和差问题.题库教师版
6.4 线段的和差 浙教版数学七年级上册同步练习(解析版)

第6章 图形的初步知识6.4 线段的和差基础过关全练知识点1 线段的和、差、倍、分1.如图,点A、B、C在同一直线上,下列关系式与图形不符合的是( )A.AB+BC=ACB.AC-AB=BCC.AC-BC=ABD.AB=AC+BC2.如图,点C,B在线段AD上,且AB=CD,则AC与BD的大小关系是( )A.AC>BDB.AC=BDC.AC<BDD.不能确定知识点2 画线段的和差3.如图,已知线段a、b,画一条线段c,使它的长度等于已知线段的长度的和.4.已知线段a、b(如图),画出线段AB,使AB=3a-b,并写出画法.知识点3 线段的中点5.点O为AB的中点,若OA=5 cm,则AB的长为( )A.2.5 cmB.5 cmC.10 cmD.20 cm6.如图,CB=4 cm,DB=7 cm,点D为AC的中点,则AB的长为( )A.7 cmB.8 cmC.9 cmD.10 cm7.如图,已知线段AB=10 cm,点N在AB上,NB=2 cm,M是AB的中点,求线段MN的长.能力提升全练8.如图,线段AB=DE,点C为线段AE的中点,下列式子中不正确的是( )A.BC=CDB.CD=AC-ABC.CD=AD-CED.CD=DE9.(2022浙江新昌期末)已知,点C是线段AB的中点,点D是线段BC 的中点,且AB=12,则线段AD的长为( )A.3B.6C.9D.1210.如图,点C、B是线段AD上的两点,若AB=CD,BC=2AC,则AC与CD 的关系是 .11.如图,点M、N都在线段AB上,且M分AB为2∶3的两部分,N分AB为3∶4的两部分,若MN=2 cm,求AB的长.12.(2020浙江杭州期末)如图,某建筑物的立柱AB=6 m,底座BD与中段CD的比为2∶3,中段CD是上沿AC的3倍.求AC,CD,BD的长.素养探究全练13.[数学运算]如图,已知点O在线段AB上,点C、D分别是AO、BO 的中点.(1)AO= CO,BO= DO;(2)若CO=3 cm,DO=2 cm,求线段AB的长度;(3)若线段AB=10 cm,小明很轻松地求得CD=5 cm.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5 cm”是不是仍然成立呢?请帮小明画出图形分析,并说明理由.14.[数学建模]如图,O为原点,A是数轴上表示-30的点,B是数轴上表示10的点,C是数轴上表示18的点,点A、B、C在数轴上同时向数轴的正方向移动,点A移动的速度是6个单位长度/秒,点B和点C移动的速度都是3个单位长度/秒.设三个点移动的时间为t秒.(1)当t为何值时,AC=6?(2)当t≠5时,设线段OA的中点为P,线段OB的中点为M,线段OC的中点为N,求2PM-PN=2时,t的值.答案全解全析基础过关全练1.D AB=AC-BC.2.B ∵AB=CD,∴AB-BC=CD-BC,∴AC=BD.3.解析 如图,线段AC=c.4.解析 ①画射线AM,并在射线AM上顺次截取AC=CD=DE=a;②在线段EA上截取EB=b,则线段AB就是要画的线段(如图).5.C ∵点O为AB的中点,OA=5 cm,∴AB=2OA=10 cm.6.D ∵CB=4 cm,DB=7 cm,∴DC=BD-BC=3 cm.∵点D为AC的中点,∴AD=DC=3 cm,∴AB=AD+DB=10 cm.7.解析 ∵M是AB的中点,AB=10 cm,AB=5 cm.∴AM=BM=12∵NB=2 cm,MN+BN=BM,∴MN=BM-BN=5-2=3(cm).能力提升全练8.D ∵点C为线段AE的中点,∴AC=CE,∵AB=DE,∴AC-AB=CE-DE, ∴BC=CD,∴A中的式子正确;∵CD=BC,BC=AC-AB,∴CD=AC-AB,∴B 中的式子正确;∵CD=AD-AC, AC=CE,∴CD=AD-CE,∴C 中的式子正确;由已知不能得出CD=DE,∴D 中的式子错误.故选D.9.C 根据题意画图如下:∵点C 是线段AB 的中点,AB=12,∴AC=CB=12AB=6.∵点D 是线段BC 的中点,∴CD=12BC=3.∴AD=AC+CD=6+3=9.10.CD=3AC解析 ∵AB=CD,∴AC+BC=BC+BD,即AC=BD.又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.11.解析 设AB=x cm,∴AM=25x cm,AN=37x cm,∴MN=AN-AM,∴37x-25x=2,解得x=70,∴AB=70 cm.12.解析 ∵底座BD 与中段CD 的比为2∶3,中段CD 是上沿AC 的3倍,∴BD ∶CD ∶AC=2∶3∶1,∵AB=6 m,∴AC=6×12+3+1=1(m),CD=6×32+3+1=3(m),BD=6×22+3+1=2(m).素养探究全练13.解析 (1)∵点C 、D 分别是AO 、BO 的中点,∴AO=2CO,BO=2DO.故答案为2;2.(2)∵点C 、D 分别是AO 、BO 的中点,CO=3 cm,DO=2 cm,∴AO=2CO=6 cm,BO=2DO=4 cm,∴AB=AO+BO=6+4=10(cm).(3)仍然成立.理由如下:如图:∵点C 、D 分别是AO 、BO 的中点,∴CO=12AO,DO=12BO,∴CD=CO-DO=12AO-12BO=12(AO-BO)=12AB=12×10=5(cm).14.解析 (1)A 、B 、C 三点在数轴上同时向正方向移动.当点A 在点C 的左侧时,因为线段AC=6,所以6+6t=30+18+3t,解得t=14;当点A 在点C 的右侧时,因为AC=6,所以6t-6=30+18+3t,解得t=18.综上,当t=14或18时,AC=6.(2)当A 、B 、C 三个点在数轴上同时向数轴的正方向移动t 秒时,A 、B 、C 三个点在数轴上表示的数分别为6t-30、10+3t 、18+3t,所以OA=|6t-30|,OB=10+3t,OC=18+3t.因为P 、M 、N 分别是OA 、OB 、OC 的中点,所以OP=|6t -30|2,OM=10+3t 2,ON=18+3t 2,所以MN=ON-OM=4.当P 在点M 的左侧时,由2PM-PN=2,得PM=2+(PN-PM)=2+MN=6.①当t<5时,PM=OP+OM=|6t -30|2+10+3t 2=30-6t 2+10+3t 2=20-3t 2=6,解得t=283.因为283>5,所以当t<5时,不存在满足条件2PM-PN=2的t 值;②当t>5时,PM=OM-OP=10+3t 2-|6t -30|2=10+3t 2-6t -302=-3t +402=6,解得t=283.当P 在M 、N 之间时,2PM-PN=2(OP-OM)-(ON-OP)=3OP-2OM- ON=9t-45-10-3t-18+3t 2=9t 2-64=2,解得t=443.当P 在点N 的右侧时,由2PM-PN=2,得PM=2+(PN-PM)=2-(PM-PN)=2- MN=2-4=-2.因为线段PM 的长不能为负数,所以P 在点N 的右侧时,不存在满足条件2PM-PN=2的t 值.综上,当t=283或443时,2PM-PN=2.。
和倍差倍问题和差问题问题讲义及练习测试参考答案优质的

精心整理(本第一讲和倍问题和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。
例甲班和乙班共有图书本甲班的图书本数是乙班的倍,甲班和乙班各有图书多少 本?分析设乙班的图书本数为份,则甲班图书为乙班的倍,那么甲班和乙班图书本数的和相当于乙班图书本数的倍还可以理解为份的数量是本,求出份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数用下图表示它们的关系:解:乙班:-F ()(本) 甲班:X (本) 或(本)答:甲班有图书本,乙班有图书本。
这道应用题解答完了,怎样验算呢?可把求出的甲班本数和乙班本数相加,看和是不是本;再把甲班的本数除以乙班本数,看是不是等于倍如果与条件相符,表明这题作对了注意验算决不是把原式再算一遍。
验算:+(本)F (倍)。
例甲班有图书本,乙班有图书本,甲班给乙班多少本,甲班的图书是乙班图书的 倍?分析解这题的关键是找出哪个量是变量,哪个量是不变量从已知条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲、乙两班图书总和是不变的量最后要求甲班图书是乙班图书的倍,那么甲、乙两班图书总和相当于乙班现有图书的倍依据解和倍问题的方法,先求出乙班现有图书多少本,再与原有图书本数相比较,可以求出甲班给乙班多少本书(见上图)。
解:①甲、乙两班共有图书的本数是: +(本)② 甲班给乙班若干本图书后,甲、乙两班共有的倍数是: +二(倍)③ 乙班现有的图书本数是:F④甲班给乙班图书本数是:(本)综合算式:(+)4-()(本)(本)答:甲班给乙班本图书后,甲班图书是乙班图书的倍。
验算:()4()=(倍)()()=(本)。
例光明小学有学生人,其中男生比女生的倍少人,男、女生各有多少人?分析把女生人数看作一份,由于男生人数比女生人数的倍还少人,如果用男、女生人数总和人再加上人,就等于女生人数的倍(见下图)。
和 差 问 题(打印4份)

和差问题和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。
解答这类应用题通常用假设法,同时结合线段图进行分析。
解题时,我们可以假设小数增加到与大数同样多,先求大数再求小数;也可以假设大数减少到与小数同样多,先求小数再求大数。
我们可以用下面的数量关系式表示:(和+差)÷2=大数(和-差)÷2=小数1.学校合唱团共有72名成员,其中男合唱队员比女合唱队员少6名,合唱团中男、女队员各有多少名?2.甲乙两校共有学生2346人,如果甲校增加146人,乙校减少88人,两校的学生人数就相等,你知道两校实际各有多少人吗?3.两个工程队共有工人230人,后来由于工作需要,从第一队调走了30人,从第二队调走了10人,这时第一队比第二队还多10人,原来两队各有多少工人?4.在一个减法算式里,被减数、减数与差这三个数之和是388,减数比差大16。
减数是多少?已知大小两个数的和及它们的倍数关系,求大小两个数的问题叫和倍问题。
解这类应用题关键是要找准标准数(即1倍数),一般说来,题中说是“谁”的几倍,把谁就确定为标准数。
求出倍数和之后,再求出标准数的数量是多少。
根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
数量关系可表示为:两数和÷(倍数+1)=小数(1倍数)小数(1倍数)×倍数=大数(几倍数)或两数和—小数(1倍数)=大数(几倍数)解决和倍问题,为了理解题意,可以画出线段图,使数量关系一目了然。
1、三、四年级的同学们一共制作了318件航模,四年级同学制作的航模件数是三年级的2倍,三、四年级的同学各制作了多少件航模?2、哥哥和弟弟共有图书120本,哥哥的图书是弟弟的3倍,哥哥有图书多少本?3、小强和小明共有28本练习本,小强的练习本比小明的2倍少2本,小强和小明各有几本练习本?4、甲乙丙三个数的和是360,已知甲是乙的3倍,乙是丙的2倍,求甲乙丙三个数各是多少?5、两个数的和是682,其中一个加数的个位是0,若是把0去掉,则与加一个加数相同,这两个数各是多少?6、商店运来橘子、苹果、香蕉共53千克,橘子的重量是苹果的3倍少3千克,香蕉的重量是苹果的2倍多2千克,橘子重多少千克?7、一个除法算式,商是5,余数是1,被除数、除数、商和余数的和是109,除数是多少?差倍问题差倍问题就是已知两个数的差和它们的倍数关系,求这两个数。
冀教版初中数学七年级上册2.4 线段的和与差 同步课时练测试卷练习题

冀教版初中数学
相信自己,就能走向成功的第一步 教师不光要传授知识,还要告诉学生学会生活。数学思维可以让他们
更理性地看待人生
TB:小初高题库
__________.
能力提升 NENGLI TISHENG
7.已知两条线段的和是 28,且它们的长度之比是 4∶3,则较短的线段的长为( )
A.16 或 12 B.16
C.12
D.21
8.在直线 PQ 上找一点 C,使 PC=2CQ,则点 C 不能在( )
A.点 P,Q 之间
B.点 P 的左边
6.-7 或 5 点拨:点 B 可能在点 A 的左侧,也有可能在点 A 的右侧.如果点 B 在点 A 的左侧,则点 B 表示的数比点 A 表示的数小 6,此时点 B 表示的数为-7;如果点 B 在 点 A 的右侧,点 B 表示的数比点 A 表 示的数大 6,此时点 B 表示的数为 5.
7.C 点拨:设两条线段的长分别为 4x,3x,由题意可得:4x+3x=28,解得 x=4,则较短的线段的长 度为 3x=3×4=12.
2 能说明 C 是线段 AB 中点的有( )
A.1 个
B.2 个
C.3 个
D.4 个
2.如图,AB=CD,则 AC 与 BD 的大小关系是( )
A.AC>BD B.AC=BD
C.AC<BD D.无法确定
3.如图,C 是 AB 的中点,D 是 BC 的中点,AB=16cm,则 AD 的长是( )
(1)若他们分别乘出租车去上班,公司应支付车费多少元? (2)如果你是公司经理,你对他们有没有什么建议? TB:小初高题库
冀教版初中数学 TB:小初高题库
参考答案
冀教版初中数学
1.C 点拨:④式中 AC+CB=AB 只能说明 C 在 AB 上,无法说明 C 为线段 AB 的中点,①②③式符合 线段中点的定义.
专题16 和差问题(原卷)【网店:教师学科网资料】

2022-2023学年学校三班级思维拓展举一反三精编讲义专题16 和差问题专题简析:已知大小两个数的和及它们的差,求这两个数各是多少,这类问题我们称为和差问题。
把握了和差问题的特征和规律,我们解答起来就很便利了。
解答和差问题通常用假设法,同时结合线段图进行分析。
可以假设小数增加到与大数同样多,先求大数,再求小数;也可以假设大数削减到与小数同样多,先求小数,再求大数。
用数量关系表示:(和+差)÷2=大数(和-差)÷2=小数【典例分析01】期中考试王平和李杨语文成果的总和是188分,李杨比王平少4分。
两人各考了多少分?【思路引导】依据题意画出线段图。
我们可以用假设法来分析。
假设李杨的分数和王平一样多,则总分就增加4分,变为188+4=192分,这就表示王平的2倍,所以王平考了:192÷2=96分,李杨考了96-4=92分。
【典例分析02】某机床厂第一、二两个车间共有车床96部,假如第一车间拨给其次车间8部,那么两个车间车床数相等。
两个车间各有车床多少部?【思路引导】用线段图表示题意。
188分分分李杨王平学问精讲典例分析已知第一、二两个车间共有车床96部,又依据“假如第一车间拨给其次车间8部,两个车间车床数相等”,从线段图上我们可以看出第一车间原来比其次车间多8×2=16部车床。
所以,第一车间原有:(96+8×2)÷2=56部,其次车间原有56-8×2=40部。
【典例分析03】哥弟俩共有邮票70张,假如哥哥给弟弟4张邮票,这时哥哥还比弟弟多2张。
哥哥和弟弟原来各有邮票多少张?【思路引导】我们可以这样想,哥弟俩共有邮票70张,依据“假如哥哥给弟弟4张,还比弟弟多2张”,说明原来哥哥比弟弟多4×2+2=10张邮票。
所以,弟弟有邮票:(70-10)÷2=30张,哥哥有邮票30+10=40张。
【典例分析04】把一条100米长的绳子剪成三段,要求其次段比第一段多16米,第三段比第一段少18米。
2024-2025年北师大版数学必修第二册4.2.2两角和与差的正弦、正切公式及其应用(带答案)

2.2 两角和与差的正弦、正切公式及其应用必备知识基础练知识点一 两角和与差的正弦公式1.sin 18°cos 63°-sin 72°sin 117°=( ) A .-22 B .22 C .12 D .-122.若cos ⎝⎛⎭⎪⎫π2-α =35 (0<α<π2 ),则sin ⎝ ⎛⎭⎪⎫α+π6 =( )A .33-410B .33+410C .3-4310D .3+43103.化简:(1)2sin (α-β)cos α-sin (2α-β)+sin β;(2)sin ⎝ ⎛⎭⎪⎫x +π3 +2sin ⎝ ⎛⎭⎪⎫x -π3 -3 cos ⎝ ⎛⎭⎪⎫2π3-x .知识点二 两角和与差的正切公式4.已知tan (α+π4 )=3,则tan α=( )A .-12B .12C .-34D .345.计算:tan 12°+tan 33°+tan 12°tan 33°=________.6.已知tan (α+β)=34 ,tan ⎝ ⎛⎭⎪⎫α-π4 =12 ,求tan ⎝ ⎛⎭⎪⎫β+π4 的值.知识点三 两角和与差的正弦、余弦、正切公式的应用 7.设cos α=-55 ,tan β=13 ,π<α<3π2 ,0<β<π2. (1)求sin (α-β)的值;(2)求α-β的值.8.已知△ABC 中,tan B +tan C +3 tan B tan C =3 ,且3 tan A +3 tan B =tan A tan B -1,试判断△ABC 的形状.关键能力综合练一、选择题1.计算sin ⎝ ⎛⎭⎪⎫-7π12 =( ) A .2+64 B .2-64C .6-24 D .-2+642.已知tan α=2,tan β=-3,则tan (α-β)的值为( ) A .-2 B .-1 C .1 D .2 3.sin 47°-sin 17°cos 30°cos 17°=( )A .-32 B .-12 C .12 D .324.已知0<β<α<π2 ,点P (1,43 )为角α终边上的一点,且sin αsin ⎝ ⎛⎭⎪⎫π2-β +cos αcos ⎝ ⎛⎭⎪⎫π2+β =3314 ,则β=( )A .π12B .π6C .π4D .π35.(探究题)(1+tan 20°)(1+tan 21°)(1+tan 24°)(1+tan 25°)的值是( ) A .2 B .4 C .8 D .16 二、填空题6.tan 15°=________.7.已知tan α+tan β=-6,tan (α+β)=-1,则sin (α+β)cos (α-β) =________.8.(易错题)化简:cos 10°(1+3tan 10°)sin 40°=________.三、解答题9.在平面直角坐标系xOy 中,设向量a =(cos α,sin α),b =(-sin β,cos β),c =(-12 ,32).(1)若|a +b |=|c |,求sin (α-β)的值;(2)设α=5π6 ,0<β<π,且a ∥(b +c ),求β 的值.学科素养升级练1.(多选题)下列四个式子中不恒成立的是( ) A .sin (α+β)=sin α+sin βB .cos (α+β)=cos αcos β+sin αsin βC .tan (α-β)=tan α-tan β1-tan αtan βD .sin (α+β)sin (α-β)=sin 2α-sin 2β2.(学科素养——逻辑推理)是否存在锐角α,β,使得①α+2β=2π3 ,②tan α2tanβ=2-3 同时成立?若存在,求出锐角α,β的值;若不存在,请说明理由.2.2 两角和与差的正弦、正切公式及其应用必备知识基础练1.答案:A解析:sin 18°cos 63°-sin 72°sin 117°=sin 18°cos 63°-sin (90°-18°)sin (180°-63°) =sin 18°cos 63°-cos 18°sin 63°=sin (18°-63°)=sin (-45°)=-sin 45°=-22.故选A. 2.答案:B解析:因为cos ⎝ ⎛⎭⎪⎫π2-α =35 (0<α<π2 ),所以sin α=35 ,所以cos α=45 ,所以sin ⎝⎛⎭⎪⎫α+π6 =sin αcos π6 +cos αsin π6 =35 ×32 +45 ×12 =33+410 .故选B.3.解析:(1)原式=2sin (α-β)cos α-sin αcos (α-β)-cos α·sin (α-β)+sin β=sin (α-β)cos α-sin αcos (α-β)+sin β =sin [(α-β)-α]+sin β =-sin β+sin β =0.(2)原式=sin x cos π3 +cos x sin π3 +2sin x cos π3 -2cos x sin π3 -3 cos2π3 cos x -3 sin 2π3 sin x =sin x (cos π3 +2cos π3 -3 sin 2π3 )+cos x (sin π3 -2sin π3 -3 cos 2π3)=0. 4.答案:B解析:由tan (α+π4)=3,得tan (α+π4 )=tan α+tanπ41-tan αtanπ4 =tan α+11-tan α=3,解得tan α=12 .故选B.5.答案:1解析:∵tan 45°=tan (12°+33°)=tan 12°+tan 33°1-tan 12°tan 33° =1,∴tan 12°+tan 33°=1-tan 12°tan 33°. ∴tan 12°+tan 33°+tan 12°tan 33°=1. 6.解析:tan ⎝ ⎛⎭⎪⎫β+π4 =tan ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫α-π4=tan (α+β)-tan ⎝⎛⎭⎪⎫α-π41+tan (α+β)tan ⎝ ⎛⎭⎪⎫α-π4=34-121+34×12 =211 .7.解析:(1)因为π<α<3π2 ,cos α=-55 ,所以sin α=-255,又0<β<π2 ,tan β=13 ,所以sin β=1010 ,cos β=31010, 所以sin (α-β)=sin αcos β-cos αsin β=-255 ×31010 +55 ×1010 =-22. (2)因为0<β<π2 ,所以-π2 <-β<0,又π<α<3π2 ,所以π2 <α-β<3π2 ,因为sin (α-β)=-22 ,所以α-β=5π4. 8.解析:∵3 tan A +3 tan B =tan A tan B -1,∴3 (tan A +tan B )=tan A tan B -1, 易知tan A tan B -1≠0,∴tan A +tan B 1-tan A tan B =tan (A +B )=-33 ,又∵0<A +B <π,∴A +B =5π6 ,∴C =π6.∵tan B +tan C +3 tan B tan C =3 ,tan C =33, ∴tan B +33 +tan B =3 ,∴tan B =33, ∵B ∈⎝ ⎛⎭⎪⎫0,5π6 ,∴B =π6 ,A =2π3 ,∵B =C =π6,∴△ABC 为等腰三角形.关键能力综合练1.答案:D解析:sin ⎝ ⎛⎭⎪⎫-7π12 =-sin 7π12 =-sin (π4 +π3 )=-(sin π4 cos π3 +cos π4 sin π3 )=-(22 ×12 +22 ×32 )=-2+64.故选D.2.答案:B解析:因为tan α=2,tan β=-3,所以tan (α-β)=tan α-tan β1+tan αtan β=2-(-3)1+2×(-3)=-1.故选B.3.答案:C解析:sin 47°-sin 17°cos 30°cos 17°=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+sin 17°cos 30°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30° =12 .故选C. 4.答案:D解析:∵|OP |=7,∴sin α=437 ,cos α=17.由已知sin αsin ⎝ ⎛⎭⎪⎫π2-β +cos αcos ⎝ ⎛⎭⎪⎫π2+β =3314及诱导公式可得sin αcos β-cos αsin β=3314,∴sin (α-β)=3314 .∵0<β<α<π2 ,∴0<α-β<π2 ,∴cos (α-β)=1-sin 2(α-β) =1314,∴sin β=sin [α-(α-β)]=sin αcos (α-β)-cos αsin (α-β)=437 ×1314 -17 ×3314 =32 .又0<β<π2 ,∴β=π3.故选D. 5.答案:B解析:∵1=tan 45°=tan (21°+24°) =tan 21°+tan 24°1-tan 21°tan 24°,∴1-tan 21°tan 24°=tan 21°+tan 24°, 即tan 21°+tan 24°+tan 21°tan 24°=1, ∴(1+tan 21°)(1+tan 24°)=tan 21°+tan 24°+tan 21°tan 24°+1=2, 同理(1+tan 20°)(1+tan 25°)=2,∴(1+tan 20°)(1+tan 21°)(1+tan 24°)(1+tan 25°)=2×2=4.故选B. 6.答案:2-3解析:tan 15°=tan (45°-30°)=tan 45°-tan 30°1+tan 45°·tan 30° =1-331+33 =2-3 .7.答案:32解析:由tan (α+β)=tan α+tan β1-tan α·tan β =-1,代入tan α+tan β=-6,解得tan α·tan β=-5,sin (α+β)cos (α-β) =sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan α·tan β =-61-5 =32.8.答案:2解析:cos 10°(1+3tan 10°)sin 40° =cos 10°(1+3sin 10°cos 10°)sin 40°=cos 10°+3sin 10°sin 40°=2(12cos 10°+32sin 10°)sin 40°=2sin (10°+30°)sin 40°=2.9.解析:(1)∵向量a =(cos α,sin α),b =(-sin β,cos β),c =⎝ ⎛⎭⎪⎫-12,32 , ∴|a |=|b |=|c |=1,且a ·b =-cos αsin β+sin αcos β=sin (α-β). ∵|a +b |=|c |,∴|a +b |2=|c |2,即|a |2+2a ·b +|b |2=1.∴1+2sin (α-β)+1=1,∴sin (α-β)=-12 .(2)∵α=5π6 ,∴a =⎝ ⎛⎭⎪⎫-32,12 ,依题意得b +c =⎝⎛⎭⎪⎫-sin β-12,cos β+32 .∵a ∥(b +c ), ∴-32 ⎝ ⎛⎭⎪⎫cos β+32 -12 ⎝ ⎛⎭⎪⎫-sin β-12 =0,化简得12 sin β-32 cos β=12 ,∴sin ⎝ ⎛⎭⎪⎫β-π3 =12 .∵0<β<π,∴-π3 <β-π3 <2π3 ,∴β-π3 =π6 ,∴β=π2.学科素养升级练1.答案:ABC解析:sin (α+β)=sin αcos β+cos αsin β,故A 式不恒成立; cos (α+β)=cos αcos β-sin αsin β,故B 式不恒成立; tan (α-β)=tan α-tan β1+tan αtan β,故C 式不恒成立;sin (α+β)sin (α-β)=(sin αcos β+cos αsin β)(sin αcos β-cos αsin β)=sin 2αcos 2β-cos 2αsin 2β=sin 2α-sin 2β,故D 式恒成立.故选ABC.2.解析:假设存在锐角α,β使得①α+2β=2π3 ,②tan α2tan β=2-3 同时成立.由①得α2 +β=π3,所以tan (α2 +β)=tan α2+tan β1-tan α2tan β=3 .又tan α2 tan β=2-3 ,所以tan α2+tan β=3-3 ,因此tan α2,tan β可以看成是方程x 2-(3-3 )x +2-3 =0的两个根,解得x 1=1,x 2=2-3 .若tan α2=1,则α=π2,这与α为锐角矛盾,所以tan α2 =2-3 ,tan β=1,所以α=π6 ,β=π4,所以满足条件的α,β存在,且α=π6 ,β=π4 .。
【小学教育】和差问题

和差问题和差数量关系是:①(和+差)÷2=大数大数-差=小数或和-大数=小数②(和-差)÷2=小数和-小数=大数或小数+差=大数例1.国庆节,四(4)班同学吹气球比赛,女生比男生少吹20个,男、女生共吹240个,求男、女生吹气球多少个?例2.小星在期末考试中,语文和数学的平均数是98,数学比语文多4分,语文和数学各得了多少分?例3.两个桶里共盛水30千克,如果把第一桶里的水浇树用了6千克,两个桶里的水就一样多,问每桶各有多少千克水?例4.甲乙两生产组共收小麦9600千克,如果甲组给乙组800千克,则两组收小麦重量相等,问两组各收小麦多少千克?例5.一部书有上、中、下3册,上册比中册的页数少20页,下册比上册多40页,已知这部书一共有1560也,上、中、下3册各多少页?例6.美国纽约大桥比南京长江大桥短4570米,我国武汉长江大桥比美国纽约大桥短530米,已知三座桥共长10640米,这三座桥各长多少米?例7.甲乙两箱苹果共重65千克,从甲箱取出5千克放到乙箱,结果甲箱的苹果比乙箱的苹果多3千克。
甲乙两箱原有苹果各多少千克?例8.小刘、小吕两人和打一份稿件,2小时共打了16800个字。
如果分别工作5小时,小刘比小吕多打6000个字,求小刘、小吕每分钟各打多少个字?练一练1.小豪家养鸭、鹅共40只,其中鸭比鹅的只数多8只,小豪家养鸭、鹅各多少只?2.我国自行设计施工的世界上最大的现代化桥梁南京长江大桥共分2层,上层是公路桥,下层是铁路桥。
公路桥和铁路桥共长11270米,铁路桥比公路桥长2270米,问公路桥和铁路桥各长多少米?3.小敏比小娜多20块糖果,小敏给小娜15块糖果,这时谁的糖果多?多几块?4.去年小桥和爸爸的年龄和是44岁,已知爸爸比小桥大26岁,问今年小桥和爸爸各多少岁?5.文具店共有铅笔和圆珠笔1440支,如果铅笔进来60支,圆珠笔卖出60支,则两种笔的支数相等,两种笔各有多少支?6.华山上甲乙两个挑山工共挑粮食94千克往山顶运,到半山腰有一饭店买了4千克粮食,这时甲乙挑的粮食正好相等,问甲乙原来各挑粮食多少千克?7.某校高中低年级共有1880人,高年级人数比中年级多110人,低年级比中年级多60人,这个学校高、中、低年级各有多少人?8.甲、乙、丙3人共有图书310本,已知甲比乙多20本,乙比丙多10本,甲乙丙各有图书多少本?9.两筐南瓜共重46千克,如果从第二筐中取出6千克放入第一筐中,那么,第二筐比第一筐少2千克。
和差问题.题库教师版.doc

知识点拨:和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:方法一: (和+差)÷2=大数和-大数=小数方法二: (和-差)÷2=小数和-小数=大数【例1】两筐水果共重150千克,第一筐比第二筐少10千克,两筐水果各多少千克?1. 甲、乙两人同时以相同的速度打字,2分钟共打了240个字,已知甲每分钟比乙多打10个字.问甲、乙两人每分钟各打多少个?2.果园共260棵桃树和梨树,其中桃树的棵数比梨树多20棵.桃树和梨树各有多少棵?3.有一根钢管长12米,要锯成两段,使第一段比第二段短2米.每段各长多少米?.4.陈红和李玲平均身高为130厘米,陈红比李玲高8厘米,陈红和李玲身高各是多少厘米?【例2】文具王国的尺子点点和跳跳是一对好朋友,他们一会儿高兴地把自己绑在一起,一会儿又闹起小别扭,竖起小脑袋比比谁长的高,每天他们总是有使不完的劲儿.同学们!你能根据下面的图,算出点点和跳跳各有多长吗?1.二年级一班和二班共有85人,一班比二班多3人.问一班、二班各有多少人?2.两个连续奇数的和是36,这两个数分别是多少?【例3】长方形操场的长与宽相差80米,沿操场跑一周是400米,求这个操场的长与宽是多少米?1.丁丁在期中考试时,语文、数学两科平均分是91分,数学比语文多2分,那么丁丁语文和数学各得了多少分?2.学校水果店运来苹果和梨共40千克,苹果比梨多2袋,苹果和梨每袋都重5千克,则水果店运来苹果和梨各多少袋?【例4】小勇家养的白兔和黑兔一共有22只,如果再买4只白兔,白兔和黑兔的只数一样多.小勇家养的白兔和黑兔各多少只?1.图书馆的书架上、下两层共存书220本,如果从上层拿出10本放入下层,则两层书架上书数相等.求原来上、下层各存书多少本?【例5】甲、乙两校共有学生1050人,部分学生因搬家需要转学,已知由甲校转入乙校20人,这样甲校比乙校还多10人,求两校原来有学生多少人?1,小华和小敏共有铅笔25枝,如果小华用去4枝,小敏用去3枝,那么小华还比小敏多2枝,小华和小敏原来各有多少枝铅笔?【例6】周明和王刚两人数学成绩的和是182分.周明如果多考5分,就比王刚多3分.周明和王刚的数学各考了多少分?1.有大、小两个油桶,一共装油24千克,两个油桶都倒出同样多的油后分别还剩9千克和5千克.问:原来大、小两个油桶各装油多少千克?【例7】兔妈妈拔了29个萝卜分给了小白兔和小黑兔,因为分的萝卜不一样多,兔妈妈让小白兔给了小黑兔5个,这时再来数发现小黑兔比小白兔多出1个萝卜,你知道原来小白兔和小黑兔各分到了多少个萝卜吗?1.甲乙两个仓库共存大米56包,从乙仓库调8包到甲仓库,两个仓库大米的包数就同样多了,甲、乙两个仓库原有大米各多少包?【例8】甲校原来比乙校多48人,为方便就近入学,甲校有若干人转入乙校,这时甲校反而比乙校少12人.甲校有多少人转入乙校?1.两箱图书共有66本,甲箱如果借出10本,就比乙箱少4本.甲、乙两箱原有图书各多少本?2.方方和圆圆共有图书70本,如果方方给圆圆5本,那么圆圆就比方方多4本.问:方方和圆圆原来各有图书多少本?【例9】有三块布料一共190米,第二块比第一块长20米,第三块比第二块长30米.每块布料各长多少米?1.甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数.2.有3条绳子,共长95米,第一条比第二条长7米,第二条比第三条长8米,问3条绳子各长多少米?3.甲、乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人?4.小猴和小熊到动物商店一共买了30块糖,小猴把买的糖给了小熊10块,还比小熊多2块.小熊比小猴少买几块糖?5.学而思学校新进99本书,分给三、四、五三个年级,三年级比四年级多分了2本,四年级比五年级多分了5本,三个年级各分得多少本书?6.甲的书比乙多9本,比丙多2本,乙、丙共有书47本.问:甲、乙、丙各有多少本书?.7,二年级原来女同学比男同学多25人,今年二年级又增加了80个男同学和65个女同学,请问:现在是男同学多还是女同学多?多几人?8.草地上有黑兔、白兔、灰兔共27只,黑兔比白兔多2只,灰兔比白免少2只.黑兔、白兔、灰兔各有多少只?【例10】大象、老虎、猴子三只动物的年龄中,大象和老虎共90岁,大象和猴子共70岁,老虎和猴子共40岁,请你算一算,三只动物各多少岁?.1.小强、中强、大强去称体重,大强和小强一起称是50千克,小强和中强一起称是49千克,三个人一起称是76千克.三人的体重各是多少千克?【例11】四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共多少人?1.甲乙共储蓄32元,乙丙共储蓄30元,甲丙共储蓄22元,三人各储蓄多少元?2.大明、小荣、豆豆三个小朋友去称体重,大明和小荣一起称是55千克,大明和豆豆一起称是49千克,小荣和豆豆一起称是 56千克.三人的体重各是多少千克?【例12】地震灾区希望小学正筹备建设图书馆,春蕾小学发动全校同学给山区的学生捐书,二(1)班、二(2)班、二(3)班三个班共捐书300本,二(1)班、二(2)班两个班捐书总数比二(3)班多60本,如果二(3)班拿出20本给二(2)班,则两个班捐书数目相等.求三个班各捐了多少本书?2.兄弟俩现在年龄和是28岁,3年前哥哥比弟弟大2岁,兄弟俩现在各多少岁?3.今年小玲6岁,她父亲34岁,当两人年龄和是58岁时,两人年龄各多少岁?4.今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?【例13】小琴、小静、小莲三人年龄和是20岁,小琴比小静大1岁,小莲比小静小2岁.三人的年龄各是几岁?1.甲、乙两个笼子里共有小鸡20只,甲笼里新放4只,乙笼里取出1只,这时乙笼还比甲笼多1只,求甲、乙两笼原来各有鸡多少只?2.四(1)班投票选举班长,小明得到的选票比小华多14张,小华得到的选票比小玲多8张。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和差问题
教学目标
1.会判断什么样的应用题属于和差问题.已知两个数的和以及两个数的差,要分别求这两个数就属和差问题,并掌握和差问题的特性,为以后继续学习和倍、差倍问题做准备.
2.总结归纳出解决和差问题的方法,并解决一些实际问题.
知识点拨:
和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:
方法一: (和+差)÷2=大数和-大数=小数
方法二: (和-差)÷2=小数和-小数=大数
【例1】两筐水果共重150千克,第一筐比第二筐少10千克,两筐水果各多少千克?
1. 甲、乙两人同时以相同的速度打字,2分钟共打了240个字,已知甲每分钟比乙多打10个字.问
甲、乙两人每分钟各打多少个?
2.果园共260棵桃树和梨树,其中桃树的棵数比梨树多20棵.桃树和梨树各有多少棵?
3.有一根钢管长12米,要锯成两段,使第一段比第二段短2米.每段各长多少米?
.
4.陈红和李玲平均身高为130厘米,陈红比李玲高8厘米,陈红和李玲身高各是多少厘米?
【例2】文具王国的尺子点点和跳跳是一对好朋友,他们一会儿高兴地把自己绑在一起,一会儿又闹起小别扭,竖起小脑袋比比谁长的高,每天他们总是有使不完的劲儿.同学们!
你能根据下面的图,算出点点和跳跳各有多长吗?
1.二年级一班和二班共有85人,一班比二班多3人.问一班、二班各有多少人?
2.两个连续奇数的和是36,这两个数分别是多少?
【例3】长方形操场的长与宽相差80米,沿操场跑一周是400米,求这个操场的长与宽是多少米?
1.丁丁在期中考试时,语文、数学两科平均分是91分,数学比语文多2分,那么丁丁语文和数学各得了多少分?
2.学校水果店运来苹果和梨共40千克,苹果比梨多2袋,苹果和梨每袋都重5千克,则水果店运来苹果和梨各多少袋?
【例4】小勇家养的白兔和黑兔一共有22只,如果再买4只白兔,白兔和黑兔的只数一样多.小勇家养的白兔和黑兔各多少只?
1.图书馆的书架上、下两层共存书220本,如果从上层拿出10本放入下层,则两层书架上书数相
等.求原来上、下层各存书多少本?
【例5】甲、乙两校共有学生1050人,部分学生因搬家需要转学,已知由甲校转入乙校20人,这样甲校比乙校还多10人,求两校原来有学生多少人?
华和小敏原来各有多少枝铅笔?
【例6】周明和王刚两人数学成绩的和是182分.周明如果多考5分,就比王刚多3分.周明和王刚的数学各考了多少分?
1.有大、小两个油桶,一共装油24千克,两个油桶都倒出同样多的油后分别还剩9千克和5千克.问:
原来大、小两个油桶各装油多少千克?
【例7】兔妈妈拔了29个萝卜分给了小白兔和小黑兔,因为分的萝卜不一样多,兔妈妈让小白兔给了小黑兔5个,这时再来数发现小黑兔比小白兔多出1个萝卜,你知道原来小白兔和小
黑兔各分到了多少个萝卜吗?
1.甲乙两个仓库共存大米56包,从乙仓库调8包到甲仓库,两个仓库大米的包数就同样多了,甲、
乙两个仓库原有大米各多少包?
【例8】甲校原来比乙校多48人,为方便就近入学,甲校有若干人转入乙校,这时甲校反而比乙校少12人.甲校有多少人转入乙校?
1.两箱图书共有66本,甲箱如果借出10本,就比乙箱少4本.甲、乙两箱原有图书各多少本?
2.方方和圆圆共有图书70本,如果方方给圆圆5本,那么圆圆就比方方多4本.问:方方和圆圆
原来各有图书多少本?
【例9】有三块布料一共190米,第二块比第一块长20米,第三块比第二块长30米.每块布料各长多少米?
1.甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数.
2.有3条绳子,共长95米,第一条比第二条长7米,第二条比第三条长8米,问3条绳子各长多
少米?
3.甲、乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学
生还比乙校多48人,问甲、乙两校原来各有学生多少人?
4.小猴和小熊到动物商店一共买了30块糖,小猴把买的糖给了小熊10块,还比小熊多2块.小熊
比小猴少买几块糖?
5.学而思学校新进99本书,分给三、四、五三个年级,三年级比四年级多分了2本,四年级比五
年级多分了5本,三个年级各分得多少本书?
6.甲的书比乙多9本,比丙多2本,乙、丙共有书47本.问:甲、乙、丙各有多少本书?
.
7,二年级原来女同学比男同学多25人,今年二年级又增加了80个男同学和65个女同学,请问:现在是男同学多还是女同学多?多几人?
8.草地上有黑兔、白兔、灰兔共27只,黑兔比白兔多2只,灰兔比白免少2只.黑兔、白兔、灰兔各有多少只?
【例10】大象、老虎、猴子三只动物的年龄中,大象和老虎共90岁,大象和猴子共70岁,老虎和猴子共40岁,请你算一算,三只动物各多少岁?
.
1.小强、中强、大强去称体重,大强和小强一起称是50千克,小强和中强一起称是49千克,三个
人一起称是76千克.三人的体重各是多少千克?
【例11】四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共多少人?
1.甲乙共储蓄32元,乙丙共储蓄30元,甲丙共储蓄22元,三人各储蓄多少元?
2.大明、小荣、豆豆三个小朋友去称体重,大明和小荣一起称是55千克,大明和豆豆一起称是49
千克,小荣和豆豆一起称是 56千克.三人的体重各是多少千克?
【例12】地震灾区希望小学正筹备建设图书馆,春蕾小学发动全校同学给山区的学生捐书,二(1)班、二(2)班、二(3)班三个班共捐书300本,二(1)班、二(2)班两个班捐书总数
比二(3)班多60本,如果二(3)班拿出20本给二(2)班,则两个班捐书数目相等.求
三个班各捐了多少本书?
1.哥哥今年14岁,妹妹今年8岁,当兄妹俩岁数的和是42岁时,俩人各应该是多少岁?
2.兄弟俩现在年龄和是28岁,3年前哥哥比弟弟大2岁,兄弟俩现在各多少岁?
3.今年小玲6岁,她父亲34岁,当两人年龄和是58岁时,两人年龄各多少岁?
4.今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?
【例13】小琴、小静、小莲三人年龄和是20岁,小琴比小静大1岁,小莲比小静小2岁.三人的年龄各是几岁?
1.甲、乙两个笼子里共有小鸡20只,甲笼里新放4只,乙笼里取出1只,这时乙笼还比甲笼多1只,
求甲、乙两笼原来各有鸡多少只?
2.四(1)班投票选举班长,小明得到的选票比小华多14张,小华得到的选票比小玲多8张。
如果
这3人共得选票54张,那么他们各得选票多少张?。