鲁卡斯数列表
关于两类lucas序列的一些恒等式

关于两类lucas序列的一些恒等式Lucas序列是一种迭代计算的数列,它可以产生几乎所有自然数和素数,也可以很好地表示偶数和奇数。
Lucas序列有两类:一类是费马Lucas序列,又称为递推Lucas序列,另一类是Ramanujan-Sato Lucan序列,它也可以在某种程度上被称为Lucas序列。
两类Lucas 序列都可以应用于数论,这是一个重要的数学主题之一。
费马Lucas序列可以用其公式表达:U(n) = U(n-1) + U(n-2),其中U(0) = 2,U(1) = 1。
它会重复地遵循上式,以求解整个序列的值,从第三项到第n项,并可以得到一些数学恒等式。
首先,它易得U(n) + U(n-2) = U(n-1) 2,这种恒等式非常重要,可以用来求解费马Lucas序列的前n项和。
其次,可以利用费马Lucas序列求解整点函数,如偶数项的和,它的恒等式为U(2k) = U(k) (U(k) + 2)。
此外,还可以求解任意两个相邻数项之和的恒等式,即U(n-1) + U(n) = U(n) (U(n) + 1)。
Ramanujan-Sato Lucan序列的表达式为V(n) = V(n-1) + V(n-2),其中V(0) = 2,V(1) = -1。
与费马Lucas序列不同,它会产生一系列的负值,可以得到一些特殊的数学恒等式。
首先,可以得到V(n) + V(n-2) = -V(n-1) 2。
它可以用来求解Ramanujan-Sato Lucan序列的前n项和。
其次,利用该序列可以求解偶数项的和的恒等式,即V(2k) = V(k)( V(k) - 2)。
此外,可以求解任意两个相邻数项之和的恒等式,即V(n-1) + V(n) = V(n) (V(n) - 1)。
从上述推导可以看出,Lucas序列和它们的恒等式在数论中有着重要的作用。
它们可以用来求解各种数学问题,如有关某种因数的数学问题、有关性质的问题等。
鲁卡斯数列表

NewPanderKing抬头是山,路在脚下!斐波那契数列斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。
他被人称作―比萨的列昂纳多‖。
1202年,他撰写了《珠算原理》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
斐波那契数列通项公式斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和。
它的通项公式为:(见图)(又叫―比内公式‖,是用无理数表示有理数的一个范例。
)有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
而且当n无穷大时an-1/an越来越逼近黄金分割数0.618证明:a[n+2]=a[n+1]+a[n]两边同时除以a[n+1]得到:a[n+2]/a[n+1]=1+a[n]/a[n+1]若a[n+1]/a[n]的极限存在,设其极限为x,则lim[n->∞](a[n+2]/a[n+1])=lim[n->∞](a[n+1]/a[n])=x所以x=1+1/x即x²=x+1所以极限是黄金分割比.奇妙的属性随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。
(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
高三数学 教案 斐波那契数列通项公式推导过程

斐波那契数列斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
定义斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........自然中的斐波那契数列这个数列从第3项开始,每一项都等于前两项之和。
斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契,生于公元1170年,卒于1250年,籍贯是比萨。
他被人称作“比萨的列昂纳多”。
1202年,他撰写了《算盘全书》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。
通项公式递推公式斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2)显然这是一个线性递推数列。
通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。
) 注:此时通项公式推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为:x²=x+1解得,.则∵∴解得方法二:待定系数法构造等比数列1(初等代数解法)设常数r,s .使得则r+s=1,-rs=1n≥3时,有……联立以上n-2个式子,得:∵,上式可化简得:那么……(这是一个以为首项、以为末项、为公比的等比数列的各项的和)。
LnCas数列的若干性质

LnCas数列的若干性质邹泽民(梧州师专数学系广西贺州542800)[摘要]本文给出和论证了卢卡斯数列的有关通项公式、前n项和公式等相关性质。
[关键词]递归;叠加;卢卡斯数列;数学归纳法卢卡斯数列Ln:2,1,3,4,7,11,18,,可由下列递归关系生成:L0=2,L1=1,当n\1时有L n+1=L n+L n-1(n I N)首先给出它的通项公式及其证明[命题1]卢卡斯数列Ln的通项公式为L n=(1+52)n+(1-52)n(n=0,1,2,,,)(Ñ)证明用数学归纳法i)当n=0,1,2时,(Ñ)式显然成立; ii)假设当n[K时,(Ñ)式成立即有L K=(1+52)K+(1-52)K且L K-1=(1+52)K-1+(1-52)K-1则当n=K+1时,有L K+1=L K+L K-1=(1+52)K+(1-52)K+(1+52)K-1+(1-52)K-1=(3+52)(1+52)K-1+(3-52)(1-52)K-1=(1+5)2(1+5)K-1+(1-5)2(1-5)K-1=(1+52)(K+1)+(1-52)K+1即当n=K+1时,(Ñ)式也成立综合i)、ii)知,(Ñ)式对一切n=0,1,2,,,都成立。
运用递归叠加求和,于是由递归关系L n+1=L n+L n-1令n=1,2,3,,,n-1代入分别有L2=L1+L0L3=L2+L1,,L n=L n-1+L n-2[收稿日期]1998-07-03叠加求和得L 2+L 3+,,+L n =(L 1+L 2+,,+L n-1)+(L 0+L 1+,,+L n-2)从而有S n +1-(L 0+L 1)=S n+1-(L 0+L n )+[S n+1-(L n-1+L n )]即:S n+1=2L n +L n-1-L 1=L n +(L n +L n-1)-1=L n +L n+1-1故:S n+1=L n+2-1 (n=0,1,2,3,,,)也即S n =L n+1-1 (n I N) 于是有[命题2]卢卡斯数列L n :2,1,3,7,11,18,,(n=0,1,2,,,)的前n 项和公式为S n =L n+1-1(n I N)(Ò)其中S n =L 0+L 1+L 2+,,+L n-1=6n-1K=0L K证明 用数学归纳法i)当n=1,2,3时,(Ò)式显然成立;ii)假设n=K 时,(Ò)式成立即有S K =L K+1-1则当n=K +1时有S K+1=S K +L K =L K+1-1+L K =L K+2-1=L (K+1)+1-1即当n=K +1时,(Ò)式也成立综合i)、ii)知,(Ò)式对一切自然数n I N 都成立。
卢卡斯数列在股市的时间周期(值得收藏)

卢卡斯数列在股市的时间周期(值得收藏)卢卡斯数列是斐波那契数和卢卡斯数的推广,以法国数学家爱德华·卢卡斯命名。
■ 法国数学家爱德华·卢卡斯卢卡斯以研究斐波那契数列(1,1,2,3,5,8,……)而著名,他曾给出求斐波那契数列第n项的表达式。
卢卡斯数列(1,3,4,7,11,18,……)就是以他的名字命名。
卢卡斯数列与斐波那契数列的区别在于把第2项改成了3,递推公式不变(从第三项起每一项是前两项之和)。
令人惊讶的是,卢卡斯数列相邻两项之比居然和斐波那契数列一样,趋于黄金比例0.61803398…卢卡斯数列:1、3、4、7、11、18、29、47、76、123……,也具有斐波那契数列相同的性质。
这两个数列,都是从第三个数开始,等于前面两个数字相加之和。
类似的数列还有无限多个,被称之为斐波那契—卢卡斯数列。
n12345678910斐波那契数列F(n)11235813213455卢卡斯数列L(n)13471118294776123F(n)*L(n)138215514437798725846765一、数列的特点卢卡斯数列与菲波那切数列是兄弟数列,例如卢卡斯数列中:1、3、 4、 7、 11、18、 29、 47、 76、 123、 199、 322、 521、843、 1364、 2207、 3571、 5778、 9349 等。
因为卢卡斯数列与斐波那契数列具有相同的性质:1、从第三项开始,每一项都等于前两项之和。
1+3=4;4+3=7;7+4=11。
这与斐波那契数列相同。
2、而且从7开始面相邻的两数之间的比值就非常接近0.618这个比率,7/11=06.36;11/18=0.611;18/29=0.620;29/47=0.617;5778/9349=0.618。
所以在股市中卢卡斯数列也经常被验证。
二、在股市中的验证与应用指数的运行,是有循环周期的,不管你承认也好,不承认也好,它都客观地存在着。
特殊数列(长期项目)

特殊数列(长期项⽬)前排提醒: L A T E X 可能过多,请耐⼼等待加载斐波那契数列(Fibonacci )可能不是很特殊,但是确是最为常见的,看名字就知道明显是个叫做斐波那契的⼈发现的,全名 莱昂纳多·斐波那契(Leonardo Fibonacci )(意⼤利)。
定义: f 0=0,f 1=1,f n =f n −1+f n −2(n ≥2)⽣成函数 F (x )=11−x −x2通项公式: f n =1√5[(1+√52)n −(1−√52)n ],推导⽅式有很多种,这⾥使⽤最简单的两种特征⽅程法:(都是⾃⼰盲猜的,有误请指正)数列中特征⽅程法本质上就是构造等⽐数列,只不过完全看不出来(瞎猜)f n =f n −1+f n −2⟺f n −f n −1−f n −2=0可以看出 f n 、f n −1、f n −2 形式⼀样,我们可以直接盲猜设其为 f n =aq n (虽然很假但是我想不到其他数列了),则aq n +2−aq n +1−aq n =0⟺aq n (q 2−q −1)=0⟺aq n (q −1+√52)(q −1+√52)=0有 f 1,n =a (1+√52)n ,f 2,n =a (1−√52)n 将特解线性组合得通解 f n =Af 1,n +Bf 2,n将 f 0=0,f 1=1 代⼊:Aa +Ba =0(1)Aa 1+√52+Ba 1−√52=1(2)解(1):a (A +B )=0∵再将两个结论代⼊原数列:\begin{aligned} f_n = \ &Aa(\dfrac{1+\sqrt5}{2})^n+Ba(\dfrac{1-\sqrt5}{2})^n \\ =\ & Aa[(\dfrac{1+\sqrt5}{2})^n-(\dfrac{1-\sqrt5}{2})^n] \\ =\ & \dfrac{1}{\sqrt5}\l eft[\left(\dfrac{1+\sqrt5}{2}\right)^n-\left(\dfrac{1-\sqrt5}{2}\right)^n\right] \end{aligned}⽣成函数法:f_n 的普通型⽣成函数为 F(x),则 F(x) = x+x^2+2x^3+3x^4+5x^5+...+f_n x^n+...利⽤⽆穷项的特性,显然有 F-Fx=Fx^2+x \iff F=\dfrac{x}{1-x-x^2}然后因式分解、裂项:\begin{aligned} F(x) &= \dfrac{x}{1-x-x^2} = \dfrac{x}{(1-\phi_1x)(1-\phi_2x)} ,解得 \phi_1=\dfrac{1+\sqrt5}{2}, \phi_2=\dfrac{1-\sqrt5}{2}\\ &=x(\dfrac{a}{1-\p hi_1x}+\dfrac{b}{1-\phi_2x})=x(\dfrac{a+b-x(a\phi_2+b\phi_1)}{(1-\phi_1x)(1-\phi_2x)}) \\ \iff &\begin{cases} a+b=1\\a\phi_2+b\phi_1=0\end{cases}, 解得\be gin{cases} a=\dfrac{5+\sqrt5}{10}=\dfrac{1}{\sqrt5}\cdot\dfrac{\sqrt5+1}{2}\\ b=\dfrac{5-\sqrt5}{10}=\dfrac{1}{\sqrt5}\cdot\dfrac{\sqrt5-1}{2} \end{cases} \\ \iff F(x) &=ax\dfrac{1}{1-\phi_1x}+bx\dfrac{1}{1-\phi_2x} \\ &=ax(1+\phi_1x+\phi_1^2x^2+...+\phi_1^nx^n+...)+bx(1+\phi_2x+\phi_2^2x^2+...+\phi_2^nx^n+...) \\&=\dfrac{1}{\sqrt5}(\dfrac{1+\sqrt5}{2}x+(\dfrac{1+\sqrt5}{2})^2x^2+...+(\dfrac{1+\sqrt5}{2})^nx^n+...) \\ &-\dfrac{1}{\sqrt5}(\dfrac{1-\sqrt5}{2}x+(\dfrac{1-\sqr t5}{2})^2x^2+...+(\dfrac{1-\sqrt5}{2})^nx^n+...) \end{aligned}据此,我们很容易看出 f_n = \dfrac{1}{\sqrt5}\left[\left(\dfrac{1+\sqrt5}{2}\right)^n-\left(\dfrac{1-\sqrt5}{2}\right)^n\right]很好,这样最简单的通项公式就推导完了⼀些性质:与黄⾦分割⽐的关系:\large \lim_{n\rightarrow\infty} \dfrac{f_{n-1}}{f_{n}} = \dfrac{\sqrt5-1}{2}\rm{Proof:}f_n=f_{n-1}+f_{n-2} \iff \dfrac{f_n}{f_{n-1}}=1+\dfrac{f_{n-2}}{f_{n-1}},设极限 \lim_{n\rightarrow\infty}\dfrac{f_n}{f_{n-1}}存在且为 x 。
有趣的斐波那契数列例子
F(3)-r*F(2)=s*[F(2)-r*F(1)]。
联立以上n-2个式子,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]。
∵s=1-r,F(1)=F(2)=1。
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)。
那么:
F(n)=s^(n-1)+r*F(n-1)。
157
…
F[1,3]n
1
3
4
7
11
18
29
47
76
123
…
F[1,4]n-F[1,3]n
0
1
1
2
3
5
8
13
21
34
…
F[1,4]n+F[1,3]n
2
7
9
16
25
41
66
107
173
280
…
②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得,如
n
1
2
3
4
5
6
7
8
9
10
…
F[1,1](n)
1
1
2
3
5
8
13
21
34
55
…
F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34
…
F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34
…
F[1,3]n
1
3
[斐波那契数列]斐波那契—卢卡斯数列:斐波那契—卢卡斯数列
[斐波那契数列]斐波那契—卢卡斯数列:斐波那契—卢卡斯数列[斐波那契数列]斐波那契—卢卡斯数列:斐波那契—卢卡斯数列篇一 : 斐波那契—卢卡斯数列:斐波那契—卢卡斯数列-定义,斐波那契—卢卡斯数卢卡斯数列_斐波那契—卢卡斯数列 -定义,)斐波那契数列1,1,2,3,5,8…,和卢卡斯数列1,3,4,7,11,18…,具有相同的性质:从第三项开始,每一项都等于前两项之和,我们称之为斐波那契—卢卡斯递推。
凡符合斐波那契—卢卡斯递推的数列就称为斐波那契—卢卡斯数列。
一般地,符合f = f+ f,f=f- f的整数数列f,都是斐波那契—卢卡斯数列。
为区别不同的斐波那契—卢卡斯数列,我们根据前两项来标定斐波那契—卢卡斯数列,如斐波那契数列:F[1,1];卢卡斯数列:F[1,3];数列1,4,5,9.,14,23…:F[1,4];特别地,常数数列0,0,0…:F[0,0],作为下述斐波那契—卢卡斯数列群的单位元素。
别名斐波那契—卢卡斯序列,推广斐波那契数列,推广卢卡斯数列,推广兔子数列等。
斐波那契—卢卡斯数列群任意2个或2个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。
n12345678910…F[1,4]n14591423376097157…F[1,3]n13471118294776123…F[1,4]n-F[1,3]n0112358132134…F[1,4]n+F[1,3]n27916254166 107173280…卢卡斯数列_斐波那契—卢卡斯数列 -斐波那契—卢卡斯数列的性质一些等式 f+f=f*1f+f+f+…+f=f*4f+f+f+…+f=f*11f+f+f+…+f=f*29f+f+f+…+f=f*76注意:1,4,11,29,76,…是卢卡斯数列的奇数项。
有趣的斐波那契数列例子
斐波那契数列斐波那契的发明者,是数学家Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是;他被人称作“比萨的列昂纳多”;1202年,他了珠算原理Liber Abacci一书;他是第一个研究了和数学理论的人;他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学;他还曾在、、、和研究;斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和;斐波那契数列通项公式通项公式见图又叫“比内公式”,是用表示的一个范例;注:此时a1=1,a2=1,an=an-1+an-2n>=3,n∈N通项公式的推导斐波那契数列:1、1、2、3、5、8、13、21、……如果设Fn为该数列的第n项n∈N+;那么这句话可以写成如下形式:F0 = 0,F1=1,Fn=Fn-1+Fn-2 n≥2,显然这是一个递推数列;方法一:利用特征方程线性代数解法线性递推数列的特征方程为:X^2=X+1解得X1=1+√5/2,,X2=1-√5/2;则Fn=C1X1^n + C2X2^n;∵F1=F2=1;∴C1X1 + C2X2;C1X1^2 + C2X2^2;解得C1=1/√5,C2=-1/√5;∴Fn=1/√5{1+√5/2^n+1 - 1-√5/2^n+1}√5表示5;方法二:待定系数法构造等比数列1初等待数解法设常数r,s;使得Fn-rFn-1=sFn-1-rFn-2;则r+s=1, -rs=1;n≥3时,有;Fn-rFn-1=sFn-1-rFn-2;Fn-1-rFn-2=sFn-2-rFn-3;Fn-2-rFn-3=sFn-3-rFn-4;……F3-rF2=sF2-rF1;联立以上n-2个式子,得:Fn-rFn-1=s^n-2F2-rF1;∵s=1-r,F1=F2=1;上式可化简得:Fn=s^n-1+rFn-1 ;那么:Fn=s^n-1+rFn-1;= s^n-1 + rs^n-2 + r^2Fn-2;= s^n-1 + rs^n-2 + r^2s^n-3 + r^3Fn-3;……= s^n-1 + rs^n-2 + r^2s^n-3 +……+ r^n-2s + r^n-1F1;= s^n-1 + rs^n-2 + r^2s^n-3 +……+ r^n-2s + r^n-1;这是一个以s^n-1为首项、以r^n-1为末项、r/s为公比的的各项的和;=s^n-1-r^n-1r/s/1-r/s;=s^n - r^n/s-r;r+s=1, -rs=1的一解为s=1+√5/2,r=1-√5/2;则Fn=1/√5{1+√5/2^n+1 - 1-√5/2^n+1};方法三:待定系数法构造等比数列2初等待数解法已知a1=1,a2=1,an=an-1+an-2n>=3,求数列{an}的通项公式;解:设an-αan-1=βan-1-αan-2;得α+β=1;αβ=-1;构造方程x^2-x-1=0,解得α=1-√5/2,β=1+√5/2或α=1+√5/2,β=1-√5/2;所以;an-1-√5/2an-1=1+√5/2an-1-1-√5/2an-2=1+√5/2^n-2a2-1-√5/2a1`````````1;an-1+√5/2an-1=1-√5/2an-1-1+√5/2an-2=1-√5/2^n-2a2-1+√5/2a1`````````2;由式1,式2,可得;an=1+√5/2^n-2a2-1-√5/2a1``````````````3;an=1-√5/2^n-2a2-1+√5/2a1``````````````4;将式31+√5/2-式41-√5/2,化简得an=1/√5{1+√5/2^n - 1-√5/2^n};与黄金分割的关系有趣的是:这样一个完全是的数列,通项公式却是用无理数来表达的;而且当n时an-1/an越来越逼近数;1÷1=1,2÷1=2,3÷2=,5÷3=...,8÷5=,…………,89÷55=…,…………233÷144=…75025÷46368=…;..越到后面,这些比值越接近黄金比.证明:an+2=an+1+an;两边同时除以an+1得到:an+2/an+1=1+an/an+1;若an+1/an的极限存在,设其极限为x,则limn->∞an+2/an+1=limn->∞an+1/an=x;所以x=1+1/x;即x²=x+1;所以极限是黄金分割比;奇妙的属性斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数、黄金矩形、黄金分割、等角螺线等,有时也可能是我们对斐波那契额数过于热衷,把原来只是巧合的东西强行划分为斐波那契数;比如钢琴上白键的8,黑键上的5都是斐波那契数,因该把它看做巧合还是规律呢随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值……从第二项开始,每个奇数项的都比前后两项之积多1,每个项的平方都比前后两项之积少1;注:奇数项和偶数项是指项数的奇偶,而并不是列的本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通多了的一在哪如果你看到有这样一个题目:某人把一个88的方格切成四块,拼成一个513的,故作惊讶地问你:为什么64=65其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到;斐波那契数列的第n项同时也代表了{1,2,...,n}中所有不相邻正的个数;斐波那契数列fn,f0=0,f1=1,f2=1,f3=2……的其他性质:0+f1+f2+…+fn=fn+2-1;1+f3+f5+…+f2n-1=f2n;2+f4+f6+…+f2n =f2n+1-1;4.f0^2+f1^2+…+fn^2=fn·fn+1;0-f1+f2-…+-1^n·fn=-1^n·fn+1-fn+1;m+n-1=fm-1·fn-1+fm·fn;利用这一点,可以用程序编出时间复杂度仅为Olog n的程序;怎样实现呢伪代码描述一下7.fn^2=-1^n-1+fn-1·fn+1;2n-1=fn^2-fn-2^2;n=fn+2+fn-2;2n-2m-2f2n+f2n+2=f2m+2+f4n-2m n〉m≥-1,且n≥1斐波那契数列2n+1=fn^2+fn+1^2.在杨辉三角中隐藏着斐波那契数列将杨辉三角依次下降,成如图所示排列,将同一行的数加起来,即得一数列1、1、2、3、5、8、……公式表示如下:f1=C0,0=1 ;f2=C1,0=1 ;f3=C2,0+C1,1=1+1=2 ;f4=C3,0+C2,1=1+2=3 ;f5=C4,0+C3,1+C2,2=1+3+1=5 ;f6=C5,0+C4,1+C3,2=1+4+3=8 ;F7=C6,0+C5,1+C4,2+C3,3=1+5+6+1=13 ;……Fn=Cn-1,0+Cn-2,1+…+Cn-1-m,m m<=n-1-m斐波那契数列的整除性与素数生成性每3个数有且只有一个被2整除,每4个数有且只有一个被3整除,每5个数有且只有一个被5整除,每6个数有且只有一个被8整除,每7个数有且只有一个被13整除,每8个数有且只有一个被21整除,每9个数有且只有一个被34整除,.......我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657第19位不是斐波那契数列的素数无限多吗斐波那契数列的个位数:一个60步的循环11235,83145,94370,77415,,99875,27965,16730,33695,49325,72910…斐波那契数与植物花瓣3………………………百合和蝴蝶花5………………………蓝花耧斗菜、、飞燕草、毛茛花8………………………翠雀花13………………………金盏和玫瑰21………………………紫宛34、55、89……………雏菊斐波那契数还可以在植物的叶、枝、茎等排列中发现;例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子假定没有折损,直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数;叶子从一个位置到达下一个正对的位置称为一个循回;叶子在一个循回中的圈数也是斐波那契数;在一个循回中叶子数与叶子旋转圈数的比称为源自希腊词,意即叶子的排列比;多数的叶序比呈现为斐波那契数的比;斐波那契—卢卡斯数列与广义斐波那契数列黄金特征与孪生斐波那契—卢卡斯数列斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的是一个恒值,斐波那契数列:|11-12|=|22-13|=|33-25|=|55-38|=|88-513|=…=1卢卡斯数列:|33-14|=|44-37|=…=5F1,4数列:|44-15|=11F2,5数列:|55-27|=11F2,7数列:|77-29|=31斐波那契数列这个值是1最小,也就是前后项之比接近最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列;卢卡斯数列的黄金特征是5,也是独生数列;前两项的独生数列只有斐波那契数列和卢卡斯数列这两个数列;而F1,4与F2,5的黄金特征都是11,是孪生数列;F2,7也有孪生数列:F3,8;其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列; 广义斐波那契数列斐波那契数列的黄金特征1,还让我们联想到佩儿数列:1,2,5,12,29,…,也有|22-15|=|55-212|=…=1该类数列的这种称为勾股特征;数列Pn的递推规则:P1=1,P2=2,Pn=Pn-2+2Pn-1.据此类推到所有根据前两项导出第三项的通用规则:fn = fn-1 p + fn-2 q,称为广义斐波那契数列;当p=1,q=1时,我们得到斐波那契—卢卡斯数列;当p=1,q=2时,我们得到佩尔—勾股弦数跟边长为整数的有关的数列集合;当p=-1,q=2时,我们得到等差数列;其中f1=1,f2=2时,我们得到自然数列1,2,3,4…;自然数列的特征就是每个数的平方与前后两数之积的差为1等差数列的这种差值称为;具有类似黄金特征、勾股特征、自然特征的广义斐波那契数列p=±1;当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……相关的数学问题1.排列组合有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法;类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种答案是1/√5{1+√5/2^10+2 - 1-√5/2^10+2}=144种;2.数列中相邻两项的前项比后项的极限当n趋于无穷大时,Fn/Fn+1的极限是多少这个可由它的通项公式直接得到,极限是-1+√5/2,这个就是黄金分割的数值,也是代表的和谐的一个数字;3.求递推数列a1=1,an+1=1+1/an的通项公式由可以得到:an=Fn+1/Fn,将斐波那契数列的通项式代入,化简就得结果;3.兔子繁殖问题关于斐波那契数列的别名斐波那契数列又学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“”;一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来;如果所有兔都不死,那么一年以后可以繁殖多少对兔子我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对两个月后,生下一对小兔民数共有两对三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对------依次类推可以列出下表:经过月数0 1 2 3 4 5 6 7 8 9 10 11 12幼仔0 0 1 1 2 3 5 8 13 21 34 55 89成兔对数0 1 1 2 3 5 8 13 21 34 55 89 144 总体对数 1 1 2 3 5 8 13 21 34 55 89 144 233 幼仔对数=前月成兔对数成兔对数=前月成兔对数+前月幼仔对数总体对数=本月成兔对数+本月幼仔对数可以看出幼仔对数、成兔对数、总体对数都构成了一个数列;这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项;这个数列是意大利数学家斐波那契在<算盘全书>中提出的,这个的通项公式,除了具有an+2=an+an+1的性质外,还可以证明通项公式为:an=1/√5{1+√5/2^n-1-√5/2^n}n=1,2,3.....数学游戏一位拿着一块边长为8英尺的地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方形地毯;”这位匠师对魔术师之差深感惊异,因为两者之间面积相差达一平方英尺呢可是魔术师竟让匠师用图2和图3的办法达到了他的目的这真是不可思议的事亲爱的读者,你猜得到那神奇的一平方英尺究竟跑到哪儿去呢实际上后来缝成的地毯有条细缝,面积刚好就是一平方英尺;自然界中的巧合斐波那契数列在自然科学的其他分支,也有许多应用;例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝;所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”;这样,一株树木各个年份的枝桠数,便构成斐波那契数列;这个规律,就是生物学上着名的“鲁德维格定律”;另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的的头部这些植物懂得斐波那契数列吗应该并非如此,它们只是按照自然的规律才进化成这样;这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉;叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的,每片叶子和前一片叶子之间的角度应该是度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是……的,而这种生长方式就决定了斐波那契螺旋的产生;向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条;数字谜题三角形的三边关系和斐波那契数列的一个联系:现有长为144cm的铁丝,要截成n小段n>2,每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少分析:由于形成三角形的是任何两边之和大于第三边,因此不构成三角形的条件就是任意两边之和不超过最大边;截成的铁丝最小为1,因此可以放2个1,第三条就是2为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和,依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10;我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了;这里,三角形的三边关系定理和斐波那契数列发生了一个联系;在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了;影视作品中的斐波那契数列斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的里它就作为一个重要的符号和情节线索出现,在魔法玩具城里又是在店主招聘会计时随口问的问题;可见此数列就像黄金分割一样流行;可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究;在电视剧中也出现斐波那契数列,比如:日剧考试之神第五回,义嗣做全国模拟考试题中的最后一道~社会文明中的斐波那契数列艾略特波浪理论1946年,艾略特完成了关于波浪理论的集大成之作,自然法则——宇宙的秘密;艾略特坚信,他的波浪理论是制约人类一切活动的普遍自然法则的一部分;波浪理论的优点是,对即将出现的顶部或底部能提前发出警示信号,而传统的技术分析方法只有事后才能验证;艾略特波浪理论对市场运作具备了全方位的透视能力,从而有助于解释特定的形态为什么要出现,在何处出现,以及它们为什么具备如此这般的预测意义等等问题;另外,它也有助于我们判明当前的市场在其总体周期结构中所处的地位;波浪理论的数学基础,就是在13世纪发现的费氏数列;波浪理论数学结构8浪循环图·8浪循环图说明·波浪理论的推动浪,浪数为51、2、3、4、5,调整浪的浪数为3a\b\c,合起来为8;·8浪循环中,前5段波浪构成一段明显的上升浪,其中包括3个向上的冲击波及两个下降的调整波;在3个冲击波之后,是由3个波浪组成的一段下跌的趋势,是对前一段5浪升势的总调整;这是艾略特对波浪理论的基本描述;而在这8个波浪中,上升的浪与下跌的浪各占4个,可以理解为艾略特对于股价走势对称性的隐喻;·在波浪理论中,最困难的地方是:波浪等级的划分;如果要在特定的周期中正确地指认某一段波浪的特定属性,不仅需要形态上的支持,而且需要对波浪运行的时间作出正确的判断;·换句话说,波浪理论易学难精,易在形态上的归纳、总结,难在价位及时间周期的判定;波浪理论的数字基础:斐波那契数列波浪理论数学结构——斐波那契数列与黄金分割率·这个数列就是斐波那契数列;它满足如下特性:每两个相连数字相加等于其后第一个数字;前一个数字大约是后一个数字的倍;前一个数字约是其后第二个数字的倍;后一个数字约是前一个数字的倍;后一个数字约是前面第二个数字的倍;·由此计算出常见的黄金分割率为和外:、、、、、、、、、·黄金分割比率对于股票市场运行的时间周期和价格幅度模型具有重要启示及应用价值;黄金分割比率在时间周期模型上的应用·未来市场转折点=已知时间周期×分割比率·已知时间周期有两种:1循环周期:最近两个顶之间的运行时间或两个底之间的运行时间2趋势周期:最近一段升势的运行时间或一段跌势的运行时间·一般来讲,用循环周期可以计算出下一个反向趋势的终点,即用底部循环计算下一个升势的顶,或用顶部循环计算下一个跌势的底;而用趋势周期可以计算下一个同方向趋势的终点或是下一个反方向趋势的终点;时间循环周期模型预测图时间趋势周期模型预测图时间周期与波浪数浪的数学关系·一个完整的趋势推动浪3波或调整浪3波,运行时间最短为第一波1浪或A浪的倍,最长为第一波的倍;如果第一波太过短促,则以第一个循环计算A浪与B浪或1浪与2浪;·及的周期一旦成立,则出现的行情大多属次级趋势,但行情发展迅速;·同级次两波反向趋势组成的循环,运行时间至少为第一波运行时间的倍;·一个很长的跌势或升势结束后,其右底或右顶通常在前趋势的或倍时间出现;黄金分割比率在价格幅度模型上的应用·如果推动浪中的一个子浪成为延伸浪的话,则其他两个推动浪不管其运行的幅度还是运行的时间,都将会趋向于一致;也就是说,当推动浪中的浪3在走势中成为延伸浪时,则浪1与浪5的升幅和运行时间将会大致趋同;假如并非完全相等,则极有可能以的关系相互维系;·浪5最终目标,可以根据浪1浪底至浪2浪顶距离来进行预估,他们之间的关系,通常亦包含有神奇数字组合比率的关系;·对于ABC调整浪来说,浪C的最终目标值可能根据浪A的幅度来预估;浪C的长度会经常是浪A的倍;当然我们也可以用下列公式预测浪C的下跌目标:浪A浪底减浪A乘;·在对称三角形内,每个浪的升跌幅度与其他浪的比率,通常以的神奇比例互相维系;黄金分割比率在价格幅度模型上的应用·:浪4常见的回吐比率、部份浪2的回吐比率、浪B的回吐比率;·:大部份浪2的调整幅度、浪5的预期目标、浪B的调整比率、三角形内浪浪之间比率;·:常见是浪B的调整幅度;·:浪3或浪4的回吐比率,但不多见;·与:·:浪3与浪1、浪C与浪A的比率关系;推动浪形态·推动浪有五浪构成;第一浪通常只是由一小部分交易者参与的微弱的波动;一旦浪1结束,交易者们将在浪2卖出;浪2的卖出是十分凶恶的,最后浪2在不创新低的情况下,市场开始转向启动下一浪波动;浪3波动的初始阶段是缓慢的,并且它将到达前一次波动的顶部浪1的顶部;推动浪浪5未能创新高低,市场将会出现大逆转推动浪的变异形态——倾斜三角形·倾斜三角形为推动浪中的一种特殊型态比较少见,主要出现在第5浪的位置;艾略特指出,在股市中,一旦出现一段走势呈现快速上升或赶底的状况,其后经常会出现倾斜三角形型态调整浪形态·调整是十分难以掌握的,许多艾略特交易者在推动模式阶段上赚钱而在调整阶段再输钱;一个推动阶段包括五浪;调整阶段由三浪组成,但有一个三角形的例外;一个推动经常伴随着一个调整的模式;·调整模式可以被分成两类:·简单的调整:之字型调整N字型调整·复杂的调整:平坦型、不规则型、三角形型调整浪的简单与复杂调整的交替准则调整浪的变异形态:强势三角形调整浪的变异形态:前置三角形各段波浪的特性·在8浪循环中,每段波浪都有不同的特点,熟知这些特点,对波浪属性的判断极有帮助,·第1浪:大部分第1浪属于营造底部形态的一部份,相当于形态分析中头肩底的底部或双底的右底,对这种类型的第1浪的调整第2浪幅度通常较大,理论上可以回到第1浪的起点;小部份第1浪在大型调整形态之后出现,形态上呈V形反转,这类第1浪升幅较为可观;在K线图上,经常出现带长下影线的大阳线;从波浪的划分来说,在5-3-5的调整浪当中,第1浪也可以向下运行,通常第1浪在分时图上应该显示明确的5浪形态;·第2浪:在强势调整的第2浪中,其回调幅度可能达到第1浪幅度的或,在更多的情况下,第2浪的回调幅度会达到100%,形态上经常表现为头肩底的右底,使人误以为跌势尚未结束;在第2浪回调结束时,指标系统经常出现超卖、背离等现象;第2浪成交量逐渐缩小,波幅较细,这是卖力衰竭的表现;出现传统系统的转向信号,如头肩底、双底等;·第3浪:如果运行时间较短,则升速通常较快;在一般情况下为第1浪升幅的倍;如果第3浪升幅与第1浪等长,则第5浪通常出现扩延的情况;在第3浪当中,唯一的操作原则是顺势而为;因为第3浪的升幅及时间经常会超出分析者的预测;通常第3浪运行幅度及时间最长;属于最具爆发性的一浪;大部分第3浪成为扩延浪;第3浪成交量最大;出现传统图表的突破信号,如跳空缺口等;·第4浪:如果第4浪以平坦型或N字型出现,a小浪与c小浪的长度将会相同;第4浪与第2浪经常是交替形态的关系,即单复式交替或平坦型、曲折型或三角形的交替;第4浪的低点经常是其后更大级数调整浪中A浪的低点;经常以较为复杂的形态出现,尤其以三角形较为多见;通常在第3浪中所衍生出来的较低一级的第4浪底部范围内结束;第4浪的底不会低于第1浪的顶;·第5浪:除非发生扩延的情况,第5浪的成交量及升幅均小于第3浪;第5浪的上升经常是在指标出现顶背离或钝化的过程中完成;在第5浪出现衰竭性上升的情况下,经常出现上升楔形形态;这时,成交量与升幅也会出现背离的情况;如果第1、3浪等长,则第5浪经常出现扩延;如果第3浪出现扩延浪,则第5浪幅度与第1浪大致等长;市场处于狂热状态;·第6浪A浪:A浪可以为3波或者5波的形态;在A浪以3波调整时,在A浪结束时,市场经常会认为整个调整已经结束;在多数情况下,A浪可以分割为5小浪;市场人士多认为市场并未逆转,只视为一个较短暂的调整;图表上,阴线出现的频率增大;·第7浪B浪:在A浪以3波形态出现的时候,B浪的走势通常很强,甚至可以超越A浪的起点,形态上出现平坦型或三角形的概率很大;而A浪以5波运行的时候,B浪通常回调至A浪幅度的至;升势较为情绪化,维持时间较短;成交量较小;·第8浪C浪:除三角形之外,在多数情况下,C浪的幅度至少与A浪等长;杀伤力最强;与第3浪特性相似,以5浪下跌;股价全线下挫;人类文明的斐波那契演进古老的<马尔萨斯理论>已经显灵马尔萨斯认为:每当社会财富快速积累,人口快速增长,就会出现:战争、瘟疫、饥荒、自然灾害来削减人口;2000年科技泡沫达到繁荣的极限,到处都是财富神话然后盛极而衰,全球经济急转直下转入衰退、长期萧条;于是:911、阿富汗战争、伊拉克战争、SARS、印度洋海啸、飓风袭击美利坚、禽流感、寒流袭击欧罗巴;这一切集中在一起接二连三地发生2000年是自上世纪30年代全球经济大萧条后,一个长达约70年的经济增长周期的结束点,后面将是一个长期萧条周期;上世纪30年代全球经济大萧条导致了二次世界大战,被艾略特称之为:底部战争;现在又是一个与上世纪30年代全球经济大萧条同级别的经济萧条周期,2000年来的经济萧条将持续至2021年才会结束预测附在下面;后面是否又会发生被艾略特称之为的:底部战争至少有不良苗头:哈马斯执政、伊朗核问题纠缠,世界将走向何方是否还记得那个着名的:1999年7月之上误差了2年恐怖大王从天而降911使安哥鲁摩阿大王为之复活美国发动反恐战争这期间由马尔斯借幸福之名统治四方唯一待验证社会群体心理、群体行为、群体价值观,乃至国际政治、经济、军事,一切皆是自相似系统分形几何运行阶段的反映和结果;1、自2000年来的全球经济萧条将持续至2021年,说明未来将是长期萧条;2、之前会有若干次小级别、温和的经济扩张和收缩,2010、2011、2018年是拐点;3、2021年是一个黑暗的年份,人们悲观、恐惧、绝望的情绪会达到一个极点;到时绝大多数经济学家会一致悲观接着柳岸花明经济开始复苏,经济学家们又挨了一记大耳光;首先,列出一组计算公式:公元1937年–公元1932年X + 公元1982年= 公元2000年公元1966年–公元1942年/ + 公元1982年= 公元1999年公元1837年–公元1789年X + 公元1932年= 公元1998年公元1325年–公元950年X –公元1650年–公元1490年+ 公元1789年–公元1650年+ 公元1789年= 公元2000年其中:公元950年商业革命的起点公元1325年商业革命的结束点公元1490年资本主义革命的起点公元1650年资本主义革命的结束点公元1789年工业革命的起点公元1837年公元1789年后第一轮经济扩张的结束点公元1932年自公元1929年资本主义世界股灾的结束点公元1937 年公元1929年股灾后第一轮经济扩张的结束点公元1942年公元1929年股灾后第二轮经济扩张的起点公元1966年公元1929年股灾后第二轮经济扩张的结束点公元1982年70年代全球经济滞胀的结束点、、是斐波那契比率,来源于斐波那契数列前2个计算公式的含义:自上世纪30年代资本主义世界经济大萧条以来,新的一个自公元1932年开始的上升5浪的经济扩张周期已经结束,结束点为公元2000年;那么接着是一个调整期经济。
由斐波那契数列和卢卡斯数列到一般递归数列
由斐波那契数列和卢卡斯数列到一般递归数列
递归数列是指一个数列中的每一项可以通过前面一个或多个项来计算得出。
最简单的
递归数列就是斐波那契数列和卢卡斯数列,它们是由一些特定的递推式定义的。
斐波那契数列是最经典的递归数列之一,其定义如下:
F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2) (n≥2)
斐波那契数列的前几项为0、1、1、2、3、5、8、13、21、34、55等。
可以看出,该
数列的第n项可以通过前面的两项来计算得出。
斐波那契数列在自然界中有着广泛的应用,例如黄金分割、菊花的花瓣数、蜂巢构成等。
卢卡斯数列的前几项为2、1、3、4、7、11、18、29、47、76等,可以看出它与斐波
那契数列很相似,但在初始值上有所不同。
卢卡斯数列同样在自然界中有着广泛的应用,
例如细胞分裂等。
除了斐波那契数列和卢卡斯数列,还有许多其他的递归数列,如同余数数列、龟兔赛
跑数列等。
这些数列可以通过递推式进行计算,递推式分为线性递推和非线性递推两种。
线性递推是指递推式中当前项只依赖于前面的有限项,例如斐波那契数列和卢卡斯数
列都是线性递推。
非线性递推是指递推式中当前项依赖于前面的若干项,例如同余数列。
递归数列的计算可以使用迭代或递归两种方法,迭代方法是指从前往后计算数列中的
每一项,递归方法是指将递归式转化为递归函数进行计算。
总结来说,递归数列是一种常见的数列类型,它可以通过递推式计算得出。
在数学领
域和自然界中,递归数列具有多种应用,是一种非常重要的数学模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NewPanderKing抬头是山,路在脚下!斐波那契数列斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。
他被人称作―比萨的列昂纳多‖。
1202年,他撰写了《珠算原理》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
斐波那契数列通项公式斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和。
它的通项公式为:(见图)(又叫―比内公式‖,是用无理数表示有理数的一个范例。
)有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
而且当n无穷大时an-1/an越来越逼近黄金分割数0.618证明:a[n+2]=a[n+1]+a[n]两边同时除以a[n+1]得到:a[n+2]/a[n+1]=1+a[n]/a[n+1]若a[n+1]/a[n]的极限存在,设其极限为x,则lim[n->∞](a[n+2]/a[n+1])=lim[n->∞](a[n+1]/a[n])=x所以x=1+1/x即x²=x+1所以极限是黄金分割比.奇妙的属性随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。
(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-12.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)3.f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-14.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+16.f(m+n-1)=f(m-1)·f(n-1)+f(m)·f(n)利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。
怎样实现呢?伪代码描述一下?7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)8.f(2n-1)=[f(n)]^2-[f(n-2)]^29.3f(n)=f(n+2)+f(n-2)10.f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]11.f(2n+1)=[f(n)]^2+[f(n+1)]^2在杨辉三角中隐藏着斐波那契数列将杨辉三角依次下降,成如图所示排列,将同一行的数加起来,即得一数列1、1、2、3、5、8、……公式表示如下:f(1)=C(0,0)=1f(2)=C(1,0)=1f(3)=C(2,0)+C(1,1)=1+1=2f(4)=C(3,0)+C(2,1)=1+2=3f(5)=C(4,0)+C(3,1)+C(2,2)=1+3+1=5f(6)=C(5,0)+C(4,1)+C(3,2)=1+4+3=8F(7)=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13……F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)斐波那契数列的整除性与素数生成性每3个数有且只有一个被2整除,每4个数有且只有一个被3整除,每5个数有且只有一个被5整除,每6个数有且只有一个被8整除,每7个数有且只有一个被13整除,每8个数有且只有一个被21整除,每9个数有且只有一个被34整除,.......我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657(第19位不是)斐波那契数列的素数无限多吗?斐波那契数列的个位数:一个60步的循环11235,83145,94370,77415,61785.38190,99875,27965,16730,33695,49325,72910…斐波那契数与植物花瓣3………………………百合和蝴蝶花5………………………蓝花耧斗菜、金凤花、飞燕草、毛茛花8………………………翠雀花13………………………金盏和玫瑰21………………………紫宛34、55、89……………雏菊斐波那契数还可以在植物的叶、枝、茎等排列中发现。
例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。
叶子从一个位置到达下一个正对的位置称为一个循回。
叶子在一个循回中旋转的圈数也是斐波那契数。
在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。
多数的叶序比呈现为斐波那契数的比。
斐波那契—卢卡斯数列与广义斐波那契数列斐波那契—卢卡斯数列卢卡斯数列1、3、4、7、11、18…,也具有斐波那契数列同样的性质。
(我们可称之为斐波那契—卢卡斯递推:从第三项开始,每一项都等于前两项之和f(n) = f(n-1)+ f(n-2))。
这两个数列还有一种特殊的联系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)n12345678910…斐波那契数列F(n)11235813213455…卢卡斯数列L(n)13471118294776123…F(n)*L(n)138215514437798725846765…类似的数列还有无限多个,我们称之为斐波那契—卢卡斯数列。
如1,4,5,9,14,23…,因为1,4开头,可记作F[1,4],斐波那契数列就是F[1,1],卢卡斯数列就是F[1,3],斐波那契—卢卡斯数列就是F[a,b]。
斐波那契—卢卡斯数列之间的广泛联系①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。
如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),n12345678910…F[1,4]n14591423376097157…F[1,3]n13471118294776123…F[1,4]n-F[1,3]n0112358132134…F[1,4]n+F[1,3]n27916254166107173280…②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得,如n12345678910…F[1,1](n)11235813213455…F[1,1](n-1)0112358132134…F[1,1](n-1)0112358132134…F[1,3]n13471118294776123…黄金特征与孪生斐波那契—卢卡斯数列斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的绝对值是一个恒值,斐波那契数列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1卢卡斯数列:|3*3-1*4|=|4*4-3*7|=…=5F[1,4]数列:|4*4-1*5|=11F[2,5]数列:|5*5-2*7|=11F[2,7]数列:|7*7-2*9|=31斐波那契数列这个值是1最小,也就是前后项之比接近黄金比例最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列。
卢卡斯数列的黄金特征是5,也是独生数列。
前两项互质的独生数列只有斐波那契数列和卢卡斯数列这两个数列。
而F[1,4]与F[2,5]的黄金特征都是11,是孪生数列。
F[2,7]也有孪生数列:F[3,8]。
其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列。
广义斐波那契数列斐波那契数列的黄金特征1,还让我们联想到佩儿数列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(该类数列的这种特征值称为勾股特征)。
佩尔数列Pn的递推规则:P1=1,P2=2,Pn=P(n-2)+2P(n-1).据此类推到所有根据前两项导出第三项的通用规则:f(n) = f(n-1) * p + f(n-2) * q,称为广义斐波那契数列。
当p=1,q=1时,我们得到斐波那契—卢卡斯数列。
当p=1,q=2时,我们得到佩尔—勾股弦数(跟边长为整数的直角三角形有关的数列集合)。
当p=-1,q=2时,我们得到等差数列。
其中f1=1,f2=2时,我们得到自然数列1,2,3,4…。
自然数列的特征就是每个数的平方与前后两数之积的差为1(等差数列的这种差值称为自然特征)。
具有类似黄金特征、勾股特征、自然特征的广义斐波那契数列p=±1。
当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……斐波那契数列与黄金比1÷1=1,2÷1=2,3÷2=1.5,5÷3=1.666...,8÷5=1.6,…………,89÷55=1.6181818…,…………233÷144=1.618055…75025÷46368=1.6180339889…。
..越到后面,这些比值越接近黄金比相关的数学问题1.排列组合有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法。
2.数列中相邻两项的前项比后项的极限当n趋于无穷大时,F(n)/F(n+1)的极限是多少?这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是黄金分割的数值,也是代表大自然的和谐的一个数字。