习题
总结词
涉及多个知识点,难度较大
感谢观看
01
02
03
建筑结构
相交线与平行线在建筑设 计中起着至关重要的作用 ,如梁、柱、墙等结构的 布局和连接。
空间规划
利用平行线和相交线的原 理,合理规划室内空间, 实现功能分区和视觉美感 。
建筑美学
平行线和相交线的组合可 以创造出独特的建筑美学 效果,如对称、平衡和节 奏感。
交通规划中的应用
道路设计
道路交叉口、高速公路互 通等交通设施的设计中, 相交线和平行线的原理被 广泛应用。
计算角度时出现误差
在计算与相交线和平行线相关的角度时,学生容 易出现计算错误,导致角度关系判断不准确。
易混概念解析
混淆对顶角和邻补角的概念
对顶角和邻补角是相交线和平行线中常见的两种角的关系 ,学生容易将它们混淆,影响对角度关系的判断。
误认为同位角一定相等
在平行线的判定和性质中,同位角相等是平行线的一个重 要判定条件,但学生容易误认为所有同位角都相等,导致 判断错误。
距离判定
如果两条线之间的距离小于某一特定值,则这两条线一定相交。
平行线的判定方法
同位角相等判定
01
如果同位角相等,则两条线平行。
内错角相等判定
02
如果内错角相等,则两条线平行。
垂直于同一直线的两直线平行
新版七下数学第五章相交线与平行线复习题五套

第五章相交线与平行线专题(一)相交线1.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE的度数.2.如图,三条直线相交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°,(第2题图)),(第3题图))3.如图,三条直线AB,CD,EF相交于点O,若∠BOE=4∠BOD,∠AOE=100°,则∠AOC 等于()A.30°B.20°C.15°D.10°4.如图,AB和CD相交于点O.(1)若∠1+∠3=50°,则∠3=__ __;(2)若∠1∶∠2=2∶3,则∠3=__ __;(3)若∠2-∠3=70°,则∠3=__ __.5.如图,两条直线AB,CD相交于点O,OE平分∠BOC,若∠1=30°,∠2=___ _,∠3=__ __.6.如图所示,直线AB,CD,EF相交于点O.(1)试写出∠AOC,∠AOE,∠EOC的对顶角;(2)试写出∠AOC,∠AOE,∠EOC的邻补角;(3)若∠AOC=40°,求∠BOD,∠BOC的度数.7.如图,一长方形纸片ABCD沿折痕EF对折,得到点D的对应点D′,点C的对应点C′,若∠BFE=50°,试求∠BFC′的度数.8.如图所示,已知直线AB,CD相交于点O,OE平分∠BOD,若∠3∶∠2=8∶1,求∠AOC 的度数.第五章相交线与平行线专题(二)平行线的判定1.如图所示,直线a ,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件为( )A .①②B .①③C .①④D .③④2.如图所示,要得到DE ∥BC ,则需要的条件为( )A .CD ⊥AB ,GF ⊥AB B .∠4+∠5=180°C .∠1=∠3D .∠2=∠33.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )A .∠1=∠2B .∠2=∠4C .∠3=∠4D .∠1+∠4=180°4.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A +∠2=180°B .∠3=∠AC .∠1=∠4D .∠1=∠A5.)如图所示,下列判断不正确的是( )A .∵∠1=∠2,∴AE ∥BDB .∵∠1=∠2,∴AB ∥EDC .∵∠3=∠4,∴AB ∥CD D .∵∠5=∠BDC ,∴AE ∥BD6.如图,能说明AB ∥DE 的有( )①∠1=∠D ;②∠CFB +∠D =180°;③∠B =∠D ;④∠D =∠BFD.A .1个B .2个C .3个D .4个(第1题图)(第2题图) (第5题图)(第6题图)7.如图,给出下面的推理:①因为∠B =∠BEF ,所以AB ∥EF ;②因为∠B =∠CDE , 所以AB ∥CD ;③因为∠B +∠BDC =180°,所以AB ∥EF ;④因为AB ∥CD ,CD ∥EF , 所以AB ∥EF.其中正确的推理是( )A .①②③B .①②④C .①③④D .②③④9.如图,下列推理正确的是( )A .∵∠1=∠2,∴AB ∥CD B .∵∠1+∠2=180°,∴AB ∥CDC .∵∠3=∠4,∴AB ∥CD D .∵∠3+∠4=180°,∴AB ∥CD10.如图,已知直线EF 分别交CD ,AB 于点M ,N ,且∠EMD =65°,∠MNB =115°,则下列结论正确的是( )A .AE ∥CFB .AB ∥CDC .∠A =∠D D .∠E =∠F11.如图,BD 平分∠ABC ,若∠1=∠2,则( )A .AB ∥CD B .AD ∥BC C .AD =BC D .AB =CD12.如图所示,AC ⊥BC ,垂足为C ,∠B =50°,∠ACD =40°,则AB 与CD 的位置关系是 AB ∥CD__.13.如图所示,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5.能判定AB ∥CD的条件有 .(填序号),(第9题图)) ,(第10题图)) ,(第11题图)) ,(第12题图))14.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°,直线AB,CD有何位置关系?说明理由.16.(10分)如图,已知直线a,b,c被直线d,e所截,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?17.(12分)如图,AC⊥EC,B,C,D在同一直线上,∠A=∠1,∠E=∠2,直线AB与DE平行吗?试说明理由.第五章相交线与平行线专题(三)平行线的性质1.如图,直线m ∥n ,∠α为( )A .70 B .65° C .50° D .40°2.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG 的度数是( )A .155°B .145°C .110°D .35°3.如图,已知AB ∥CD ,∠1=130°,则∠2=__ .4.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )A .60°B .50°C .40°D .30°6. 6.一张长方形的纸条,按如图方式折叠一下,已知∠3=120°,则∠1的度数为( )7.A .30° B .60° C .90° D .120°8.9. ,(第1题图)) ,(第2题图)) ,(第5题图)) ,(第6题图))10.7.(4分)如图,∠1=50°,∠2=140°,∠C =50°,则∠B =____.9.某次考古发掘出的一个梯形残缺玉片如下图,工作人员从玉片上量得∠A =115°,∠D =100°,已知梯形的两底AD ∥BC ,请你帮助工作人员求出另外两个角的度数,并说明理由.10.如图所示,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC ,若∠C =50°, ∠BDE =60°,则∠CDB 的度数等于( )A .70°B .100°C .110°D .120°11.如图所示,已知AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有( )A .6个B .5个C .4个D .2个12.如图所示,已知AB ∥CD ,BC ∥DE ,则∠B +∠D 的度数为____.13.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若∠1=64°,则∠2=___ _.(第10题图) (第11题图), ( 第 7 题图 )14.(12分)如图所示,已知∠ABC=40°,∠ACB=60°,BO,CO分别平分∠ABC,∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.15.(12分)如图,直线AD与AB,CD相交于A,D两点,EC,BF与AB,CD相交于点E,C,B,F,如果∠1=∠2,∠B=∠C.小明在图上把两组相等角的信息标注出来后,略加分析,便发现CE∥BF,同桌的小慧说:“不光有这个发现,我还能得到∠A=∠D呢?”小明再深入其中,很快也明白了小慧是怎么得到∠A=∠D的了.你能帮助他们写出过程吗?16.(12分)如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.(1)试找出∠1,∠2,∠3之间的关系并说明理由;(2)如果点P在A,B两点之间运动时,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动时,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).第五章相交线与平行线专题(四)平行线的性质与判定的综合运用1.如图,直线AB ,CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 的度数为( ) A .30° B .45° C .60° D .120°2.如图,AB ∥CD ,∠DFE =135°,则∠ABE 的度数是( )A .30°B .45C .60°D .90°3.如图,a ,b ,c 为三条直线,且a ⊥c ,b ⊥c ,若∠1=70°,则∠2的度数为( )A .70°B .90°C .110°D .80°4.如图所示,已知∠1=∠2=∠3=55°,则∠4的度数是( )A .110°B .115°C .120°D .125°5.(4分)如图所示,已知∠1=∠2,∠3=80°,则∠4等于( )A .80°B .70°C .60°D .50°6.(4分)如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( )A .100°B .60°C .40°D .20°(第1题图)(第2题图) (第3题图)(第4题图)7.将一副直角三角板如图所示放置,使含30°角的三角板短直角边和含45°角 的三角板的一条直角边重合,则∠1的度数为__.8.如图所示是一大门的栏杆,AE 为地面,BA ⊥AE 于点A ,CD ∥AE ,则∠ABC +∠BCD= _9.(8分)如图,直线AB ,CD 分别与直线AC 相交于点A ,C ,与直线BD 相交于点B ,D.若∠1=∠2,∠3=75°,求∠4的度数.10.如图,AB ∥CD ,AE 交CD 于C ,∠A =34°,∠DEC =90°,则∠D 的度数为() A .17° B .34° C .56° D .124°11.如图,已知AB ∥CD ,∠C =65°,∠E =30°,则∠A 的度数为( )A .30°B .32.5°C .35°D .37.5°12.如图所示,AB ∥CD ∥EF ,则∠BAD +∠ADE +∠DEF 等于( )A .180°B .270°C .360°D .540°13.如图所示,∠A =60°,∠4=45°,DE ∥BC ,EF ∥AB ,则∠1=___ _, ∠2=__ __, ∠3=__ _,∠B =__ _,∠C =___ _. (第5题图) (第6题图,(第10题图)) ,(第11题图)(第7题图) (第8题图)14.如图,直线l1∥l2∥l3,点A ,B ,C 分别在直线l1,l2,l3上.若∠1=70°,∠2=50°,则∠ABC =____.15.如图,l ∥m ,等边△ABC 的顶点A 在直线m 上,则∠α=__.16.(8分)如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3.请问:AD 平分∠BAC 吗?若平分,请说明理由.17.(10分)如图所示,CD ⊥AB ,垂足为D ,F 是BC 上任意一点,EF ⊥AB ,垂足为E ,且∠1=∠2,∠3=80°,求∠BCA 的度数.18.(12分)如图所示,∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并(第12题图)(第13题图) ,(第14题图)),(第15题图)说明你的理由.第五章相交线与平行线专题(五)平行线的性质与判定变式训练【教材母题】(教材P36第8题(2)改编)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.变式1.(2014·菏泽)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°变式2.(2014·邵阳)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°,(第1题图)),(第2题图))变式3.(2014·聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°变式4.(2014·遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=() A.30°B.35°C.36°D.40°,(第3题图)),(第4题图))变式5.如果一个角的两边分别与另一个角的两边平行,且一个角比另一个角的3倍少40°,则这两个角的度数分别为__变式6.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.变式7.如图所示,已知AD⊥BC于D,E是AB上一点,EF⊥BC于F,且∠1=∠2,试判断∠B与∠CDG的大小关系,并说明理由.变式8.如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.变式9.如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.变式10.若AB∥CD,∠1=∠2,∠3=∠4,AD与BC平行吗?为什么?变式11.如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,试说明AB∥EF∥CD.变式12.(探究题)(1)如图①,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图②的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图③的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图④中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?。
人教版七年级数学下学期期末总复习第五章 相交线与平行线.docx

人教版七年级数学下学期期末总复习第五章 相交线与平行线一、本章知识结构图:二、知识定义回顾邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:具有判断性语气的陈述句叫命题。
正确的命题称为真命题;错误的命题称为假命题;使用频繁而且非常重要的真命题称为定理。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
平移不改变图形的形状和大小,仅改变了图形的位置。
所以平移前后图形的周长与面积都不变。
相交相交第三条平行对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
平移时对应点性质:连接平移前后对应点的线段平行(或共线)且相等。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
重要结论:1.邻补角角平分线互相垂直;2,两直线平行,同旁内角角平分线互相垂直。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第五章 相交线与平行线复习题附解析

第五章 相交线与平行线复习题附解析一、选择题1.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 22.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和3.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是A .①②B .②③C .③④D .②④ 4.如图,直线a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=60°,则∠2的度数为( )A .45°B .35°C .30°D .25°5.如图,四边形ABCD 是正方形,直线a ,b ,c 分别通过A 、D 、C 三点,且a ∥b ∥c .若a 与b 之间的距离是3,b 与c 之间的距离是6,则正方形ABCD 的面积是( )A.36 B.45 C.54 D.646.如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E-∠F=48°,则∠CDE的度数为( ).A.16°B.32°C.48°D.64°7.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为()A.1个B.2个C.3个D.4个8.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=()A.61°B.58°C.48°D.41°9.命题“垂直于同一条直线的两条直线互相平行”的条件是()A.垂直B.两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线10.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4二、填空题11.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=________.12.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=_____(度).13.如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.14.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.15.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有____对,内错角有_____对,同旁内角有_____对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有____对,内错角有___对,同旁内角有___对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有______对,内错角有_______对,同旁内角有______对.(用含n的式子表示)16.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.17.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.18.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.19.如图,∠AOB=60°,在∠AOB的内部有一点P,以P为顶点,作∠CPD,使∠CPD的两边与∠AOB的两边分别平行,∠CPD的度数为_______度.20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .彤彤是这样做的:过点E 作EF //AB ,则有∠BEF =∠B .∵AB //CD ,∴EF //CD .∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D .即∠BED =∠B +∠D .请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数; (2)如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,直接写出∠BED 的度数(用含有α,β的式子表示).22.如图①,已知直线12l l //,且3l 和12,l l 分别相交于,A B 两点,4l 和12,l l 分别相交于,C D 两点,点P 在线段AB 上,记1 23ACP BDP CPD ∠∠∠∠∠∠=,=,=.(1)若120,355︒︒∠=∠=,则2∠=_____;(2)试找出123∠∠∠,,之间的数量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A 在B 处北偏东42︒的方向上, 若88BAC ︒∠=,则点 A 在C 处的北偏西_____的方向上;(4)如果点P 在直线3l 上且在,A B 两点外侧运动时,其他条件不变,试探究1 23∠∠∠,,之间的关系(点 P 和,A B 两点不重合),直接写出结论即可.23.已知AB ∥CD ,点C 在点D 的右侧,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 相交于点E .(1)如图1,当点B 在点A 的左侧时,①若∠ABC =50º,∠ADC =70º,求∠BED 的度数;②请直接写出∠BED 与∠ABC ,∠ADC 的数量关系;(2)如图2,当点B 在点A 的右侧时,试猜想∠BED 与∠ABC ,∠ADC 的数量关系,并说明理由.24.已知直线AB CD ∥,直线EF 与直线AB 、CD 分别相交于点E 、F .(1)如图1,若160∠=︒,求2∠,3∠的度数;(2)若点P 是平面内的一个动点,连接PE 、PF ,探索EPF ∠、PEB ∠、PFD ∠之间的数量关系;①当点P 在图2的位置时,请写出EPF ∠、PEB ∠、PFD ∠之间的数量关系并证明; ②当点P 在图3的位置时,请写出EPF ∠、PEB ∠、PFD ∠之间的数量关系并证明; ③当点P 在图4的位置时,请直接写出EPF ∠、PEB ∠、PFD ∠之间的数量关系.25.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.26.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【详解】解:由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B .2.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.3.B解析:B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC的长和△CEG的面积求EG;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B,E是对应点,且BE=2,所以△ABC平行的距离是2,则①错误;②根据题意得,13.5×2=(8-2)EG,解得EG=4.5,则②正确;③因为A,D是对应点,C,F是对应点,所以AD∥CF,则③正确;④平行四边形ADFC的面积为AB·CF=AB·BE=6×2=12,则④错误.故选B.点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.4.C解析:C【分析】由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.【详解】【解答】解:∵a∥b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.【点睛】本题考查了根据平行线的性质求角的度数,利用直角转化角是一种比较常见的方法,在一条直线上,3个角共顶点,且有一个角为直角,则另两个角的和为90°.5.B解析:B【分析】过A 作AM ⊥直线b 于M ,过D 作DN ⊥直线c 于N ,求出∠AMD =∠DNC =90°,AD =DC ,∠1=∠3,根据AAS 推出△AMD ≌△CND ,根据全等得出AM =CN ,求出AM =CN =4,DN =8,在Rt △DNC 中,由勾股定理求出DC 2即可.【详解】解:如图:过A 作AM ⊥直线b 于M ,过D 作DN ⊥直线c 于N ,则∠AMD =∠DNC =90°,∵直线b ∥直线c ,DN ⊥直线c ,∴∠2+∠3=90°,∵四边形ABCD 是正方形,∴AD =DC ,∠1+∠2=90°,∴∠1=∠3,在△AMD 和△CND 中1390AMD CND AD CD ⎧∠=∠⎪∠=∠=︒⎨⎪=⎩, ∴△AMD ≌△CND (AAS ),∴AM =CN ,∵a 与b 之间的距离是3,b 与c 之间的距离是6,∴AM =CN =3,DN =6,在Rt △DNC 中,由勾股定理得:DC 2=DN 2+CN 2=32+62=45,即正方形ABCD 的面积为45,故选:B .【点睛】本题主要考查了根据平行线的性质证明三角形全等,准确分析是解题的关键.6.B解析:B【解析】【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键. 7.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B.【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.8.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.9.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.10.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.二、填空题11.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.12.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.13.68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.14.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 15.(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都解析:(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都在截线的两侧,又分别处在被截的两条直线中间的位置的角,根据同旁内角是两个角都在截线的同旁,又分别处在被截的两条直线中间的位置的角,可得答案.试题解析:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有 2对,同旁内角有 2对.(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有 12对,内错角有 6对,同旁内角有 6对.(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有 n(n-1)对,同旁内角有n(n-1)对,点睛:本题考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.16.50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC 内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线解析:50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线BD平分∠FBC,∴∠5=12(180°﹣∠4)=12(180°﹣80°+2x)=50°+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点睛:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.17.45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).18.30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=∠EOC=解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=12∠EOC=30°(角平分线定义),∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.19.60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:(1)如图1,,(两直线平行,同位角相等),(两直线平行,内错解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:PC OB PD OA,(1)如图1,//,//∠︒(两直线平行,同位角相等),∴=∠=AOBPDB60CPD∠︒(两直线平行,内错角相等);∴=∠=PDB60PC OB PD OA,(2)如图2,//,//∴=∠=∠︒(两直线平行,同位角相等),AOBPDB60∠=︒-∴∠=︒(两直线平行,同旁内角互补);DP D180120C P B∠的度数为60︒或120︒,综上,CPD故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.20.8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1解析:8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1格时,1种方法;当有1次跳2格,其他全部1格,有4种方法;当有2次跳2格时,其他全部1格,有3种方法;不存在3次或者更多跳2格的情况综上共有1+4+3=8种方法.【点睛】本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.三、解答题21.(1)65°;(2)11 18022αβ︒-+【分析】(1)如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考彤彤思考问题的方法即可求∠BED的度数;(2)如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考彤彤思考问题的方法即可求出∠BED的度数.【详解】(1)如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;(2)如图2,过点E作EF∥AB,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣12α +12β. 答:∠BED 的度数为180°﹣12α +12β. 【点睛】 本题考查了平行线的判定与性质以及角平分线的定义,解决本题的关键是熟练掌握平行线的判定与性质.22.(1)35︒;(2)123∠+∠=∠,理由见解析;(3)46︒;(4)当P 点在A 的上方时,321∠=∠-∠,当P 点在B 的下方时,312∠=∠-∠.【分析】(1)由题意直接根据平行线的性质和三角形内角和定理进行分析即可求解; (2)由题意过点P 作//PM AC ,进而利用平行线的性质进行分析证明即可;(3)根据题意过A 点作//AF BD ,则////A BD CE ,进而利用平行线的性质即可求解;(4)根据题意分当P 点在A 的上方与当P 点在B 的下方两种情况进行分类讨论即可.【详解】解:()1∵12l l //,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD 中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2,则有∠2=∠3-∠1=35︒,故答案为:35︒;()2123∠+∠=∠理由如下:过点P 作//PM AC//AC BD////AC PM BD ∴12CPM DPM ∴∠=∠∠=∠,12CPM DPM CPD ∴∠+∠=∠+∠=∠()3过A 点作//AF BD ,则////A BD CE ,则BAC DBA ACE ∠∠+∠=,故答案为:46︒;()4当P 点在A 的上方时,如图 2,∴∠1=∠FPC .∵14//l l ,∴2//PF l ,∴∠2=∠FPD∵∠CPD=∠FPD-∠FPC∴∠CPD=∠2-∠1,即321∠=∠-∠.当P 点在B 的下方时,如图 3,∴∠2=∠GPD∵12l l //,∴1//PG l ,∴∠1=∠CPG∵∠CPD=∠CPG-∠GPD∴∠CPD=∠1-∠2,即312∠=∠-∠.【点睛】本题考查平行线的判定与性质,利用了等量代换的思想,熟练掌握平行线的判定与性质是解答本题的关键.23.(1)①∠BED=60º;②∠BED=12∠ABC+12∠ADC;(2)∠BED=180º-1 2∠ABC+12∠ADC,理由见解析.【分析】(1)①过点E作EF∥AB,然后说明AB∥CD∥EF,再运用平行线的性质、角平分线的性质和角的和差即可解答;②利用平行线的性质和角平分线的性质即可确定它们的关系.(2)过点E作EF∥AB,再运用平行线的性质、角平分线的定义和角的和差即可确定它们的关系.【详解】(1)①如图1,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF,∠EDC=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∴∠ABC=50º,∠ADC=70º∴∠ABE=12∠ABC=150252⨯=°°,∠EDC=12∠ADC=170352⨯︒=︒, ∴∠BEF=25º,∠DEF=35º,∴∠BED=∠BEF+∠DEF=25º+35º=60º;②∵AB ∥CD∴AB ∥CD ∥EF∴∠ABE=∠BEF=12∠ABC ,∠EDC=∠DEF=12∠ADC ;. ∴∠BED=∠BEF +∠DEF =12∠ABC+12∠ADC ∴∠BED=12∠ABC+12∠ADC (2)如图2,过点E 作EF ∥AB .∵AB ∥CD∴AB ∥CD ∥EF∴∠EDC=∠DEF ,∵∠ABE+∠BEF=180º,∴∠BEF=180º-∠ABE .∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠ABE=12∠ABC ,∠DEF=12∠ADC , ∴∠BED=∠BEF+∠DEF=180º-12∠ABC+12∠ADC .【点睛】本题考查了平行线的判定与性质,添加辅助线构造平行线并灵活利用平行线的性质是解答本题的关键.24.(1)360∠=︒;(2)①EPF PEB PFD ∠=∠+∠,证明见解析;②360EPF PEB PFD ︒∠+∠+∠=,证明见解析;③EPF PEB PFD ∠=∠-∠或EPF PFD PEB ∠+∠=∠.【分析】(1)根据对顶角相等求∠2,根据两直线平行,同位角相等求∠3;(2)①过点P 作MN ∥AB ,根据平行线的性质得∠EPM =∠PEB ,且有MN ∥CD ,所以∠MPF =∠PFD ,然后利用等式性质易得∠EPF =∠PEB +∠PFD .②③的解题方法与①一样,分别过点P 作MN ∥AB ,然后利用平行线的性质得到三个角之间的关系.【详解】(1)解:∵12∠=∠,160∠=︒,∴260∠=︒;∵AB CD ∥,∴3160∠=∠=︒ .(2)①EPF PEB PFD ∠=∠+∠.过点P 作MN AB ,则EPM PEB ∠=∠.∵AB CD ∥,MN AB , ∴MN CD ∥,∴MPF PFD ∠=∠,∴EPM MPF PEB PFD ∠+∠=∠+∠,即EPF PEB PFD ∠=∠+∠.②360EPF PEB PFD ︒∠+∠+∠=,过点P 作MN AB ,则180PEB EPN ∠+∠=︒,∵AB CD ∥,MN AB , ∴MN CD ∥,∴180NPF PFD ∠+∠=︒,∴360PEB EPN NPF PFD ∠+∠+∠+∠=︒.即360EPF PEB PFD ︒∠+∠+∠=.③EPF PEB PFD ∠=∠-∠或EPF PFD PEB ∠+∠=∠.写对一种即可.理由:如图4,过点P 作PM ∥AB ,∵AB ∥CD ,MP ∥AB ,∴MP∥CD,∴∠PEB=∠MPE,∠PFD=∠MPF,∵∠EPF+∠FPM=∠MPE,∴∠EPF+∠PFD=∠PEB.【点睛】本题主要考查了平行公理的推论和平行线的性质,结合图形作出辅助线构造出三线八角是解决此题的关键.25.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE ,β=∠CPE ,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.26.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.。
七年级数学下册第五章相交线与平行线重点归纳笔记(带答案)

七年级数学下册第五章相交线与平行线重点归纳笔记单选题1、如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°答案:C分析:根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项不符合题意;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项不符合题意;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项符合题意;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项不符合题意;故选C.小提示:本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.2、将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED//BC,则∠AEF的度数为( )A.145°B.155°C.165°D.170°答案:C分析:根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=∠DEF -∠2计算出∠CEF,即可求出∠AEF.解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°,∴∠AEF=180°-15°=165°.故选C.小提示:本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.3、下列说法错误的是( )A.如果两条直线被第三条直线所截,那么内错角相等B.在同一平面内过一点有且仅有一条直线与已知直线垂直C.经过直线外一点有且只有一条直线与已知直线平行D.连接直线外一点与直线上各点的所有线段中,垂线段最短答案:A分析:分别利用平行线的性质以及垂线的性质分别判断得出答案.A、如果两条直线平行时,被第三条直线所截时,内错角才会是相等,故A选项错误,符合题意;B、在同一平面内过一点有且仅有一条直线与已知直线垂直,正确,不合题意;C、经过直线外一点有且只有一条直线与已知直线平行,正确,不合题意;D、联结直线外一点与直线上各点的所有线段中,垂线段最短,正确,不合题意;故选A.小提示:考查了平行公理及推论和垂线的性质,正确把握相关定义是解题关键.4、下列命题正确的是()A.绝对值等于本身的数是正数B.绝对值等于相反数的数是负数C.互为相反数的两个数的绝对值相等D.绝对值相等的两个数互为相反数答案:C分析:根据绝对值和相反数的概念分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解:A、绝对值等于本身的数是非负数,原命题是假命题;B、绝对值等于相反数的数是非正数,原命题是假命题;C、互为相反数的两个数的绝对值相等,是真命题;D、绝对值相等的两个数相等或互为相反数,原命题是假命题;故选:C.小提示:此题借助绝对值和相反数的概念考查了命题与定理,命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5、如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处,则∠ABC等于()A.130°B.120°C.110°D.100°答案:C分析:根据方位角和平行线性质求出∠ABE,再求出∠EBC即可得出答案.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.小提示:本题考查了方向角及平行线的性质,熟练掌握平行线的性质:两直线平行,内错角相等是解题的关键.6、对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=-3,b=2C.a=3,b=-1D.a=-1,b=3答案:B试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D 选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.7、下列说法中,正确的是().A.两直线不相交则平行B.两直线不平行则相交C.若两线段平行,那么它们不相交D.两条线段不相交,那么它们平行答案:C分析:根据平面内两直线的位置关系:平行或者相交,逐一判断选项即可.A选项,在同一平面内,两直线不相交则平行,不正确,不符合题意;B选项,在同一平面内,两直线不平行则相交,不正确,不符合题意;C选项,若两线段平行,那么它们不相交,正确,符合题意;D选项,两条线段不相交,那么它们不一定平行,不正确,不符合题意,故选:C.小提示:本题主要考查平面内两直线的位置关系:平行或者相交,属于基础题,掌握平面内两直线的位置关系是解题关键.8、如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5答案:A分析:根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.解:由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项为∠2>∠3,C选项为∠1=∠4+∠5,D选项为∠2>∠5.故选:A.小提示:本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.9、如图所示,l1∥l2,∠1=105°,∠2=140°,则∠3的度数为( )A.55°B.60°C.65°D.70°答案:C分析:首先过点A作AB∥l1,由l1∥l2,即可得AB∥l1∥l2,然后根据两直线平行,同旁内角互补,即可求得∠4与∠5的度数,又由平角的定义,即可求得∠3的度数.解:过点A作AB∥l1,∵l1∥l2,∴AB∥l1∥l2,∴∠1+∠4=180°,∠2+∠5=180°,∵∠1=105°,∠2=140 °,∴∠4=75°,∠5=40°,∵∠4+∠5+∠3=180°,∴∠3=65°.故选:C.小提示:本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.10、如图,直线AB与CD相交于点O,∠AOC=75°,∠1=25°,则∠2的度数是()A.25°B.30°C.40°D.50°答案:D分析:根据对顶角相等可得∠BOD=75°,之后根据∠1=25°,即可求出∠2.解:由题可知∠BOD=∠AOC=75°,∵∠1=25°,∴∠2=∠BOD−∠1=75°−25°=50°.故选:D.小提示:本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.填空题11、如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为_____.答案:1分析:利用平移的性质得到BE=CF,再用EC=2BE=2得到BE的长,从而得到CF的长.解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.小提示:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.12、如图6,已知直线a∥b,∠BAC=90°,∠1=50°,则∠2=______.答案:40°##40度分析:根据平行线的性质可以得到∠3的度数,进一步计算即可求得∠2的度数.解:∵a∥b,∴∠1=∠3=50°,∵∠BAC=90°,∴∠2+∠3=90°,∴∠2=90°-∠3=40°,所以答案是:40°.小提示:本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.13、命题“如果x2=4,那么x=2”是__________命题(填“真”或“假”).答案:假分析:直接两边开平方求得x的值即可确定是真命题还是假命题;∵如果x2=4,那么x=±2,∴命题“如果x2=4,那么x=2”是假命题,故答案为假.小提示:本题考查了命题与定理的知识,解题的关键是能够确定x的值,属于基础题,难度不大.14、已知在同一个平面内,一个角的度数是70°,另一个角的两边分别与它的两边垂直,则另一个角的度数是___________.答案:70°或110°分析:由两个角的两边互相垂直,即可得这两个角互补或相等,又由其中一角度数,即可求另一角的度数.解:∵同一平面内的两个角的两边互相垂直(如图所示),∵这两个角互补或相等,∵其中一个角为70°,∵另一角的度数为:70°或110°.所以答案是:70°或110°.小提示:此题考查了垂线的意义,熟练运用画图分析以及分类讨论是此题的难点,也是解决此题的关键.15、命题“如果a+b=0,那么a、b互为相反数”的逆命题是______命题(填“真”或“假”).答案:真分析:交换命题的题设和结论后判断正误即可.解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0.所以逆命题是真命题.所以答案是:真.小提示:考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.解答题16、完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()答案:邻补角定义;∠DFE,同角的补角相等;内错角相等,两直线平行;∠ADE,两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补分析:依据∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由内错角相等,两直线平行证明EF∥AB,则∠3=∠ADE,再根据∠3=∠B,由同位角相等,两直线平行证明DE∥BC,故可根据两直线平行,同旁内角互补,即可得出结论.∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)小提示:本题考查了平行线的性质和判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.17、请根据题目中的逻辑关系填空:已知:如图,∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴CD∥EF(①)∵∠A=∠2∴②(③)∴AB∥CD∥EF.∴∠A= ④,∠C= ⑤,(⑥)∵∠AFE=∠EFC+∠AFC,∴⑦.(等量代换)答案:同旁内角互补两直线平行,AB∵CD,同位角相等两直线平行,∠AFE,∠EFC,两直线平行内错角相等,∠A=∠C+∠AFC分析:根据平行线的判定可判定CD∵EF,AB∵CD,则AB∵CD∵EF,再由平行线性质可得:∠C=∠CFE,∠A=∠AFE,最后等量代换即可求解.证明:∵∠1+∠AFE=180°∴CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2∴AB∵CD(同位角相等,两直线平行)∴AB∥CD∥EF.∴∠A=∠AFE,∠C=∠EFC(两直线平行内错角相等)∵∠AFE=∠EFC+∠AFC,∴∠A=∠C+∠AFC(等量代换).所以答案是:同旁内角互补两直线平行,AB∵CD,同位角相等两直线平行,∠AFE,∠EFC,两直线平行内错角相等,∠A=∠C+∠AFC.小提示:本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.18、如图,O是直线AB上一点,∠BOC=3∠AOC,OC平分∠AOD(1)求∠AOC的度数.(2)试猜想OD与AB的位置关系,并说明理由.答案:(1)∠AOC的度数为45°(2)OD⊥AB,理由见解析分析:(1)设∠AOC=x,根据题意得∠BOC=3x,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.(1)解:设∠AOC=x,∵∠BOC=3∠AOC,∴∠BOC=3x,∵直线AB,∴x+3x=180°,解得x=45°,∴∠AOC的度数为45°;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.小提示:此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.。
第五章-相交线与平行线复习提纲

第五章相交线与平行线复习提纲一.知识点回顾1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_______________ .2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为____________ 对顶角的性质______ .3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______ .垂线的性质:⑴过一点_______________ 条直线与已知直线垂直•⑵连接直线外一点与直线上各点的所在线段中,4.直线外一点到这条直线的垂线段的长度,叫做5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做______________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_____________________________________ .6.在同一平面内,不相交的两条直线互相_____________ •同一平面内的两条直线的位置关系只有_________ 与 _________ 种•7.平行公理:经过直线外一点,有且只有一条直线与这条直线推论:如果两条直线都与第三条直线平行,那么8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行•简单说成:________________________________________ ⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行•简单说成:⑶两条直线被第二条直线所截,如果同芳内角互补,那么这两条直线平行■简单说成:4. 如下图,0为直线AB 上一点,/ COB=26 30',则/仁 ____________5. 如下图,AB,CD 相交于 O,/ 1- / 2=85°,/ AOC _______ °10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等 .简单说成: .⑵两条平行直线被第三条直线所截,内错角相等.简单说成:⑶两条平行直线被第三条直线所截,同旁内角互补 .简单说成:二.典型题集萃(第4题) (第5题)6.已知/ AOB 与/ BOCS 为邻补角,OD 是/ AOB 勺平分线,0E 在/ BOC内,(一)、相交线、三线八角1. 平面内三条直线交点的个数有 ________________________________________2. 在同一平面内,过直线I 外的两点A , B 所作直线与直线I 的位置关系是3. 两条直线相交,最多有1个交点,三条直线两两相交,最多有 个交点,四条直线两两相交,最多有—个交点,n 条直线两两相交,最多有 ____________ 个交点。
平行线与相交线期末复习
平行线的性质
平行线的同位角相等
平行线的同旁内角互补
两条平行线被一条横截线所截,同位 角相等。
两条平行线被一条横截线所截,同旁 内角互补。
平行线的内错角相等
两条平行线被一条横截线所截,内错 角相等。
平行线的判定定理
同位角相等判定定理
如果同位角相等,则两直线平行。
内错角相等判定定理
如果内错角相等,则两直线平行。
填空题答案与解析
a平行于c。根据平行线的传递性,若直线a平行于b,b平行于c,则a平行于c。
THANKS FOR WATCHING
感谢您的观看பைடு நூலகம்
平行线与相交线期末复习
目录
• 平行线与相交线的定义与性质 • 平行线的性质和判定定理 • 相交线的性质和判定定理 • 平行线和相交线的应用 • 练习题与答案
01 平行线与相交线的定义与 性质
定义
平行线
在同一平面内,永不相交的两条 直线称为平行线。
相交线
在同一平面内,有且仅有一个公 共点的两条直线称为相交线。
练习题
判断题
两条平行线被一条直线所截,同位角相等。()
选择题
下列说法中正确的是()
练习题
01
02
03
04
B. 直线外一点到这条直线的 垂线段,叫做点到直线的距离
。
C. 若a⊥b,b⊥c,则a⊥c。
D. 不相等的角不是对顶角。
填空题:若直线a平行于b,b 平行于c,则____。
答案与解析
判断题答案与解析
同旁内角互补判定定理
如果同旁内角互补,则两直线平行。
平行线的传递性
• 如果两条直线都与第三条直线平行,那么这两条直线也互 相平行。
人教版七年级数学下册第五章相交线与平行线知识点复习
(7) 同旁内角互补;(8) 直线外一点到直线的垂线段的长度叫做点到直线的距离; (9) 过一点有且只有一条直线与已知直线垂直; (10) 过一点有且只有一条直线与已知直线平行; (11) 两直线不相交就平行;(12) 互为邻补角的两个角的平分线互相垂直。
练习:1、下列说法正确的是( )A、相等的角是对顶角 B 、直线外一点到直线的垂线段叫点到直线的距离 C 、两条直线相交,有一对对顶角互补,则两条直线互相垂直。
D 、过一点有且只有一条直线与已知直线平行1. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到B C的距离是_____,点B到AC 的距离是_______,点A、B 两点的距离是_____,点C 到AB 的距离是________.2. 设a 、b 、c为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________; c) 若//a b ,b c ⊥,则a 与c 的位置关系是________. 考点二:相关推理(识记)(1)∵a ∥c,b ∥c(已知) ∴______ ∥______() (2)∵∠1=∠2,∠2=∠3(已知) ∴______ =______() (3)∵∠1+∠2=180°,∠2=30°(已知) ∴∠1=______()(4)∵∠1+∠2=90°,∠2=22°(已知) ∴∠1=______() (5)如图(1),∵∠AO C=55°(已知) ∴∠BOD=______() (6)如图(1),∵∠AOC =55°(已知) ∴∠BOC =______()(7)如图(1),∵∠AOC=21∠AOD,∠AOC+∠AOD=180°(已知) ∴∠BOC=______()(1) (2) (3) (4) (8)如图(2),∵a ⊥b(已知) ∴∠1=______() (9)如图(2),∵∠1=______(已知) ∴a ⊥b()(10)如图(3),∵点C 为线段AB 的中点 ∴A C=______() (11) 如图(3),∵ AC=BC ∴点C 为线段AB 的中点() (12)如图(4),∵a ∥b(已知) ∴∠1=∠2() (13)如图(4),∵a ∥b(已知) ∴∠1=∠3() (14)如图(4),∵a∥b(已知) ∴∠1+∠4=() (15)如图(4),∵∠1=∠2(已知) ∴a ∥b() (16)如图(4),∵∠1=∠3(已知) ∴a∥b() (17)如图(4),∵∠1+∠4=(已知) ∴a ∥b()ab11 234ab...ACB考点三:对顶角、邻补角的判断、相关计算例题1:如图5-1,直线A B、C D相交于点O ,对顶角有_________对,它们分别是_________,∠AOD 的邻补角是_________。
相交线与平行线期末复习
⑨有公共顶点且有一条公共边,互补的两个角是邻补角;
4、下列说法是否正确
线段CD是点C到直线BD的距离 的长度
5. 体育课上,老师测量跳远成绩的依据是(
C
).
A、两点确定一条直线 C、垂线段最短
B、两点之间,线段最短 D、平行线间的距离相等
6、作△ABC中, 作BC边上的高
作AB边上的高 A 作AC边上的高 D
正确的命题称为真命题,不正确的的命题称为假命题. 要说明一个命题是假命题,通常可以举出一个例子, 使之具备命题的条件,而不具备命题的结论,这种例子 称为反例.
知识点回顾
5、什么是平移变换?平移有哪些性质?在平面直角 坐标系中,图形的平移与坐标有什么关系?
图形的平行移动,叫做平移变换,简称平移
1.把一个图形整体沿某一方向移动,会得到一 个新的图形,新图形与原图形的形状和大小完 全相同. 2.新图形中的每一点,都是由原图形中的某一 点移动后得到的,这两个点是对应点。连接各 组对应点的线段平行(或在同一直线上)且相等. 3、对应角相等,对应线段相等。
平行线
平行公理 平移 性质
知识点回顾
1、邻补角、对顶角有什么特征?对顶角有什么性质?垂线有 什么性质?点到直线的距离是怎么规定的? 如果两个角有一条公共边,它们的另一边互为反向延长线, 那么这两个角互为邻补角。 如果一个角的两边是另一个角的两边的反向延长线,那么 这两个角互为对顶角。
垂直定义:当两条直线相交所成的四 个角中,有一个角是 直角 时,就称这 两条直线互相垂直
距离;
③互相垂直的两条线段一定相交; ④直线c外一点A与直线c上各点连接而成的所有线段中最短线
段的长是3cm,则点A到直线c的距离是3cm。
⑤垂直于同一条直线的两条直线互相平行; ⑥两直线不相交就平行; ⑦在同一平面内,过一点有且只有一条直线与已知直线平行; ⑧过一点有且只有一条直线与已知直线垂直;
相交线与平行线期末复习
角的计算
与角的边有关:
1.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,
那么这两个角是( C )
A.50°、130°
B.都是10°
C.50°、130°或10°、10°
D.以上都不对
2.已知在同一个平面内,一个角的度数是70°,另一个角的两边分别与它
的两边垂直,则另一个角的度数是__7_0_°___或__1_1_0.°
的个数是( C )
A.1个 B.2个 C.3个 D.4个
2.如图所示,如果 AB ∥ CD ,则∠α、∠β、∠γ之间的关系为(C)
A.∠α+∠β+∠γ=180° B.∠α-∠β+∠γ=180° C.∠α+∠β-∠γ=180° D.∠α-∠β-∠γ=180°
3.如图,AB∥EF,∠D=90°,则αβ,γ的大小关系是(D)
地毯,则这块红地毯至少需要(B )
A.23平方米 B.90平方米 C.130平方米 D.120平方米
5.在一块长a米,宽102米的草坪上修筑宽2米的小
路(如图),则种草地面的面积是 _100_a___2_ ㎡.
6.如图,∠1=70°,直线a平移后得
到直线b,则∠2-∠3( C)
A.70° B.180° C.110° D.80°
A.2个 B.3个 C.4个 D.5个
5.如图所示的四个图形中,∠1和∠2是同位角的是( C )
A.②③ B.①②③
C.①②④
D.①④
6.如图,给出下列四个条件:① ∠BAC=∠DCA; ② ∠DAC=∠BCA;③ ∠ABD=∠CDB;④
∠ADB=∠CBD,其中能使 AD∥BC的条件是(C )
A.①② B.③④ C.②④ D.①③④
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章《相交线与平行线》期末复习材料
班级__________ 姓名__________
一、考点解析
考点一:相交线(邻补角、对顶角) 例1 如图,直线l ,m ,n 相交于点O ,∠1=37°42′,
∠2=51°18′,求∠3的度数。
练习 如图,点A ,O ,C 在同一直线上,OD 平分∠AOB , OE 在∠BOC 内,∠EOC =2∠BOE ,∠DOE =72°,求∠EOC
的度数。
考点二:垂线(垂线、垂直、垂线段、点到直线的距离) 例2 画图并回答问题: (1)如图,已知点P 在∠AOC 的边OA 上,
①过点P 画OA 的垂线交OC 于点B ; ②画点P 到OB 的垂线段PM ;
(2)指出上述作图中哪一条线段的长度表示点P 到OB 的距离;(3)比较PM 与OP 的大小并说明理由。
练习 直线AB ,CD 相交于点O 。
(1) OE ,OF 分别是∠AOC ,∠BOD 的平分线,画出这个图形。
(2) 射线OE ,OF 在同一条直线上吗?请说明理由。
(3) 画∠AOD 的平分线OG 。
OE 与OG 有什么位置关系?请说明理由。
考点三:平行线的判定与性质 例3 如图,(1)∠1与∠B 是直线______和直线______被
直线_______所截的___________角。
(2)如果∠1=________,那么DE ∥ AC .
根据是_______________________________________. (3)如果EF ∥BC ,那么∠_______=∠3.
根据是_______________________________________. (4)如果∠2+ ∠________=180°,那么AB ∥DF . 根据是_______________________________________.
B
例4 如图,已知∠1=45°,∠2=100°,∠3=45°,
求∠4的度数。
例5如图,已知DE 、BF 分别平分∠ADC 和∠ABC ,
∠1 =∠2,∠ADC = ∠ABC .(1)请判断AB 与CD 的位置关系,并说明理由;(2)证明:∠A =∠C .
练习 1、如图,把一张长方形纸片ABCD 沿AF 折叠, 使B 落在B ′处,若∠ADB =30°,AB ′∥BD 。
则 ∠BAF =__________。
2、如图,已知AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE =50°,求∠BHF 的度数.
考点四 命题
例6 判断下列语句是否是命题,如果是命题请判断真假,并改写成“如果……那么……”的形式.
1、非负数一定是正数。
2、内错角相等.
练习:阅读下题后作出解答。
“同位角相等,两直线平行”“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一命题的逆命题。
请你写出命题“角平分线的点到角两边的距离相等”的逆命题,并指出逆命题的题设和结论。
考点五 平移 例7如图,将面积为12的△ABC 沿AC 方向平移得到△DEF , 平移距离为2AC 。
(1)画出平移后的图形;
(2)在(1)所得图中,连接BD 、CE ,求四边形BCED 的面积。
H
G
F
E
D
C
B
A
F
E
D C
B
A 2
1
C B E
D A
F D C
B
H E
G A
l 1 l 2 1
2 3
二、过关训练 A 组
1、下面四个图形中,∠1与∠2是对顶角的图形有( )
A .0个
B . 1个
C .2个
D .3个
2、如图,不能作为判断AB ∥CD 的条件是( ) A .∠FEB =∠ECD B .∠AEC =∠ECD C .∠BEC +∠ECD =180° D .∠AEG =∠DCH
3.(2009年湘西自治州)如图,12//l l ,∠1=120°,∠2=100°,则∠3= ( ) A .20° B .40° C .50° D .60°
4.(2009年遂宁)如图,已知∠1=∠2,∠3=80O ,则∠4=( )
A .80O
B . 70O
C . 60O
D . 50O 5、(2009年 安徽)如图直线1l ∥2l ,则∠α为( ).
A .150°
B .140°
C .130°
D .120°
第3题 第4题 第5题 6、如图,AB ∥CD ,若∠ABE =120°,∠DCE =35°,则∠BEC =_____。
7、如图,OA ⊥OC ,OB ⊥OD ,且∠BOC =α,则∠AOD =________。
8、如图,BD 是ABC ∆的角平分线,,,于点,交︒=∠45//A E AB BC DE
︒=∠60BDC ,则=∠BDE 度。
第6题 第7题 第8题
9、如图,小明在直路上沿AB 方向行走,Q 是位于直路一侧的饭堂,假设当小明行走到点P 的位置时,离饭堂最近。
请在AB 上找出点P 的位置,并说明理由。
1
2
1
2
2
1 1 2
Q A
D E B C
D A
B A E
F
E 10、一张长方形的白纸,按下图所示折叠,使D 到D ′,E 到E ′,
并且BD ′与BE ′在同一条直线上,那么AB 与BC 的的位置关系
是什么?请说明理由。
11、已知:如图BE//CF ,BE 、CF 分别平分∠ABC 和∠BCD, 求证:AB//CD
证明:∵ BE 、CF 分别平分∠ABC 和∠BCD (已知)
∴ ∠1=21∠ ,∠2=2
1∠ ( )
∵ BE//CF ( )
∴ ∠1=∠2( ) ∴
21∠ABC=2
1∠BCD 即∠ABC=∠BCD
∴ AB//CD ( )
B 组
12、如图,已知AB ∥CD ,点E 、F 分别在AB 、CD 上,点P 是直线AB 、CD 所夹的区域内的动点,点Q 是∠AEP 与∠CFP 的平分线的交点。
(1)若∠EPF =80°,求∠EQF 度数; (2)若∠EPF =x ,∠EQF =y ,请直接写出x 、y 满足的等量关系。