太阳能LED路灯照明控制系统的设计

合集下载

太阳能路灯照明系统设计与实现

太阳能路灯照明系统设计与实现

太阳能路灯照明系统设计与实现随着现代城市的不断发展,对路灯照明的要求也越来越高。

然而传统路灯系统存在能源浪费、维护成本高、污染等问题。

因此,绿色、环保、低碳的太阳能路灯成为新时代路灯的发展趋势。

本文就太阳能路灯的设计与实现进行详细阐述。

太阳能路灯照明系统是以天然的太阳能为能源的照明设备。

它由太阳能电池组、LED灯组、电池组、充电控制器、灯杆等组成。

该装置的光源是以LED灯为主,具有耐用、高光效、低能耗等特点,因此广泛应用于道路照明、园林景观、广场公园、建筑外立面、景区照明等场所。

绿色环保,经济实用,可以省电、节能、降低碳排放、减少维护成本等优点,成为夜间照明的新选择。

太阳能路灯主要由以下五个部分组成:1.太阳能电池组:将太阳能转化为电能储存到电池组中。

2.LED灯组:具有高亮、长寿命、低耗等优点。

4.充电控制器:控制整个系统充电及充放电保护。

5.灯杆:支撑整个路灯。

在具体实现过程中,太阳能电池组通过光电转换将太阳能光束能量转换为电能,输出直流电,充入电池组中。

而在夜间,光感控制器控制LED灯组的工作,对光照进行监测,一旦光感强度降低到一定程度,即刻自动点亮LED灯,保障夜间行车和行人照明需求。

太阳能路灯照明系统的制作实现,并不像理论那么简单,需要考虑的细节和环节众多,其中最主要的部分就是充电、放电过程的控制和灯具亮度的调节。

1.设计太阳能电池组太阳能电池组是太阳能路灯系统的核心,设计时需要考虑的是它的输出电压和电流,容量大小以及太阳能电池组的效率等问题,以满足照明功率的要求,最终达到长时间稳定工作。

2.确定LED灯组参数LED灯组是太阳能路灯的主要光源,质量和性能直接影响路灯的使用效果和寿命。

因此,在选购时需要注意LED灯组的功率因数、发射角度、光效等参数。

同时根据具体需要的照度和亮度,确定LED灯组数量、布局和安装高度等问题。

3.确定充电控制器和电池组参数充电控制器是太阳能路灯控制系统的关键部件,需要根据电池组的类型、容量、充电电流、放电电流等参数精确地设定。

太阳能路灯系统设计方案

太阳能路灯系统设计方案

太阳能路灯系统设计方案1。

0总述如今,太阳能已经成为人们公认的结净的绿色能源,并逐渐应用于民生,造福人类。

其中太阳能庭院灯就是太阳能应用方式的一种,依靠白天太阳照射太阳能光伏组件而产生电能,并将所产生的电能输送到蓄电池进行储存。

晚上当光照度降到一定程度时或达到某一时刻,通过控制器控制,使蓄电池对光源用电器放电。

待到光照度升高到一定程度或某一时刻时,自动关闭用电。

2。

0系统总体设计太阳能路灯主要由太阳电池组件、组件支架、电控箱(内装控制器、蓄电池)、灯杆(含灯具)等几部分组成。

系统示意图如下图:图1太阳能路灯系统示意图2。

1系统设置本系统使用地区为**,其平均标准光照小时数为4。

46小时。

设系统每天正常工作8小时,每月连续阴雨天为5天,每两个连续阴雨天间隔20天。

2。

2设计流程本系统设计过程主要包括:灯杆的选型,灯具的选型,太阳能组件的配置,蓄电池、控制器的配置,系统保护措施设定。

3。

0灯杆的选型灯杆是整个路灯的支撑部分,对其硬度,高度,抗风能力,防腐等有较高的要求;现在常用的材料为Q235,通过一系列工艺加工而成,表面喷镀80μm的防腐层。

本系统安装路况为主干道,路宽30米,采用双侧对称排布。

根据路灯施工设计规范(见表1),本系统采用截光型灯具,安装高度为10米(按照标准本应安装高度为15M,但是考虑高度越高,需要灯具的功率越大,灯杆设计越复杂,综合考虑后选择灯杆为12米,灯具安装高度为10米),间距为30米。

灯杆上下口直径为Ф70/Ф250,材料厚度为3。

75mm,圆锥度为11‰,地基尺寸500*500,法兰盘尺寸及孔间距400*400*18-300,基础架尺寸为300*300-Ф18。

表1灯具的配光类型、布置方式与灯具的安装高度、间距的关系注:Weff为路面有效宽度(m)4。

0路灯功率的选择根据路灯施工设计规范中对机动车交通道路照明标准(见表2)的要求,本系统属于级别I,路面平均照度取20勒克斯(lx)。

太阳能-市电互补LED路灯控制系统的设计

太阳能-市电互补LED路灯控制系统的设计

第6期机电技术115太阳能-市电互补LED 路灯控制系统的设计殷 明(福建农林大学机电工程学院,福建 福州 350002)摘 要:介绍了太阳能-市电互补LED 路灯控制系统的设计,该控制系统把太阳能电池板电压分成高、中、低三个等级。

在高等级时太阳能板输出直接给蓄电池充电,中等级时太阳能板输出经BOOST 升压电路给蓄电池充电,低等级时不给蓄电池充电。

同时根据路灯节能运行的要求来轮流切换相应LED 支路实现LED 路灯的最佳运行。

关键词:太阳能;市电;LED 灯;控制系统中图分类号:U491.5+3 文献标识码:A 文章编号:1672-4801(2012)06-115-05太阳能作为新兴能源,其应用技术已经越来越趋于成熟,利用太阳能作为市政LED 路灯的供电电源来替代市电可以实现零耗市电的效果。

但是太阳能的日发电量易受天气因素影响,因此利用太阳能作为单一的供电电源难以满足LED 路灯正常工作需要。

另外现有的LED 路灯其定时开断LED 分支电路往往会造成各分支路LED 路灯工作时间的差异,影响LED 路灯的寿命。

本文针对以上问题对太阳能-市电互补LED 路灯控制系统进行设计。

1 控制系统的构成与设计1.1 控制系统的构成本文设计的太阳能-市电互补LED 路灯控制系统原理框图如图1所示。

该控制系统包括太阳能板电压检测判据电路、蓄电池电压检测电路、市电充电控制电路、恒压电路、时钟基准电路。

具体工作原理在电路分析中结合图10电气原理图予以叙述。

图1 系统原理图1.2 控制系统主回路设定大太阳能板输出电压介于48~72 V 为高等级,介于40~48 V 为中等级,低于40 V 为低等级。

选取一块小太阳能电池板,其在高、中、低等级下输出电压为8~12 V 、6.7~8 V 和低于6.7 V 。

控制系统主回路原理图如图2所示,电感L1、全控器件Q1和电感L2、全控器件Q2构成BOOST 升压电路。

全控器件Q1的开断由NE555芯片控制,该控制属于开环控制,当太阳能板输出电压等级为高时,太阳能板输出电压直接对蓄电池组进行充电。

太阳能LED照明系统的设计(最终方案)

太阳能LED照明系统的设计(最终方案)

I目录中文摘要ABSTRACT第一章引言1.1选题的背景和意义 (1)1.2国内外光伏发电发展现状......................1.2.1世界光伏产业的新进展及应用特点..............1.2.2我国光伏产业发展现状........................1.3光伏电源具有以下优势......................1.4新一代照明光源-白光LED......................1.5论文的研究目的和意义......................第二章太阳能LED照明系统的总体设计...................2.1太阳能LED照明系统的基本结构...................2.2控制器的整体结构第三章太阳能电池板3.1太阳能的工作原理和特性3.1.1太阳能电池的基本原理3.1.2太阳能电池的特性曲线3.2太阳能电池的最大功率跟踪3.2.1最大功率点跟踪原理3.3本系统采用的MPPT控制方式3.3.1功率比较法3.3.1.1功率比较法原理3.3.1.2功率比较法的算法设计3.4本章小结第四章主体电路的设计4.1整体电路设计4.1.1电源电路设计4.1.2 LED驱动电路4.2单片机的算法实现4.3 DC/DC变换器式 (25)4.3本系统采用的MPPT控制方式 (29)4.3.1功率比较法 (29)4.3.2最大功率的模糊控制 (32)4.4本章小结 (33)第五章太阳能LED照明系统光源优化的研究 (34)5.1超高亮白光LED的原理和特性 (34)5.1.1发光原理 (34)5.1.2工作特性 (34)5.2 LED照明系统光源亮度的提高方案 (35)5.2.1光度量参数及其测量方法 (35)5.2.2主要技术改进 (36)5.2.3 LED的布板 (37)5.3 LED照明光源散热问题的研究 (37)5.3.1半导体制冷的工作原理 (38)5.3.2半导体制冷的散热效果 (39)5.3.3半导体制冷的设计 (40)5.4本章小结 (40)六章结束语 (41)6.1本文所做的工作及得到的结论........................................................41有待于进一步研究的问题. (41)考文献 (43)谢 (46)录 (47)学期间发表的学术论文和参加的科研情况 (52)第一章引言1.1选题的背景和意义在世界能源短缺,环境污染日益严重的今天,充分开发并利用太阳能是世界各国政府可持续发展的能源战略决策。

太阳能LED路灯控制系统设计

太阳能LED路灯控制系统设计

太阳能LED路灯控制系统设计一、设计目标随着人们对环境保护意识的增强和能源消耗的压力,太阳能照明系统作为一种新型照明方式逐渐被广泛应用。

本设计旨在设计一套太阳能LED路灯控制系统,使其能够实现按需调节光照亮度、延长路灯使用寿命、提高能源利用效率和减少能源浪费。

二、系统组成该太阳能LED路灯控制系统主要由三部分组成:太阳能光电转换装置、储能装置和LED路灯控制装置。

1.太阳能光电转换装置:通过太阳能电池板将太阳能转化为电能,并将其充电送到储能装置。

太阳能电池板应根据实际情况选择合适的功率,以满足夜间照明需求。

2.储能装置:由电池组成,用于存储白天由太阳能电池板转化的电能,以供夜晚照明使用。

储能装置应具有较大的容量和高效的充放电特性,以确保路灯能够持续工作数天。

3.LED路灯控制装置:主要由控制器、传感器和LED路灯组成。

控制器采用微处理器控制,能够根据不同的环境条件和光照需求调节路灯的亮度,实现节能调光。

传感器可以负责检测环境亮度和电池电量,以便对路灯的亮度进行调节,并进行充电和放电管理。

LED路灯采用高效节能的LED光源,能够提供优质的照明效果。

三、系统工作原理当太阳能电池板接收到太阳能并转化为电能时,控制器通过传感器来调节LED路灯的亮度。

在光线较暗的时候,控制器会自动提高LED路灯的亮度,以确保良好的照明效果。

当光线足够亮时,控制器会自动降低LED路灯的亮度,以实现节能减排的目的。

储能装置起到了存储电能的作用,当夜晚来临时,路灯可以从储能装置中获取电能来提供照明。

当电池电量较低时,控制器会自动调整LED路灯的亮度,以延长电池的寿命。

同时,控制器也会监测电池电量,当电量过低时,会自动调节LED路灯的亮度或者关停路灯,以充电恢复电量。

四、系统特点1.节能环保:太阳能光电转换装置将太阳能转化为电能,具有非常高的能源利用效率,是一种非常环保的照明方式。

而LED路灯作为光源,比传统的荧光灯和白炽灯更加节能。

太阳能路灯照明系统设计与实现

太阳能路灯照明系统设计与实现

太阳能路灯照明系统设计与实现太阳能路灯照明系统是利用太阳能光伏发电技术,将太阳能转化为电能,并储存起来,然后利用储存的电能来为路灯提供照明。

具体原理如下:1. 光伏发电原理太阳能光伏板利用光电效应,将太阳光直接转化为电能。

当太阳光照射到光伏板上时,光能激发光伏板内的电子,形成电流,从而产生电能。

2. 电池储能光伏板产生的电能通过太阳能控制器存储到电池中。

电池起到储存电能的作用,能够在没有太阳能照射时继续为路灯照明提供电能。

3. 路灯照明太阳能控制器监测环境光线,当环境光线足够暗时,控制器自动开启路灯,利用储存的电能为路灯提供照明。

二、太阳能路灯照明系统的设计步骤1. 确定光伏板安装位置首先需要确定太阳能光伏板的安装位置,应选取没有大面积遮挡物、阳光充足的地方进行安装。

2. 选用合适的太阳能光伏板和蓄电池根据实际需求和环境条件,选择适合的太阳能光伏板和蓄电池,确保能够有效地转化太阳能并储存电能。

3. 配置太阳能控制器和LED路灯选用高效的太阳能控制器和LED路灯,太阳能控制器能够根据光线的变化来控制路灯的开关,LED路灯具有高亮度、低功耗的特点。

4. 搭建太阳能路灯照明系统根据设计要求,进行光伏板、蓄电池、太阳能控制器和LED路灯的搭建和连接,形成完整的太阳能路灯照明系统。

5. 进行系统调试和检测对搭建好的太阳能路灯照明系统进行调试和检测,确保系统的各项功能正常运行。

以某城市市政道路照明改造工程为例,采用了太阳能路灯照明系统进行照明改造。

该太阳能路灯照明系统由多个太阳能光伏板、蓄电池、太阳能控制器和LED路灯组成,覆盖了城市主干道和重要交叉路口的照明需求。

该太阳能路灯照明系统经过多次现场测试和调试,确保了系统的正常运行。

在使用过程中,该系统能够有效地利用太阳能进行充电,保证了路灯的正常照明。

与传统的路灯相比,太阳能路灯照明系统具有节能、环保、可靠性高等优点,受到了业主和市民的一致好评。

1. 节能环保太阳能作为清洁、可再生的能源,利用太阳能照明系统可以节约传统能源的消耗,减少环境污染。

太阳能LED照明系统及LED路灯设计分析

太阳能LED照明系统及LED路灯设计分析a)如果采用低光效LED颗粒,单颗电流@300mA,Vf=3V,100LPW,需要5颗LED灯珠并联;那么LED系统功率按照5瓦计算,每天设计工作4小时,充满电能连续工作3个夜晚,峰值日照小时数采用5小时,我们可以简单计算得出:系统电压3.7V,工作电流:5/3.7=1.35A;蓄电池容量1.35*4*(3+1)=21.6Ah,考虑到锂电池放电深度,取DC3.7V,25Ah;太阳能电池板功率计算:1.35*4*1.2*6/5=7.8瓦;取8瓦,DC6V,(考虑系统损耗,太阳能电池板容量预留20%)b)如果采用高光效LED颗粒,单颗电流@300mA,Vf=3V,140LPW,需要4颗LED灯珠并联,那么LED功率为4瓦,每天设计工作4小时,充满电能连续工作3个夜晚,峰值日照小时数采用5小时,我们同上可以简单计算得出:蓄电池容量DC3.7V,20Ah;太阳能电池板功率6.5瓦,DC6V;那么产生什么样的成本影响呢?这就是为什么当时这位老法师在笔者面前“吹嘘”其采用日本某品牌高光效LED颗粒,尽管LED成本增加,但系统综合成本大为降低。

二、太阳能LED路灯设计同上分析,我们再来看常规太阳能LED路灯,LED路灯系统光效对太阳能系统的影响。

太阳能路灯核心部件:笔者的团队正在给上海某工厂厂区设计道路照明,LED路灯功率30瓦,系统光效100LPW,系统电压DC12V,灯杆高6米,间距10米,路双侧安装,路灯每晚满功率工作10小时,连续5个阴雨天的蓄电池自动续航照明,按照峰值日照小时数4小时,大致配置:LED灯头30瓦;系统电压12V,工作电流:30/12=2.5A;蓄电池容量2.5*10*(5+1)/0.8=187.5Ah,考虑铅酸蓄电池放电深度,取DC12V,200Ah;多晶太阳能电池板功率计算:2.5*10*1.2*18/4=135瓦;太阳能电池板取多晶135瓦,DC18V输出;那么如果我们采用系统光效只有85LPW的灯头,在同样的配光情况下,我们可以认为,LED系统功率要至少35瓦。

新太阳能路灯方案范本(三篇)

新太阳能路灯方案范本____年新太阳能路灯方案引言一、功能设计1.1 照明功能:太阳能路灯主要用于提供路面照明,保证行车和行人的安全。

1.2 节能功能:太阳能路灯利用太阳能发电,不依赖于传统的电力供应,实现了零能耗运行。

1.3 环保功能:太阳能路灯使用清洁能源,减少了对环境的污染,并且不会产生二氧化碳等温室气体。

二、技术参数2.1 太阳能板:采用高效太阳能电池板,能够最大程度地吸收太阳能,并将其转化为电能。

2.2 电池:选择高容量、长寿命的锂离子电池,能够提供足够的储能,并且支持智能管理系统。

2.3 LED灯源:采用高亮度LED灯,能够提供明亮而稳定的照明效果,并且具有较长的使用寿命。

2.4 控制器:配备先进的光控和时间控制功能,根据环境光线和时间自动调节照明亮度,实现最佳能源利用。

2.5 智能管理系统:利用物联网技术,全面监控和管理太阳能路灯的运行状态,包括电池电量、照明亮度等。

三、结构设计3.1 支撑结构:太阳能路灯的支撑结构采用高强度材料制造,能够承受风雨等恶劣环境,并且保持稳定。

3.2 光控器:光控器位于太阳能板上方的支架上,能够及时感应到环境光照的变化,并根据光照强度调节照明亮度。

3.3 灯杆:灯杆采用高强度材料制造,具有防腐、防锈的功能,并且设计合理,易于维护和安装。

3.4 电池箱:电池箱位于灯杆内部,能够保护电池和控制器,同时具有防水、防尘的功能。

四、系统运行4.1 太阳能充电:太阳能路灯通过太阳能板对阳光进行吸收转化为电能,充电给电池。

4.2 储能供电:电池将吸收的电能进行储存,提供给LED灯进行照明。

同时,电池箱中的控制器根据需要控制照明时间和亮度。

4.3 智能管理:通过智能管理系统,对太阳能路灯的各项参数进行监控和管理,实现远程调控和故障报警等功能。

4.4 互联网应用:太阳能路灯可以通过互联网与其他设备进行无线通信,实现远程控制和监控,提高管理的智能化水平。

五、新特点与优势5.1 高效能源利用:太阳能电池板采用高效太阳能电池,能够最大限度地转化太阳能为电能,提高能源利用效率。

《2024年智能太阳能路灯系统设计》范文

《智能太阳能路灯系统设计》篇一一、引言随着科技的不断进步和环保意识的日益增强,太阳能作为一种清洁、可再生的能源,其应用越来越广泛。

智能太阳能路灯系统是太阳能技术在实际应用中的一种重要体现,它不仅解决了传统路灯耗能高、管理不便的问题,还通过智能化管理提高了路灯的实用性和节能性。

本文将详细介绍智能太阳能路灯系统的设计思路、原理及优势。

二、系统设计目标智能太阳能路灯系统的设计目标主要包括以下几点:1. 节能环保:利用太阳能作为主要能源,减少对传统电能的依赖,实现绿色环保。

2. 智能化管理:通过安装传感器和控制单元,实现路灯的自动开关、亮度调节等功能。

3. 便捷维护:系统应具备自检功能,方便对故障进行诊断和维护。

4. 适应性强:系统应能根据不同的环境条件和用户需求进行灵活调整。

三、系统设计原理智能太阳能路灯系统主要由太阳能电池板、充电控制器、蓄电池、LED路灯灯头和智能控制单元等部分组成。

其工作原理如下:1. 太阳能电池板:负责将太阳能转化为电能,为系统提供电力。

2. 充电控制器:控制电池板的充电过程,防止过充或过放,保护蓄电池的使用寿命。

3. 蓄电池:储存太阳能电池板产生的电能,为夜间路灯供电。

4. LED路灯灯头:采用高效节能的LED灯作为光源,根据智能控制单元的指令调节亮度。

5. 智能控制单元:负责接收传感器信号,根据预设的逻辑控制路灯的开关和亮度调节。

四、系统设计内容1. 硬件设计:包括太阳能电池板的选型与安装、充电控制器的设计、蓄电池的选型与配置、LED路灯灯头的选择以及智能控制单元的电路设计等。

2. 软件设计:包括智能控制单元的程序编写,实现路灯的自动开关、亮度调节、故障自检等功能。

3. 系统集成:将硬件和软件进行集成,确保各部分之间的协调工作。

五、系统优势1. 节能环保:智能太阳能路灯系统利用太阳能作为能源,减少了传统电能的消耗,实现了绿色环保。

2. 智能化管理:通过安装传感器和控制单元,实现了路灯的自动开关、亮度调节等功能,提高了管理的便捷性和实用性。

厂区太阳能LED路灯照明设计方案

厂区太阳能LED路灯照明设计方案摘要:本文主要阐述分析了太阳能LED路灯在厂区道路照明中的应用设计问题。

关键词:太阳能LED路灯;厂区道路照明;参数一、引言厂区道路照明是企业基础设施建设的一个重要的组成部分,却又是一个容易被忽视的问题。

采用太阳能LED路灯是一个比较明智的选择。

太阳能路灯是一种新型的环保节能型路灯。

该灯采用无污染长寿命的太阳能电池吸收太阳能发电,用全密封免维护蓄电池储能,通过微电脑控制光电开关供给电光源工作,电光源采用目前国际先进的高亮度LED固体光源,节能、长寿命。

白天自动关闭,夜晚和阴雨多雾时自动亮灯,即使连续阴雨20天,也能够正常工作。

该灯最大的特点是:①、不需要外部供电,不用开挖路面、建电缆沟道和铺设电缆。

②、每盏灯均为独立电源,直流低压。

③、没有玻璃壳,钨丝等易损部件,安全可靠;④、高效节能,每瓦光通量达100Lm,使用寿命达5万小时以上(>12年)⑤、可随意布置和增减,无需维护,是厂区道路理想的照明选择.二、厂区道路照明设计的原则目前,国家尚无专门的厂区道路照明设计标准。

然而,厂区道路的照明设计又有其特殊性。

厂区道路照明的工程设计,可遵循一个参照、一个为主和适当兼顾的原则.一个参照,就是参照、执行中华人民共和国行业标准《城市道路照明设计标准》CJJ45-2006。

因为该标准反应了一般道路照明的基本要求,也因为企业往往和城市有着密切的联系.从历史来看,我国的不少城市是从一个或者数个大型工业企业为基础而发展起来的;从现实来看,企业也是所在城市发展的一个重要组成部分.为何只求参考,厂区道路多数是机动车和行人混用,且车辆速度、流量和行人数量都远远小于一般城市道路,若要求厂区道路完全执行《城市道路照明设计标准》,从经济方面考虑,比较不现实,从功能方面考虑也没有必要.一个为主,就是坚持以功能性为主的原则。

厂区道路照明的基本目的,就是要在夜间给汽车通行、运输、行人、厂区治安提供一定光亮的视看环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

照明IElectricLighting太阳能LED路灯照明控制系统的设计给出了太阳能LED路灯照明控制系统的硬件实现与控制策略。

控制器能够正确地转换充电、供电和等待三种状态。

充电电路依据蓄电池的不同状态能准确切换到最大功率充电、恒压充电和浮充补偿三种方式。

对LED照明负载采用了恒流控制以确保其发光效率。

目前该系统已经稳定运行半年以上。

观察和测试结果符合设计要求。

杨晓光1。

2寇臣锐2汪友华2/1.佛山市国星光电股份有限公司2.河北工业大学电磁场与电器可靠性省部共建重点实验室杨晓光/副教授太阳能作为一种新兴的绿色能源,正迅速地得到推广应用。

太阳能照明系统包括:太阳能电池、蓄电池、照明灯、充电电路、供电电路和控制系统。

在白天,太阳能电池将所接收的光能转换为电能,经充电电路对蓄电池充电;蓄电池将电能转换为化学能储存起来。

天黑后,太阳能电池无输出,充电电路停止工作,蓄电池再将化学能转换回电能输出到照明灯。

全天控制系统的电源一直由蓄电池供给。

系统设计所设计的太阳能LED照明系统如图1所示。

太阳能电池板在标准测试条件的参数为:短路电流,。

=5.35A,开路关键影Keywords电压U。

=46.0V,最大功率点电流L=太阳能‘4.78A,最大功率点电压U。

:36.5v,蓄皂池。

最大功率P。

:165W。

蓄电池为12V、址u’200A・h的阀控式免维护铅酸蓄电池1照明‘块。

与传统光源相比,LED光源具有发光效率高、寿命长、功耗小和安全可靠的特点,因此本系统采用了大功率LED作为光源,照明灯功率为32W。

控制系统是太阳能LED照明系统的核心,是提28I嘭艺量‘钉・建筑电气・2009年第28卷第3期高太阳能蓄电池系统充放电效率、运行稳定性和使用寿命的关键。

圈1太阳能LED照明系统本文设计的太阳能照明控制系统主要完成以下功能:(1)实现太阳能最大功率跟踪。

对于一定的日照强度和环境温度,太阳能电池的输出存在一个最大功率点以及与最大功率点相对应的电压和电流。

当日照强度和环境温度变化时,太阳能电池阵列的输出特性随之变化,与之相对应的最大功率点也随之改变。

为了获得太阳能电池的最大输出功率,必须通过调整充电电路的占空比对负载进行匹配来实现最大功率跟踪‘141。

(2)依据蓄电池的特性合理充电。

对于蓄电池来说,要求采用合理的充电方式以延长蓄电池的使用寿命和提高充电效率"’61。

在对蓄电池的充电过程中不能超过蓄电池的电压和电流的上限,否则就会影响蓄电池的寿命。

蓄电池在充满电后,保持电量的最好方法就是加一个浮充电压。

浮充电压值既要足够大,能补偿蓄电池的放电电流;又不能太大,以免影响蓄电池的寿命。

因此,为了高效合理地对蓄电池充电,需要准确判断蓄电池的状态,对充电电压和电流进行精确地控制。

(3)对LED灯进行恒流控制。

本文选择了额定功率为1W,额定电流为350mA的白光LED作为光源。

由LED的伏安特性可知,LED的驱动电流对电压很万方数据太阳能LiED路灯照明控制系统的设计敏感,微小的电压扰动将导致较大的电流变化,从而造成LED发光质量下降…。

为了确保LED的发光效率,采用了恒流控制方法。

控制系统的硬件实现控制系统以单片机AT89S52为控制核心,如图2所示。

系统对太阳能电池电压U。

..,、电流,。

和蓄电池的电压u。

、电流,。

以及LED灯驱动电流ILED进行检测,并应用线性光耦合器将单片机控制系统与主电路隔离。

电压的检测采用电阻分压方法,电流的检测应用霍尔电流传感器。

霍尔电流传感器具有响应速度快与精度高的特点,可检测从直流到100kHz的各种波形信号,并能实现与主电路的隔离。

对于蓄电池电流的检测要复杂一些,其原因是蓄电池的充放电电流方向相反,从而霍尔电流传感器相应地输出正、负电压信号,但本文采用的A/D只允许输入正信号。

为了解决这一问题,采用了绝对值处理电路。

数字量;耦量吕输出、转隔蹇驱动电壁_——高罢压避悬浮驱c■。

__一。

—-换离量—照数据电电传输壁路儿—小单片机——_————\广—]/AT89S52呈光耦隔离电数字量隆——输出h光__——1,olⅣ耦隔%m。

离检jt越eⅣ测电,I肋路___——I温度检测电路}_一围2控制系统硬件组成原理图温度检测采用了一线制温度传感器DSl8820。

该传感器提供9位(二进制)温度读数指示,其供电电源由数据线本身提供而不需要外部电源。

蓄电池的性能受其电解液温度的影响,然而蓄电池是密封的,无法接触到电解液,考虑到蓄电池电极具有较好的导热性,因而将传感器紧贴在电极上以测量的电极温度作为蓄电池的温度。

太阳能LED照明系统的充、放电电路分别由Buck和Boost开关电路实现,电路的开关元件采用了MOSFET。

开关电路的运行需要PWM驱动。

由于AT89S52单片机没有专用的片内PWM单元,因此系统采用了片外的SG3524来生成PWM波形。

其实现途径为:单片机通过A/D转换器输出指定www.eage.corn.cnElectricLightingI照明的电压量给SG3524来控制PWM的占空比。

该方案虽然增加了系统的复杂性,但是却减轻了单片机的工作量,更重要的是SC3524最高可以输出高达500kHz的PWM信号,从而提高开关电源的工作频率,这是现有的单片机内置PWM单元不能提供的。

本文Buck电路最大导通输入电压是36.5V,如果要保证管子的导通状态,栅源电压U。

≥U。

m,,栅极的高电压应是36.5V加上栅源之间的阈值电压。

为了实现这一功能,驱动电路采用了高压浮动MOS栅极驱动芯片IR2110。

由于浮置电源采用自举电路,IR2110的高端工作电压可达500V。

Boost变换电路的驱动相对简单些,所需的栅极电压是相对于功率信号地的电压,由推挽电路实现¨1。

控制系统和主电路在同一PCB板上,而主电路最大工作电流为10A。

这不仅对电感的设计和MOSFET尖峰的抑制提出较高要求,同时必然考虑单片机的抗干扰问题。

本文采用了两种措施:其一是使用看门狗技术来防止单片机的死机;其二是在电路设计和PCB布局上,将强弱电系统的地相隔离。

实测表明,这两条措施很好地提高了单片机的抗干扰能力。

控制系统的软件实现1.系统整体控制太阳能照明系统包括三种工作状态:太阳能对蓄电池的充电、蓄电池对LED的放电和系统等待状态。

系统等待状态是指:太阳能既不满足对蓄电池的充电条件,也没有到照明设定时间,此时蓄电池只对控制系统供电。

系统总体控制如图3所示。

系统上电后首先进行初始化,包括各存储单元初始化、外部时钟初始化和温度传感器初始化等。

系统首先检测当前是否为照明设定时间,如果是照明时间,程序转到LED灯照明控制子程序,否则检测太阳能电池的端口电压是否大于启动电压以,若满足充电条件,则系统对蓄电池充电,否则继续对时钟和太阳能电池输出电压进行检测。

2.蓄电池充电控制对于一个蓄电池,选择适当的充电方法,不2009年2月上・建筑电气・嘭艺县胡l29万方数据glwJJElectricLighting图3系统总体控制丽程图仅可以提高充电效率,而且能够延长蓄电池的使用寿命。

本文根据太阳能电池的输出特性和蓄电池的输入特性,采用最大功率充电(MPPT)、恒压充电和浮充充电三种充电控制方式。

其具体过程是:当检测到蓄电池的端电压小于蓄电池的最大电压上限以时,实施MPPT充电;当检测U=U。

时,如果此时充电电流大于转换门限值,。

,则对蓄电池进行恒压充电(CV);若,<,。

,则转换为浮充充电(VF)。

总之,采用什么样的充电方式是由蓄电池的状态决定的,充电控制流程如图4所示。

图4蓄电池充电控制流程圈3.温度补偿如前所述,蓄电池的特性受温度影响,根据所选定的蓄电池,当蓄电池的温度在T。

=15oC和T2=35oC之间时无需温度补偿,但当温度不在这一区间时需要根据式(1)确定浮充电压”’61U,=U阳+(r一死)C(1)式中,Um和瓦分别为基准点的电压和温度值;C为电压温度系数。

温度补偿流程如图5所示,首先检测当前的蓄电池正电极的温度r,根据温度得出浮充电压后进行恒压控制。

30I嘭:量胡・建筑电气・2009年第28卷第3期圈5温厦补偿流程图4.LF:D照明控制照明控制流程如图6所示。

本文选择32只额定功率为1w、额定电流为350mA的白光LED作为光源。

为了满足节能的需要,分为两路、每路16w,单独由Boost电路驱动,每一路又分为两组,8个串联为一组,将两组并联。

根据用户要求,在晚上[t。

,t:]时间段内,两路LED灯同时照明;在[t:,t,]时间段内只有一路LED灯照明。

在LED工作的时候,需要实时检测蓄电池的电压,以免蓄电池过放电。

进入放电子程序后首先点亮两路LED灯,然后判断此时的蓄电池端口电压是否大于最小阈值电压U。

=11.8V,如果小于则关断LED,和LED:。

圈6LED灯照明控制万方数据太阳能LED路灯照明控制系统的设计结束语充电电路波形如图7所示。

波形1为充电电路NMOS管的源极波形,波形2为对应的蓄电池充电波形,横坐标是10“s/格,波形1的纵坐标是10V/格,波形2的纵坐标是5V/格,此时充电电路工作于MPPT状态,充电电流为7A。

由于缓冲和吸收电路的作用,开通尖峰和关断尖峰分别降低到5V和10V左右,实验表明该尖峰没有影响控制系统的正常工作。

为了确保电压和电流检测的正确性,在采样程序内加了数字滤波算法,实验结果表明该算法有效地消除了尖峰。

圈7充电电路波形围Boost电路波形如图8所示。

波形I为LED照明电路的漏极波形,一波形2为栅极驱动波形,横坐标是10仙s/格,纵坐标是5V/格,栅极跟漏极波形相位相反。

栅极的驱动波形幅值为10V,注意到该波形开始呈阶梯状,此阶梯处的电压值是NMOS的开通阈值电压,为3V左右。

漏极波形电压幅值为26V左右,此值为LED灯的驱动电压,其开通尖峰小于5V以内,不会影响LED的工作性能。

图8Boost电路渡形图所设计的照明系统已经稳定运行了半年,两路照明LED灯能按照设定的时间点亮或熄灭。

测试表明,电路启动后,充电初始方式总为MPPT模式:之后充电系统能够依据蓄电池的不同状态准确切换到不同的充电方式并稳定运行。

表l给出了实测结果,可以看出,本文所给出的控制算法www.eage.com.off是有效的。

ElectricLightingI照明表1蓄电池充电过程结束语通过对太阳能LED照明路灯系统半年多的测试观察,其结果基本符合设计要求,所开发的太阳能路灯控制系统能够准确地对整个系统进行控制,正确地工作于充电、供电和等待三种状态。

充电器能够依据蓄电池的不同状态准确切换到不同的充电方式。

参考文献[1]王庆章,赵庚申,许盛之,等.光伏发电系统最大功率点跟踪控制方法研究[J].南开大学学报(自然科学版),2005,38(6):74-79.[2]吴理博,赵争鸣,刘建政.用于太阳能照明系统的智能控制器[J】.清华大学学报(自然科学版),2003,43(9):1195-1198.[3]崔岩,蔡炳煌,李大勇,等.太阳能光伏系统MPPT控制算法的对比研究[J].太阳能学报,2006,27(6):535.539.[4]赵庚申,王庆章.最大功率跟踪控制在光伏系统中的应用[J].光电子・激光,2003,14(8):813-816.[5]TexasInstrumentsCorp.Improvedchargingmethodsforlead・acidbatteriesusingtheUC3906[G].1999.[6]王鹤,杨宏,王雪冬,等.延长阀控密封铅酸蓄电池寿命研究一过充电保护与温度补偿特性[J].电源技术,2001,25(3):206-207.[7]王晶,王进,陈静波,等.白光LED色度特性研究[J].光电子・激光,2006,17(7):899001.[8]沙占友,李学芝,邱凯,等.新型特种集成电源及应用[M].北京:人民邮电出版社,1999.(收稿日期:2008—05—30)EA2009年2,ql-・建筑电气・嘭皂量调l31万方数据。

相关文档
最新文档