新数学高考试题带答案

合集下载

2023年全国统一高考数学试卷(新高考II)(解析版)

2023年全国统一高考数学试卷(新高考II)(解析版)

2023年全国统一高考数学试卷(新高考Ⅱ)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共计40分。

每小题给出的四个选项中,只有一个选项是正确的。

请把正确的选项填涂在答题卡相应的位置上。

1.(5分)在复平面内,(1+3i)(3﹣i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:(1+3i)(3﹣i)=3﹣i+9i+3=6+8i,则在复平面内,(1+3i)(3﹣i)对应的点的坐标为(6,8),位于第一象限.故选:A.2.(5分)设集合A={0,﹣a},B={1,a﹣2,2a﹣2},若A⊆B,则a=( )A.2B.1C.D.﹣1【答案】B【解答】解:依题意,a﹣2=0或2a﹣2=0,当a﹣2=0时,解得a=2,此时A={0,﹣2},B={1,0,2},不符合题意;当2a﹣2=0时,解得a=1,此时A={0,﹣1},B={1,﹣1,0},符合题意.故选:B.3.(5分)某学校为了了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( )A.种B.种C.种D.种【答案】D【解答】解:∵初中部和高中部分别有400和200名学生,∴人数比例为400:200=2:1,则需要从初中部抽取40人,高中部取20人即可,则有种.故选:D.4.(5分)若f(x)=(x+a)为偶函数,则a=( )A.﹣1B.0C.D.1【答案】B【解答】解:由>0,得x>或x<﹣,由f(x)是偶函数,∴f(﹣x)=f(x),得(﹣x+a)ln=(x+a),即(﹣x+a)ln=(﹣x+a)ln()﹣1=(x﹣a)ln=(x+a),∴x﹣a=x+a,得﹣a=a,得a=0.故选:B.5.(5分)已知椭圆C:的左焦点和右焦点分别为F1和F2,直线y=x+m与C交于点A,B两点,若△F1AB面积是△F2AB面积的两倍,则m=( )A.B.C.D.【答案】C【解答】解:记直线y=x+m与x轴交于M(﹣m,0),椭圆C:的左,右焦点分别为F1(﹣,0),F2(,0),由△F1AB面积是△F2AB的2倍,可得|F1M|=2|F2M|,∴|﹣﹣x M|=2|﹣x M|,解得x M=或x M=3,∴﹣m=或﹣m=3,∴m=﹣或m=﹣3,联立可得,4x2+6mx+3m2﹣3=0,∵直线y=x+m与C相交,所以Δ>0,解得m2<4,∴m=﹣3不符合题意,故m=.故选:C.6.(5分)已知函数f(x)=ae x﹣lnx在区间(1,2)上单调递增,则a的最小值为( )A.e2B.e C.e﹣1D.e﹣2【答案】C【解答】解:对函数f(x)求导可得,,依题意,在(1,2)上恒成立,即在(1,2)上恒成立,设,则,易知当x∈(1,2)时,g′(x)<0,则函数g(x)在(1,2)上单调递减,则.故选:C.7.(5分)已知α为锐角,cosα=,则sin=( )A.B.C.D.【答案】D【解答】解:cosα=,则cosα=,故=1﹣cosα=,即==,∵α为锐角,∴,∴sin=.故选:D.8.(5分)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120【答案】C【解答】解:等比数列{a n}中,S4=﹣5,S6=21S2,显然公比q≠1,设首项为a1,则=﹣5①,=②,化简②得q4+q2﹣20=0,解得q2=4或q2=﹣5(不合题意,舍去),代入①得=,所以S8==(1﹣q4)(1+q4)=×(﹣15)×(1+16)=﹣85.故选:C.二、选择题:本大题共小4题,每小题5分,共计20分。

2023年新高考II卷数学高考真题(含参考答案)

2023年新高考II卷数学高考真题(含参考答案)

2023年新课标全国Ⅱ卷数学真题一、单选题二、多选题四、解答题17.记ABC 的内角,,A B C 的对边分别为利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5p c =%时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+,当[]95,105c ∈时,求()f c 的解析式,并求()f c 在区间[95,10520.如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,60ADB ADC ∠=∠= ,E 为BC (1)证明:BC DA ⊥;(2)点F 满足EF DA =,求二面角21.已知双曲线C 的中心为坐标原点,左焦点为(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P .证明:点P 在定直线上.22.(1)证明:当01x <<时,sin x x x x 2-<<;(2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.参考答案1.(2023·新高考Ⅱ卷·1·★)在复平面内,(13i)(3i)+-对应的点位于()(A )第一象限(B )第二象限(C )第三象限(D )第四象限答案:A解析:2(13i)(3i)3i 9i 3i 68i +-=-+-=+,所以该复数对应的点为(6,8),位于第一象限.2.(2023·新高考Ⅱ卷·2·★)设集合{0,}A a =-,{1,2,22}B a a =--,若A B ⊆,则a =()(A )2(B )1(C )23(D )1-答案:B解析:观察发现集合A 中有元素0,故只需考虑B 中的哪个元素是0,因为0A ∈,A B ⊆,所以0B ∈,故20a -=或220a -=,解得:2a =或1,注意0B ∈不能保证A B ⊆,故还需代回集合检验,若2a =,则{0,2}A =-,{1,0,2}B =,不满足A B ⊆,不合题意;若1a =,则{0,1}A =-,{1,1,0}B =-,满足A B ⊆.故选B.3.(2023·新高考Ⅱ卷·3·★)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有()(A )4515400200C C ⋅种(B )2040400200C C ⋅种(C )3030400200C C ⋅种(D )4020400200C C ⋅种答案:D解析:应先找到两层中各抽多少人,因为是比例分配的分层抽取,故各层的抽取率都等于总体的抽取率,设初中部抽取x 人,则60400400200x =+,解得:40x =,所以初中部抽40人,高中部抽20人,故不同的抽样结果共有4020400200C C ⋅种.4.(2023·新高考Ⅱ卷·4·★★)若21()()ln 21x f x x a x -=++为偶函数,则a =()(A )1-(B )0(C )12(D )1答案:B解法1:偶函数可抓住定义()()f x f x -=来建立方程求参,因为()f x 为偶函数,所以()()f x f x -=,即2121()ln ()ln 2121x x x a x a x x ----+=+-++①,而121212121ln ln ln()ln 21212121x x x x x x x x ---+--===--+-++,代入①得:2121()(ln ()ln 2121x x x a x a x x ---+-=+++,化简得:x a x a -=+,所以0a =.解法2:也可在定义域内取个特值快速求出答案,210(21)(21)021x x x x ->⇔+->+,所以12x <-或12x >,因为()f x 为偶函数,所以(1)(1)f f -=,故1(1)ln3(1)ln 3a a -+=+①,而11ln ln3ln33-==-,代入①得:(1)ln3(1)ln3a a -+=-+,解得:0a =.5.(2023·新高考Ⅱ卷·5·★★★)已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB ∆的面积是F AB ∆面积的2倍,则m =()(A )23(B )3(C )3-(D )23-答案:C解析:如图,观察发现两个三角形有公共的底边AB ,故只需分析高的关系,作1FG AB ⊥于点G ,2F I AB ⊥于点I ,设AB 与x 轴交于点K ,由题意,121212212F AB F ABAB F G S S AB F I ∆∆⋅==⋅,所以122F G F I=,由图可知12F KG F KI ∆∆∽,所以11222F K F G F KF I==,故122F K F K =,又椭圆的半焦距c =,所以122F F c ==,从而21212233F K F F ==,故1123OK OF F K =-=,所以2(3K ,代入y x m =+可得203m =+,解得:23m =.6.(2023·新高考Ⅱ卷·6·★★★)已知函数()e ln x f x a x =-在区间(1,2)单调递增,则a 的最小值为()(A )2e (B )e (C )1e -(D )2e -答案:C解析:()f x 的解析式较复杂,不易直接分析单调性,故求导,由题意,1()e x f x a x '=-,因为()f x 在(1,2)上,所以()0f x '≥在(1,2)上恒成立,即1e 0x a x-≥①,观察发现参数a 容易全分离,故将其分离出来再看,不等式①等价于1ex a x ≥,令()e (12)x g x x x =<<,则()(1)e 0x g x x '=+>,所以()g x 在(1,2)上,又(1)e g =,2(2)2e g =,所以2()(e,2e )g x ∈,故21111(,)()e 2e e x g x x =∈,因为1e x a x ≥在(1,2)上恒成立,所以11e e a -≥=,故a 的最小值为1e -.7.(2023·新高考Ⅱ卷·7·★★)已知α为锐角,cos α=sin 2α=()(A (B (C (D 答案:D解析:221535cos 12sin sin 2428ααα+-=-=⇒=,此式要开根号,不妨上下同乘以2,将分母化为2,所以222625(51)sin 2164α-==,故51sin 24α-=±,又α为锐角,所以(0,)24απ∈,故51sin 24α-=.8.(2023·新高考Ⅱ卷·8·★★★)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =()(A )120(B )85(C )85-(D )120-答案:C解法1:观察发现2S ,4S ,6S ,8S 的下标都是2的整数倍,故可考虑片段和性质,先考虑q 是否为1-,若{}n a 的公比1q =-,则414[1(1)]01(1)a S --==--,与题意不符,所以1q ≠-,故2S ,42S S -,64S S -,86S S -成等比数列①,条件中有6221S S =,不妨由此设个未知数,设2S m =,则621S m =,所以425S S m -=--,64215S S m -=+,由①可得242262()()S S S S S -=-,所以2(5)(215)m m m --=+,解得:1m =-或54,若1m =-,则21S =-,424S S -=-,6416S S -=-,所以8664S S -=-,故8664216485S S m =-=-=-;到此结合选项已可确定选C ,另一种情况我也算一下,若54m =,则2504S =>,而2222412341212122()(1)(1)S a a a a a a a q a q a a q S q =+++=+++=++=+,所以4S 与2S 同号,故40S >,与题意不符;综上所述,m 只能取1-,此时885S =-.解法2:已知和要求的都只涉及前n 项和,故也可直接代公式翻译,先看公比是否为1,若{}n a 的公比1q =,则612162142S a S a =≠=,不合题意,所以1q ≠,故414(1)51a q S q -==--①,又6221S S =,所以6211(1)(1)2111a q a q q q--=⋅--,化简得:62121(1)q q -=-②,又62322411()(1)(1)q q q q q -=-=-++,代入②可得:2242(1)(1)21(1)q q q q -++=-③,两端有公因式可约,但需分析21q -是否可能为0,已经有1q ≠了,只需再看q 是否可能等于1-,若1q =-,则414[1(1)]01(1)a S --==--,与题意不符,所以1q ≠-,故式③可化为24121q q ++=,整理得:42200q q +-=,所以24q =或5-(舍去),故要求的8241118(1)[1()]255111a q a q aS q q q--===-⋅---④,只差11aq-了,该结构式①中也有,可由24q =整体计算它,将24q =代入①可得21(14)51a q-=--,所以1113a q =-,代入④得81255853S =-⨯=-.9.(2023·新高考Ⅱ卷·9·★★★)(多选)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,o 120APB ∠=,2PA =,点C 在底面圆周上,且二面角P AC O --为o 45,则()(A )该圆锥的体积为π(B )该圆锥的侧面积为(C )AC =(D )PAC ∆答案:AC解析:A 项,因为2PA =,o 120APB ∠=,所以o 60APO ∠=,cos 1OP AP APO =⋅∠=,sin OA AP APO =⋅∠=,从而圆锥的体积211133V Sh ππ==⨯⨯⨯=,故A 项正确;B 项,圆锥的侧面积2S rl ππ===,故B 项错误;C 项,要求AC P O --还没用,观察发现PAC ∆和OAC ∆都是等腰三角形,故取底边中点即可构造棱的垂线,作出二面角的平面角,取AC 中点Q ,连接PQ ,OQ ,因为OA OC =,PA PC =,所以AC OQ ⊥,AC PQ ⊥,故PQO ∠即为二面角P AC O --的平面角,由题意,o 45PQO ∠=,所以1OQ OP ==,故AQ ==,所以2AC AQ ==,故C 项正确;D 项,PQ ==,所以11222PAC S AC PQ ∆=⋅=⨯=,故D 项错误.10.(2023·新高考Ⅱ卷·10·★★★)(多选)设O 为坐标原点,直线1)y x =-过抛物线2:2(0)C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则()(A )2p =(B )83MN =(C )以MN 为直径的圆与l 相切(D )OMN ∆为等腰三角形答案:AC解析:A 项,在1)y x =-中令0y =可得1x =,由题意,抛物线的焦点为(1,0)F ,所以12p=,从而2p =,故A 项正确;B 项,此处可以由直线MN 的斜率求得MFO ∠,再代角版焦点弦公式22sin pMN α=求MN ,但观察发现后续选项可能需要用M ,N 的坐标,所以直接联立直线与抛物线,用坐标版焦点弦公式来算,设11(,)M x y ,22(,)N x y,将1)y x =-代入24y x =消去y 整理得:231030x x -+=,解得:13x =或3,对应的y分别为3和-(3,M -,1(,33N ,从而121163233MN x x p =++=++=,故B 项错误;C 项,判断直线与圆的位置关系,只需将圆心到直线的距离d 和半径比较,12523x x MN +=⇒的中点Q 到准线:1l x =-的距离8132d MN ==,从而以MN 为直径的圆与准线l 相切,故C 项正确;D 项,M ,N 的坐标都有了,算出OM ,ON即可判断,OM =133ON ==,所以OM ,ON ,MN 均不相等,故D 项错误.11.(2023·新高考Ⅱ卷·11·★★★)(多选)若函数2()ln (0)b cf x a x a x x =++≠既有极大值也有极小值,则()(A )0bc >(B )0ab >(C )280b ac +>(D )0ac <答案:BCD解析:由题意,223322()(0)a b c ax bx cf x x x x x x --'=--=>,函数()f x 既有极大值,又有极小值,所以()f x '在(0,)+∞上有2个变号零点,故方程220ax bx c --=在(0,)+∞上有两个不相等实根,所以212120()(()4(2)020)()b a c c x x a b x x a ⎧⎪∆=--->⎪⎪=->⎨⎪⎪+=>⎪⎩保证有两根保证两根同号保证两根只能同③正①②,由①可得280b ac +>,故C 项正确;由②可得0ca<,所以a ,c 异号,从而0ac <,故D 项正确;由③可得a ,b 同号,所以0ab >,故B 项正确;因为a ,c 异号,a ,b 同号,所以b ,c 异号,从而0bc <,故A 项错误.12.(2023·新高考Ⅱ卷·12·★★★★)(多选)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).()(A )采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)αβ--(B )采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-(C )采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-(D )当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率答案:ABD解析:A 项,由题意,若采用单次传输方案,则发送1收到1的概率为1β-,发送0收到0的概率为1α-,所以依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)(1)(1)(1)βαβαβ---=--,故A 项正确;B 项,采用三次传输方案,若发送1,则需独立重复发送3次1,依次收到1,0,1的概率为2(1)(1)(1)βββββ--=-,故B 项正确;C 项,采用三次传输方案,由B 项的分析过程可知若发送1,则收到1的个数~(3,1)X B β-,而译码为1需收2个1,或3个1,所以译码为1的概率为22332333(2)(3)C (1)C (1)3(1)(1)P X P X ββββββ=+==-+-=-+-,故C 项错误;D 项,若采用单次传输方案,则发送0译码为0的概率为1α-;若采用三次传输方案,则发送0等同于发3个0,收到0的个数~(3,1)Y B α-,且译码为0的概率为22332333(2)(3)C (1)C (1)3(1)(1)P Y P Y αααααα=+==-+-=-+-,要比较上述两个概率的大小,可作差来看,2323(1)(1)(1)(1)[3(1)(1)1](1)(12)ααααααααααα-+---=--+--=--,因为00.5α<<,所以233(1)(1)(1)(1)(12)0ααααααα-+---=-->,从而233(1)(1)1αααα-+->-,故D 项正确.13.(2023·新高考Ⅱ卷·13·★★)已知向量a ,b满足-=a b 2+=-a b a b ,则=b _____.解析:条件涉及两个模的等式,想到把它们平方来看,由题意,22223-=+-⋅=a b a b a b ①,又2+=-a b a b ,所以222+=-a b a b ,故2222244++⋅=+-⋅a b a b a b a b ,整理得:220-⋅=a a b ,代入①可得23=b ,即23=b,所以=b .14.(2023·新高考Ⅱ卷·14·★★)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为_____.答案:28解析:如图,四棱锥1111P A B C D -与P ABCD -相似,它们的体积之比等于边长之比的立方,故只需求四棱锥1111P A B C D -的体积,11113112111()4228P A B C D P ABCD V A B AB V --==⇒==,所以11118P ABCD P A B C D V V --=,故所求四棱台的体积11117P A B C D V V -=,由题意,1111212343P A B C D V -=⨯⨯=,所以7428V =⨯=.【反思】相似图形的面积之比等于边长之比的平方,体积之比等于边长之比的立方.15.(2023·新高考Ⅱ卷·15·★★★)已知直线10x my -+=与⊙22:(1)4C x y -+=交于A ,B 两点,写出满足“ABC∆的面积为85”的m 的一个值_____.答案:2(答案不唯一,也可填2-或12或12-)解析:如图,设圆心(1,0)C 到直线AB 的距离为(0)d d >,则12ABC S AB d ∆=⋅,注意到AB 也可用d 表示,故先由85ABC S ∆=求d ,再将d 用m 表示,建立关于m 的方程,又AB ==,所以12ABC S d ∆=⨯=,由题意,85ABC S ∆=85=,结合0d >解得:d =又d ==,所以==,解得:2m =±或12±.16.(2023·新高考Ⅱ卷·16·★★★★)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若6AB π=,则()f π=_____.答案:解法1:6AB π=这个条件怎么翻译?可用12y =求A ,B 横坐标的通解,得到AB ,从而建立方程求ω,不妨设0ω>,令1sin()2x ωϕ+=可得26x k πωϕπ+=+或526k ππ+,其中k ∈Z ,由图知26A x k πωϕπ+=+,526B x k πωϕπ+=+,两式作差得:2()3B A x x πω-=,故23B A x x πω-=,又6B A AB x x π=-=,所以336ππω=,解得:4ω=,则()sin(4)f x x ϕ=+,再求ϕ,由图知23π是零点,可代入解析式,注意,23π是增区间上的零点,且sin y x =的增区间上的零点是2n π,故应按它来求ϕ的通解,所以82()3n n πϕπ+=∈Z ,从而823n πϕπ=-,故82()sin(42sin(4)33f x x n x πππ=+-=-,所以2223()sin(4)sin()sin 3332f πππππ=-=-=-=-.解法2:若注意横向伸缩虽会改变图象在水平方向上的线段长度,但不改变长度比例,则可先分析sin y x =与12y =交点的情况,再按比例对应到本题的图中来,如图1,直线12y =与函数sin y x =在y 轴右侧的三个I ,J ,K 的横坐标分别为6π,56π,136π,所以52663IJ πππ=-=,1354663JK πππ=-=,:1:2IJ JK =,故在图2中:1:2AB BC =,因为6AB π=,所以3BC π=,故2AC AB BC π=+=,又由图2可知AC T =,所以2T π=,故24Tπω==,接下来同解法1.【反思】①对于函数sin()(0)y x ωϕω=+>,若只能用零点来求解析式,则需尽量确定零点是在增区间还是减区间.“上升零点”用2x n ωϕπ+=来求,“下降零点”用2x n ωϕππ+=+来求;②对图象进行横向伸缩时,水平方向的线段长度比例关系不变,当涉及水平线与图象交点的距离时,我们常抓住这一特征来求周期.17.(2023·新高考Ⅱ卷·17·★★★)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆,D 为BC 的中点,且1AD =.(1)若3ADC π∠=,求tan B ;(2)若228b c +=,求b ,c .解:(1)如图,因为3ADC π∠=,所以23ADB π∠=,(要求tan B ,可到ABD ∆中来分析,所给面积怎么用?可以用它求出ABD S ∆,从而得到BD )因为D 是BC 中点,所以2ABC ABD S S ∆∆=,又ABC S ∆=ABD S ∆=,由图可知112sin 1sin 223ABD S AD BD ADB BD π∆=⋅⋅∠=⨯⨯⨯==2BD =,(此时ABD ∆已知两边及夹角,可先用余弦定理求第三边AB ,再用正弦定理求角B )在ABD ∆中,由余弦定理,2222212cos 12212()72AB AD BD AD BD ADB =+-⋅⋅∠=+-⨯⨯⨯-=,所以AB =由正弦定理,sin sin AB AD ADB B =∠,所以1sin sin AD ADB B AB ⋅∠===,由23ADB π∠=可知B为锐角,从而cos B ==,故sin tan cos 5B B B ==.(2)(已有关于bc 的一个方程,若再建立一个方程,就能求b 和c ,故把面积和中线都用b ,c 表示)由题意,1sin 2ABC S bc A ∆==,所以sin bc A =①,(中线AD 怎样用b ,c 表示?可用向量处理)因为D 为BC 中点,所以1()2AD AB AC =+ ,从而2AD AB AC =+ ,故22242AD AB AC AB AC =++⋅ ,所以222cos 4c b cb A ++=,将228b c +=代入上式化简得cos 2bc A =-②,(我们希望找的是b ,c 的方程,故由①②消去A ,平方相加即可)由①②得222222sin cos 16b c A b c A +=,所以4bc =③,由228b c +=可得2()28b c bc +-=,所以4b c +==,结合式③可得2b c ==.18.(2023·新高考Ⅱ卷·18·★★★★)已知{}n a 为等差数列,6,2,n n na nb a n -⎧⎪=⎨⎪⎩为奇数为偶数,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.解:(1)(给出了两个条件,把它们用1a 和d 翻译出来,即可建立方程组求解1a 和d )由题意,414632S a d =+=①,31231231111(6)2(6)62()26441216T b b b a a a a a d a d a d =++=-++-=-++++-=+-=②,由①②解得:15a =,2d =,所以1(1)23n a a n d n =+-=+.(2)由(1)可得21()(523)422n n n a a n n S n n +++===+,(要证结论,还需求n T ,由于n b 按奇偶分段,故求n T 也应分奇偶讨论,先考虑n 为偶数的情形)当(5)n n >为偶数时,12n nT b b b =++⋅⋅⋅+12341(6)2(6)2(6)2n n a a a a a a -=-++-++⋅⋅⋅+-+13124()62()2n n n a a a a a a -=++⋅⋅⋅+-⨯+++⋅⋅⋅+③,因为131,,,n a a a -⋅⋅⋅和24,,,n a a a ⋅⋅⋅分别也构成等差数列,所以211131()(521)32242n n n a a n n n n a a a --++++++⋅⋅⋅+===,2224()(723)52242n n n a a n n n n a a a ++++++⋅⋅⋅+===,代入③化简得:222353732222n n n n n n n T n +++=-+⨯=,(要由此证n n T S >,可作差比较)所以2237(4)022n n n n n n T S n n 2+--=-+=>,故n n T S >;(对于n 为奇数的情形,可以重复上述计算过程,但更简单的做法是补1项凑成偶数项,再减掉补的那项)当(5)n n >为奇数时,2113(1)7(1)2n n n n n T T b +++++=-=-2213(1)7(1)351022(25)22n n n n n a n +++++-=-+=,所以223510(4)2n n n n T S n n +--=-+2310(2)(5)022n n n n --+-==>,故n n T S >;综上所述,当5n >时,总有n n T S >.19.(2023·新高考Ⅱ卷·19·★★★)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该项指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+.当[95,105]c ∈时,求()f c 的解析式,并求()f c 在区间[95,105]的最小值.解:(1)(给的是漏诊率,故先看患病者的图,漏诊率为0.5%即小于或等于c 的频率为0.5%,可由此求c )由患病者的图可知,[95,100)这组的频率为50.0020.010.005⨯=>,所以c 在[95,100)内,且(95)0.0020.005c -⨯=,解得:97.5c =;(要求()q c ,再来看未患病者的图,()q c 是误诊率,也即未患病者判定为阳性(指标大于c )的概率)由未患病者的图可知指标大于97.5的概率为(10097.5)0.0150.0020.035-⨯+⨯=,所以() 3.5%q c =.(2)([95,105]包含两个分组,故应分类讨论)当95100c ≤<时,()(95)0.002p c c =-⨯,()(100)0.0150.002q c c =-⨯+⨯,所以()()()0.0080.82f c p c q c c =+=-+,故()0.0081000.820.02f c >-⨯+=①;当100105c ≤≤时,()50.002(100)0.012p c c =⨯+-⨯,()(105)0.002q c c =-⨯,所以()()()0.010.98f c p c q c c =+=-,故()(100)0.011000.980.02f c f ≥=⨯-=②;所以0.0080.82,95100()0.010.98,100105c c f c c c -+≤<⎧=⎨-≤≤⎩,且由①②可得min ()0.02f c =.20.(2023·新高考Ⅱ卷·20·★★★)如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,o 60ADB ADC ∠=∠=,E 为BC 的中点.(1)证明:BC DA ⊥;(2)点F 满足EF DA = ,求二面角D AB F --的正弦值.解:(1)(BC 和DA 是异面直线,要证垂直,需找线面垂直,可用逆推法,假设BC DA ⊥,注意到条件中还有DB DC =,所以BC DE ⊥,二者结合可得到BC ⊥面ADE ,故可通过证此线面垂直来证BC DA ⊥)因为DA DB DC ==,o 60ADB ADC ∠=∠=,所以ADB ∆和ADC ∆是全等的正三角形,故AB AC =,又E 为BC 中点,所以BC AE ⊥,BC DE ⊥,因为AE ,DE ⊂平面ADE ,AE DE E = ,所以BC ⊥平面ADE ,又DA ⊂平面ADE ,所以BC DA ⊥.(2)(由图可猜想AE ⊥面BCD ,若能证出这一结果,就能建系处理,故先尝试证明)不妨设2DA DB DC ===,则2AB AC ==,因为BD CD ⊥,所以BC ==,故12DE CE BE BC ====AE ==所以2224AE DE AD +==,故AE DE ⊥,所以EA ,EB ,ED 两两垂直,以E为原点建立如图所示的空间直角坐标系,则A,D,B ,所以(DA =,AB = ,由EF DA = 可知四边形ADEF 是平行四边形,所以FA ED == ,设平面DAB 和平面ABF 的法向量分别为111(,,)x y z =m ,222(,,)x y z =n ,则111100DA AB ⎧⋅=+=⎪⎨⋅==⎪⎩ m m ,令11x =,则1111y z =⎧⎨=⎩,所以(1,1,1)=m 是平面DAB的一个法向量,22200AB FA ⎧⋅=-=⎪⎨⋅==⎪⎩ n n ,令21y =,则2201x z =⎧⎨=⎩,所以(0,1,1)=n 是平面ABF 的一个法向量,从而cos ,⋅<>===⋅m n m n m n D AB F --的正弦值为=21.(2023·新高考Ⅱ卷·21·★★★★)已知双曲线C的中心为坐标原点,左焦点为(-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0)-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,证明:点P 在定直线上.解:(1)设双曲线方程为()222210,0x y a b a b-=>>,由焦点坐标可知c =则由c e a==可得2a =,4b ==,双曲线方程为221416x y -=.(2)由(1)可得()()122,0,2,0A A -,设()()1122,,,M x y N x y ,显然直线的斜率不为0,所以设直线MN 的方程为4x my =-,且1122m -<<,与221416x y -=联立可得()224132480m y my --+=,且264(43)0m ∆=+>,则1212223248,4141m y y y y m m +==--,直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222y y x x =--,联立直线1MA 与直线2NA 的方程可得:()()()()()2121121211212121222222266y x y my my y y y y x x y x y my my y y +--+++==--=--112221122483216222141414148483664141m m m y y m m m m m y y m m -⋅-⋅++---===-⨯----,由2123x x +=--可得=1x -,即1P x =-,据此可得点P 在定直线=1x -上运动.【点睛】关键点点睛:求双曲线方程的定直线问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据设而不求的思想,利用韦达定理得到根与系数的关系可以简化运算,是解题的关键.22.(2023·新高考Ⅱ卷·22·★★★★)(1)证明:当01x <<时,2sin x x x x -<<;(2)已知函数2()cos ln(1)f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.解:(1)构建()()sin ,0,1F x x x x =-∈,则()1cos 0F x x '=->对()0,1x ∀∈恒成立,则()F x 在()0,1上单调递增,可得()()00F x F >=,所以()sin ,0,1x x x >∈;构建()()()22sin sin ,0,1G x x x x x x x x =--=-+∈,则()()21cos ,0,1G x x x x '=-+∈,构建()()(),0,1g x G x x '=∈,则()2sin 0g x x '=->对()0,1x ∀∈恒成立,则()g x 在()0,1上单调递增,可得()()00g x g >=,即()0G x '>对()0,1x ∀∈恒成立,则()G x 在()0,1上单调递增,可得()()00G x G >=,所以()2sin ,0,1x x x x >-∈;综上所述:sin x x x x 2-<<.(2)令210x ->,解得11x -<<,即函数()f x 的定义域为()1,1-,若0a =,则()()()2ln 1,1,1f x x x =--∈-,因为ln y u =-在定义域内单调递减,21y x =-在()1,0-上单调递增,在()0,1上单调递减,则()()2ln 1f x x =--在()1,0-上单调递减,在()0,1上单调递增,故0x =是()f x 的极小值点,不合题意,所以0a ≠.当0a ≠时,令0b a =>因为()()()()()222cos ln 1cos ln 1cos ln 1f x ax x a x x bx x =--=--=--,且()()()()()22cos ln 1cos ln 1f x bx x bx x f x ⎡⎤-=----=--=⎣⎦,所以函数()f x 在定义域内为偶函数,由题意可得:()()22sin ,1,11x f x b bx x x =--∈'--,(i )当202b <≤时,取1min ,1m b ⎧⎫=⎨⎬⎩⎭,()0,x m ∈,则()0,1bx ∈,由(1)可得()()()2222222222sin 111x b x b x x f x b bx b x x x x+-'=-->--=---,且22220,20,10b x b x >-≥->,所以()()2222201x b x b f x x +-'>>-,即当()()0,0,1x m ∈⊆时,()0f x ¢>,则()f x 在()0,m 上单调递增,结合偶函数的对称性可知:()f x 在(),0m -上单调递减,所以0x =是()f x 的极小值点,不合题意;(ⅱ)当22b >时,取()10,0,1x b ⎛⎫∈⊆ ⎪⎝⎭,则()0,1bx ∈,由(1)可得()()()2233223222222sin 2111x x x f x b bx b bx b x b x b x b x b x x x'=--<---=-+++----,构建()33223212,0,h x b x b x b x b x b ⎛⎫=-+++-∈ ⎪⎝⎭,则()3223132,0,h x b x b x b x b ⎛⎫'=-++∈ ⎪⎝⎭,且()33100,0h b h b b b ⎛⎫''=>=-> ⎪⎝⎭,则()0h x '>对10,x b ⎛⎫∀∈ ⎪⎝⎭恒成立,可知()h x 在10,b ⎛⎫ ⎪⎝⎭上单调递增,且()21020,20h b h b ⎛⎫=-<=> ⎪⎝⎭,所以()h x 在10,b ⎛⎫ ⎪⎝⎭内存在唯一的零点10,n b ⎛⎫∈ ⎪⎝⎭,当()0,x n ∈时,则()0h x <,且20,10x x >->,则()()3322322201x f x b x b x b x b x'<-+++-<-,即当()()0,0,1x n ∈⊆时,()0f x '<,则()f x 在()0,n 上单调递减,结合偶函数的对称性可知:()f x 在(),0n -上单调递增,所以0x =是()f x 的极大值点,符合题意;综上所述:22b >,即22a >,解得aa <故a 的取值范围为(),-∞+∞ .。

2024新高考数学一卷试题

2024新高考数学一卷试题

2024年普通高等学校招生全国统一考试数 学本试卷共4页,22小题,满分150分。

考试用时120分钟。

注意事项:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题卡上。

用2B 铅笔将试卷类型A 填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上. 1.已知集合3{|55}A x x ,{3,1,0,2,3}B ,则A B A .{1,0}B .{2,3}C .{3,1,0}D .{1,0,2}2.若11i zz ,则z A .1i B .1i C .1i D .1i3.已知向量(0,1) a ,(2,)x b ,若(4) b b a ,则x A .2B .1C .1D .24.已知cos()m ,tan 2tan ,则cos() A .3mB .3mC .3m D .3m5A .B .C .D .6.已知函数22,0,()e l 0n(1),x x ax a x f x x x≥在R 上单调递增,则a 的取值范围是A .(,0]B .[1,0]C .[1,1]D .[0,)7.当[0,2π]x 时,曲线sin y x 与2sin(3)6πy x 的交点个数为A .3B .4C .6D .88.已知函数()f x 的定义域为R ,()(1)(2)f x f x f x ,且当3x 时,()f x x ,则下列结论中一定正确的是 A .(10)100fB .(20) 1 000fC .(10) 1 000fD .(20)10 000f二、选择题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求。

2023年新高考1卷数学真题试卷附详解

2023年新高考1卷数学真题试卷附详解

2023年高考数学试卷新课标Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A. {}2,1,0,1--B. {}0,1,2C. {}2-D. 22. 已知1i22iz -=+,则z z -=( ) A.i -B. iC. 0D. 13. 已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+,则( ) A. 1λμ+= B. 1λμ+=- C. 1λμ= D. 1λμ=-4. 设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A. (],2-∞-B. [)2,0-C. (]0,2D. [)2,+∞5. 设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ( )A.B.C.D.6. 过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A. 1B.C.D.7. 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件 8. 已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=( ). A.79 B.19C. 19-D. 79-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差10. 噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级20lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ). A. 12p p ≥ B. 2310p p > C. 30100p p =D. 12100p p ≤11. 已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A. ()00f =B. ()10f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点12. 下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有( )A. 直径为0.99m 的球体B. 所有棱长均为1.4m 的四面体C. 底面直径为0.01m ,高为1.8m 的圆柱体D. 底面直径为1.2m ,高为0.01m 的圆柱体三、填空题:本题共4小题,每小题5分,共20分.13. 某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).14. 在正四棱台1111ABCD A B C D -中,1112,1,AB A B AA ===,则该棱台的体积为________.15. 已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.16. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.18. 如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P . 19. 已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+. 20. 设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求d .21. 甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .22. 在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于2023年高考数学试卷新课标Ⅰ卷答案一、选择题.1. C解:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C . 2. A解:因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-. 故选:A . 3. D解:因为()()1,1,1,1a b ==-,所以()1,1a b λλλ+=+-,()1,1a b μμμ+=+- 由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= 即()()()()11110λμλμ+++--=,整理得:1λμ=-. 故选:D . 4. D解:函数2xy =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥.所以a 的取值范围是[)2,+∞. 故选:D. 5. A解:由21e ,得22213e e =,因此2241134a a --=⨯,而1a >,所以a =故选:A. 6. B解:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =过点()0,2P -作圆C 的切线,切点为,A B因为PC ==,则PA ==可得sin APC APC ∠==∠==则sin sin 22sin cos 2APB APC APC APC ∠=∠=∠∠==22221cos cos 2cos sin 04APB APC APC APC ∠=∠=∠-∠=-=-<⎝⎭⎝⎭即APB ∠为钝角.所以()sin sin πsin 4APB APB =-∠=∠=α. 故选:B. 7. C解:甲:{}n a 为等差数列,设其首项为1a ,公差为d 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+ 因此{}nS n为等差数列,则甲是乙的充分条件. 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥ 两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立 因此{}n a 为等差数列,则甲是乙的必要条件. 所以甲是乙的充要条件,C 正确. 故选:C. 8. B解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=则2sin()sin cos cos sin 3αβαβαβ+=+=所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=. 故选:B.二、选择题.9. BD解:对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n 则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小 例如:1,2,3,4,5,6,可得 3.5m n ==. 例如1,1,1,1,1,7,可得1,2m n ==. 例如1,2,2,2,2,2,可得112,6m n ==;故A 错误; 对于选项B :不妨设123456x x x x x x ≤≤≤≤≤可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确; 对于选项C :因为1x 是最小值,6x 是最大值则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差例如:2,4,6,8,10,12,则平均数()12468101276n =+++++= 标准差1s ==4,6,8,10,则平均数()14681074m =+++= 标准差2s ==5>,即12s s >;故C 错误; 对于选项D :不妨设123456x x x x x x ≤≤≤≤≤则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确; 故选:BD. 10. ACD解:由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈= 对于选项A :可得1212100220lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯ 因为12p p L L ≥,则121220lg0p p p L L p =-⨯≥,即12lg 0pp ≥ 所以121p p ≥且12,0p p >,可得12p p ≥,故A 正确; 对于选项B :可得2332200320lg20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯ 因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥ 所以23pp ≥23,0p p >,可得23p ≥ 当且仅当250p L =时,等号成立,故B 错误; 对于选项C :因为33020lg40p p L p =⨯=,即30lg 2pp =可得3100p p =,即30100p p =,故C 正确; 对于选项D :由选项A 可知:121220lgp p p L L p =-⨯ 且12905040p p L L ≤-=-,则1220lg40p p ⨯≤ 即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确; 故选:ACD. 11. ABC解:因为22()()()f xy y f x x f y =+对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确. 对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=令21,()()(1)()y f x f x x f f x =--=+-=又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误. 12. ABD解:对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长 所以能够被整体放入正方体内,故A 正确;对于选项B :, 1.4> 所以能够被整体放入正方体内,故B 正确;对于选项C :, 1.8< 所以不能够被整体放入正方体内,故C 正确;对于选项D :, 1.2>设正方体1111ABCD A B C D -的中心为O ,以1AC 为轴对称放置圆柱,设圆柱的底面圆心1O 到正方体的表面的最近的距离为m h如图,结合对称性可知:11111110.62OC C A C O OC OO ===-= 则1111C O h AA C A =,即0.61h -=解得10.340.012h =>> 所以能够被整体放入正方体内,故D 正确; 故选:ABD.三、填空题.13. 64解:(1(当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2(当从8门课中选修3门①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种. 故答案为:64. 14.解:如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高因为1112,1,AB A B AA ===则111111111122222AO AC B AO AC ======故()1112AM AC A C =-=,则1A M ===所以所求体积为1(413V =⨯++=故答案为:6. 15. [2,3)解:因为02x π≤≤,所以02x πωω≤≤ 令()cos 10f x x ω=-=,则cos 1x ω=有3个根 令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<故答案为:[2,3).16.解:依题意,设22AF m =,则2113,22BF m BF AF a m ===+在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m=-(舍去)所以124,2AF a AF a ==,213BF BF a ==,则5AB a = 故11244cos 55AF a F AF ABa ∠===所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =故5c e a ==.四、解答题.17. (1 (2)6 【小问1详解】3A B C += π3C C ∴-=,即π4C =又2sin()sin sin()A C B A C -==+2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+ sin cos 3cos sin A C A C ∴= sin 3cos A A ∴=即tan 3A =,所以π02A <<sin10A ∴==. 【小问2详解】由(1)知,cos10A ==由sin sin()B A C =+sin cos cos sin A C A C =+=+=由正弦定理,sin sin c bC B=,可得52b ==11sin 22AB h AB AC A ∴⋅=⋅⋅sin 6h b A ∴=⋅==. 18. (1)证明见解析 (2)1 【小问1详解】以C 为坐标原点,1,,CD CB CC 所在直线为,,x y z 轴建立空间直角坐标系,如图则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A2222(0,2,1),(0,2,1)B C A D ∴=-=- 2222B C A D ∴∥又2222B C A D ,不在同一条直线上2222B C A D ∴∥.【小问2详解】 设(0,2,)(04)P λλ≤≤则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---设平面22PA C 的法向量(,,)n x y z =则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩ 令 2z =,得3,1y x λλ=-=-(1,3,2)n λλ∴=--设平面222A C D 的法向量(,,)m a b c =则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ 令 1a =,得1,2==b c(1,1,2)m ∴=cos ,cos1506n m n m n m⋅∴===︒=化简可得,2430λλ-+= 解得1λ=或3λ=(0,2,1)P ∴或(0,2,3)P21B P ∴=.19. (1)答案见解析 (2)证明见解析 【小问1详解】解:因为()()e x f x a a x =+-,定义域为R ,所以()e 1xf x a '=-当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减; 当ln x a >-时,0fx,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增. 【小问2详解】由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立. 令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增.所以()2min 1ln 02222g a g ⎛⎛==--=>⎝⎭⎝⎭,则()0g a >恒成立. 所以当0a >时,3()2ln 2f x a >+恒成立,证毕. 20.(1)3n a n = (2)5150d =【小问1详解】21333a a a =+,132d a d ∴=+,解得1a d = 32133()6d d S a a =+==∴又31232612923T b b b d d d d=++=++= 339621S T d d∴+=+= 即22730d d -+=,解得3d =或12d =(舍去) 1(1)3n a a n d n ∴=+-⋅=.【小问2详解】{}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+ 2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d = 1d >,0n a ∴>又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去) 当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解; 当1a d =时,501495051a a d d =+==,解得5150d =. 综上,5150d =. 21. (1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 【小问1详解】记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B 所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.【小问2详解】设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+ 构造等比数列{}i p λ+设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭ 又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭. 【小问3详解】因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅ 所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- 故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 22. (1)214y x =+ (2)见解析 【小问1详解】设(,)P x y ,则y =两边同平方化简得214y x =+ 故21:4W y x =+. 【小问2详解】法一:设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0.则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<- 同理令0BC k b c n =+=>,且1mn =-,则1m n=-设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+则11||||(((2C AB BC b a c b c a n n ⎛=+=--≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 令()0f x '=,解得x =当0,2x ⎛∈ ⎝⎭时,()0f x '<,此时()f x 单调递减当,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增则min 27()4f x f ==⎝⎭故122C ≥=,即C ≥当C =时,n m ==,且((b a b a -=-,即m n =时等号成立,矛盾,故C >得证.法二:不妨设,,A B D 在W 上,且BA DA ⊥依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线BA ,DA 的斜率均存在且不为0则设BA ,DA 的斜率分别为k 和1k-,由对称性,不妨设1k ≤ 直线AB 的方程为21()4y k x a a =-++则联立22141()4y x y k x a a ⎧=+⎪⎪⎨⎪=-++⎪⎩得220x kx ka a -+-=()()222420k ka a k a ∆=--=->,则2k a ≠则||2|AB k a =-同理||2AD a =+||||2|2AB AD k a a ∴+=-1122k a a k k ⎫≥-++≥+=⎪⎭令2k m =,则(]0,1m ∈,设32(1)1()33m f m m m m m+==+++则2221(21)(1)()23m m f m m m m '-+=+-=,令()0'=f m ,解得12m =当10,2m ⎛⎫∈ ⎪⎝⎭时,()0f m '<,此时()f m 单调递减 当1,2m ⎛⎫∈+∞⎪⎝⎭,()0f m '>,此时()f m 单调递增 则min 127()24f m f ⎛⎫==⎪⎝⎭||||AB AD ∴+≥但12|2|2|2k a a k a a k ⎫-+≥-++⎪⎭,此处取等条件为1k =,与最终取等时k =,故AB AD +>. 法三:为了计算方便,我们将抛物线向下移动14个单位得抛物线2:W y x '=,\矩形ABCD 变换为矩形A B C D '''',则问题等价于矩形A B C D ''''的周长大于设 ()()()222001122,,,,,B t t A t t C t t ''', 根据对称性不妨设 00t ≥.则 1020,A B B C k t t k t t ''''=+=+, 由于 A B B C ''''⊥, 则 ()()10201t t t t ++=-.由于 1020,A B t B C t ''''=-=-, 且 0t 介于 12,t t 之间,则 1020A B B C t t ''''+=--. 令 20tan t t θ+=10πcot ,0,2t t θθ⎛⎫+=-∈ ⎪⎝⎭,则2010tan ,cot t t t t θθ=-=--,从而))002cot tan 2A B B C t t θθ''''+=++-故330022222(cos sin )11sin cos sin cos 2sin cos cos sin sin cos sin cos t A B B C t θθθθθθθθθθθθθθ''''-+⎛⎫+=-++=+ ⎪⎝⎭①当π0,4θ⎛⎤∈ ⎥⎝⎦时第 21 页 共 21 页332222sin cos sin cos sin cos cos sin A B B C θθθθθθθθ''''++≥=+≥=≥ ②当 ππ,42θ⎛⎫∈⎪⎝⎭ 时,由于102t t t <<,从而000cot tan t t t θθ--<<- 从而0cot tan 22t θθ-<<又00t ≥ 故0tan 02t θ≤<,由此330222(cos sin )sin cos sin cos sin cos t A B B C θθθθθθθθ''''-++=+ 3323222sin (cos sin )(sin cos )sin cos 1cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-+>+=+==2≥≥=当且仅当cos 3θ=时等号成立,故A B B C ''''+>,故矩形周长大于。

2024新高考2卷数学试题及答案

2024新高考2卷数学试题及答案

2024新高考2卷数学试题及答案一、选择题(每题5分,共40分)1. 设集合A={x|x<2},B={x|x>3},则A∩B等于()A. 空集B. {x|x<3}C. {x|x>2}D. {x|x<2 或 x>3}答案:A2. 已知函数f(x)=x^2-4x+c,若f(x)在区间(0,4)内单调递减,则实数c的取值范围是()A. c≤-4B. c≤-3C. c≤-2D. c≤-1答案:C3. 若函数f(x)=2x^3-3ax^2+5在x=1处取得极值,则实数a的值为()A. 1B. 2C. 3D. 4答案:B4. 若函数g(x)=x^3-3x+1的导函数g'(x)有两个不同的实数根,则实数a的取值范围是()A. a>0B. a<0C. a≥0D. a≤0答案:D5. 已知函数h(x)=x^2-2x+1/x^2+2x+1的最小值为2,则实数x的取值范围是()A. x∈[0,2]B. x∈(-∞,-2]∪[0,2]C. x∈(-∞,0)∪(2,+∞)D. x∈[2,+∞)答案:B6. 已知三角形ABC的三个内角A、B、C的对边分别为a、b、c,且a=4,b=3,C=120°,则三角形ABC的面积S等于()A. 6B. 12C. 6√3D. 12√3答案:C7. 已知等差数列{an}的前n项和为Sn,且S5=25,S10=100,则该数列的公差d等于()A. 2B. 3C. 4D. 5答案:A8. 若复数z满足|z-1|=|z+i|,则复数z在复平面内的几何位置是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B二、填空题(每题5分,共40分)9. 若函数f(x)=x^3-6x^2+9x+1的导函数f'(x)在x=3处取得极值,则实数a的值为________。

答案:a=610. 若函数g(x)=x^2+bx+c(b、c为常数)在x=2处取得最小值,且g(1)=4,则g(4)的值为________。

2023年新高考天津数学高考真题(含答案)

2023年新高考天津数学高考真题(含答案)
15.若函数 有且仅有两个零点,则 的取值范围为_________.
三、解答题:本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤.
16.在 中,角 所对的边分別是 .已知 .
(1)求 值;
(2)求 的值;
(3)求 .
17.三棱台 中,若 面 , 分别是 中点.
(1)求证: //平面 ;
【1题答案】
【答案】A
【2题答案】
【答案】B
【3题答案】
【答案】D
【4题答案】
【答案】D
【5题答案】
【答案】B
【6题答案】
【答案】C
【7题答案】
【答案】C
【8题答案】
【答案】B
【9题答案】
【答案】D
二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.A. B. NhomakorabeaC D.
二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.
10.已知 是虚数单位,化简 的结果为_________.
11.在 的展开式中, 项的系数为_________.
12.过原点的一条直线与圆 相切,交曲线 于点 ,若 ,则 的值为_________.
(2)求平面 与平面 所成夹角的余弦值;
(3)求点 到平面 的距离.
18.设椭圆 的左右顶点分别为 ,右焦点为 ,已知 .
(1)求椭圆方程及其离心率;
(2)已知点 是椭圆上一动点(不与端点重合),直线 交 轴于点 ,若三角形 的面积是三角形 面积的二倍,求直线 的方程.
19.已知 是等差数列, .
(1)求 的通项公式和 .

2024年高考数学试题(新课标I卷)解析版

2024年高考数学试题(新课标I卷)解析版

2024年高考数学试题(新课标I 卷)一、选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.1.已知集合A =x |-5<x 3<5 ,B ={-3,-1,0,2,3},则A ∩B =A.{-1,0} B.{2,3}C.{-3,-1,0}D.{-1,0,2}【答案】A【解析】A =(-35,35)⇒A ∩B ={-1,0},选A.2.若zz -1=1+i ,则z =A.-1-i B.-1+iC.1-iD.1+i【答案】C【解析】z z -1=1+i ⇒z =1+i i =1-i ,选C.3.已知向量a =0,1 ,b =2,x ,若b ⊥b -4a ,则x =A.-2 B.-1C.1D.2【答案】D【解析】b ⊥b -4a ⇒2×2+x (x -4)=0⇒x =2,选D.4.已知cos α+β =m ,tan αtan β=2,则cos α-β =A.-3m B.-m3C.m 3D.3m【答案】A【解析】αcos βcos -αsin βsin =m ,αsin βsin =2αcos βcos ⇒αcos βcos =-m ,αsin βsin =-2m ,所以cos α-β =αcos βcos +αsin βsin =-3m ,选A.5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为A.23π B.33πC.63πD.93π【答案】B【解析】如图所示,h =3,圆锥母线长l =r 2+3,h h rrl由题知23πr =πr r 2+3⇒r =3⇒V 锥=13×π×32×3=33π.选B.6.已知函数f x =-x 2-2ax -a ,x <0,e x +ln x +1 ,x ≥0 在R 上单调递增,则实数a 的取值范围是A.(-∞,0]B.-1,0C.-1,1D.[0,+∞)【答案】B 【解析】由题知-a ≥0,-a ≤1⇒-1≤a ≤0,选B.7.当x ∈0,2π 时,曲线y =sin x 与y =2sin (3x -π6)的交点个数为A.3 B.4C.6D.8【答案】C【解析】作出两个函数的图象,2π3π2ππ2Oxy 由图知,两个函数的交点个数为6,选C.【总结】五点作图法,处理作图,好像没有其他解法.8.已知函数f x 的定义域为R ,f x >f x -1 +f x -2 ,且当x <3时,f x =x ,则下列结论中一定正确的是A.f 10 >100 B.f 20 >1000C.f 10 <1000D.f 20 <10000【答案】B【解析】由已知得f (1)=1,f (2)=2,思路一:常规推理+计算因为f x >f x -1 +f x -2 ,所以f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,f (11)>144,f (12)>233,f (13)>377,f (14)>610,f (15)>987,f (16)>1597,f (17)>2584,f (18)>4181,f (19)>6765,f (20)>10946,⋯,所以f (20)>f (19)>⋯>f (16)>1000,选B.思路二:推理+估算由题知,当x >3时,f (x )上不封顶,C ,D 错误;f (3)>3,f (4)>5,f (5)>8,f (6)>13,f (7)>21,f (8)>34,f (9)>55,f (10)>89,当x >4时,f (x )>f x -1 +f x -2 >2f (x -2),所以f (20)>2f (18)>22f (16)>⋯>25f (10)>1000,A 错误,B 正确;故选B.【总结】需要耐心的计算.二、多选题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x=2.1,样本方差s 2=0.01,已知该种植区以往的亩收入X 服从正态分布N 1.8,0.12 ,假设推动出口后的亩收入Y 服从正态分布x ,s 2,则(若随机变量Z 服从正态分布N μ,σ2 ,则P Z <μ+σ ≈0.8413)A.P X >2 >0.2 B.P X >2 <0.5C.P Y >2 >0.5 D.P Y >2 <0.8【答案】BC【解析】画个图,对于X :μ=1.8,σ=0.1;对于Y :μ=2.1,σ=0.1,1.81.7 1.92.12.0 2.22.0由题知P (X <1.9)=0.8413,所以P (X >2)<P (x >1.9)=0.1587<0.2<0.5,A 错误,B 正确;因为P (Y <2.2)=0.8413,所以P Y >2 =P Y <2.2 =0.8413>0.8>0.5,C 正确,D 错误;故选BC.10.设函数f x =x -1 2x -4 ,则A.x =3是f x 的极小值点B.当0<x <1时,f x <f x 2C.当1<x <2时,-4<f 2x -1 <0D.当-1<x <0时,f 2-x >f x【答案】ACD【解析】f '(x )=2(x -1)(x -4)+(x -1)2=3(x -1)(x -3),作出f (x )的图象如图所示,x =1x =3所以x =1是f x 的极大值点,x =3是f x 的极小值点,A 正确;当0<x <1时,f (x )在(0,1)↗,因为x >x 2,所以f (x )>f (x 2),B 错误;当1<x <2时,t =2x -1∈(1,3),因为f (t )在(1,3)↘,所以f (t )∈(-4,0),即-4<f 2x -1 <0,C 正确;当-1<x <0时,x -1<0,f 2-x -f x =(x -1)2(-2-x )-x -1 2x -4 =-2(x -1)3>0,所以f 2-x >f x ,D 正确;综上,选ACD.【总结】选项B 用了单调性法,选项C 转化为值域,选项D 用了最常见的作差法.11.造型Ժ可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点F 2,0 的距离与到定直线x =a a <0 的距离之积为4,则OxyFA.a =-2B.点22,0 在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD 【解析】如图所示,OxyFx =aP对于A ,由题知,O 到点F 的距离等于与到定直线x =a a <0 的距离之积为4,所以(-a )∙2=4,解得a =-2,A 正确;对于B ,设点P (x ,y )是曲线C 上任意一点,则(x +2)(x -2)2+y 2=4,即(x -2)2+y 2=(4x +2)2,因为(22-2)2=(422+2)2,所以点22,0 在C 上,B 正确;对于C ,因为y 2=(4x +2)2-(x -2)2,记f (x )=(4x +2)2-(x -2)2,x >0,所以f '(x )=-32(x +2)3-2(x -2)=2[-16(x +2)3+2-x ],发现f (2)=1,f '(2)=-12<0,所以存在0<x 1<2,使得当x ∈(x 1,2)时,f '(x )<0,所以f (x )在(x 1,2)↘,所以f (x )>f (2)=1,即f (x )的最大值一定大于1,C 错误;对于D ,y 02=(4x 0+2)2-(x 0-2)2≤(4x 0+2)2,所以y 0≤4x 0+2,D 正确;综上,选ABD.【总结】本题相对要难一点,选出来一个答案不难.三、填空题:本大题共3小题,每小题5分,共计15分.12.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2作平行于y 轴的直线交C 于A ,B两点,若F 1A =13,AB =10,则C 的离心率为.【答案】32【解析】由题知|F 1F 2|=2c =12,F 2A =b 2a =5,c 2=a 2+b2 ,解得a =4,b =25,c =6,所以C 的离心率e =c a =32.13.若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln x +1 +a 的切线,则a =.【答案】2ln 【解析】设f (x )=e x +x ,g (x )=ln x +1 +a ,则f '(x )=e x +1,g '(x )=1x +1,即f '(0)=2,所以f (x )在(0,1)处的切线方程为l :y -1=2(x -0),即y =2x +1,设l 与g (x )相切于点A (x 0,(x 0+1)ln +a ),则g '(x 0)=1x 0+1=2,解得x 0=-12,所以(-12+1)ln +a =0,解得a =2ln .14.甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于2的概率为.【答案】12【解析】因为甲出1一定输,要使甲的总分不小于2,则甲得3分或得2分.第一类:甲得3分只有一种可能:1-8,3-2,5-4,7-6.第二类:甲得2分(1)甲出3和出5赢,其余输,共1种:3-2,5-4,1-6,7-8;(2)甲出3和出7赢,其余输,共3种:3-2,7-6,1-4,5-8;3-2,7-4,1-6,5-8;3-2,7-4,1-8,5-6;(3)甲出5和出7赢,其余输,共7种:5-4,7-6,1-2,3-8;5-4,7-2,1-6,3-8;5-4,7-2,1-8,3-6;5-2,7-6,1-4,3-8;5-2,7-6,1-8,3-4;5-2,7-4,1-6,3-8;5-2,7-4,1-8,3-6;所以甲的总得分不小于2的共有12种可能,所以所求的概率p =12A 44=12.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos B ,a 2+b 2-c 2=2ab .(1)求B ;(2)若△ABC 的面积为3+3,求c .【答案】(1)B =π3;(2)2 2.【解析】(1)因为a 2+b 2-c 2=2ab ,所以C cos =a 2+b 2-c 22ab =2ab 2ab=22,因为0<C <π,所以C =π4,又sin C =2cos B ,所以22=2B cos ,即B cos =12,因为0<B <π,所以B =π3.(2)方法一:由(1)知A =π-B -C =5π12,所以A sin =(π6+π4)sin =6+24,因为a A sin =b B sin =cCsin =k >0,所以S =12ac B sin =12k 2A sin B sin C sin =12k 2∙6+24∙32∙22=3+3,所以k 2=16,即k =4,所以c =k C sin =4×22=2 2.16.(15分)已知A 0,3 和P (3,32)为椭圆C :x 2a 2+y 2b2=1a >b >0 上两点.(1)求椭圆C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求直线l 的方程.【答案】(1)12;(2)x -2y =0或3x -2y -6=0.【解析】(1)由题知b =3,9a 2+94b2=1,解得a =23,b =3 ,所以c =a 2-b 2=3,所以椭圆C的离心率e=ca=12.(2)由(1)知,椭圆C的方程为x212+y29=1.O xyPABD当直线l的斜率不存在时,B(3,-32),此时S=92,不满足题意;当直线l的斜率存在时,设l:y=k(x-3)+3 2,代入x212+y29=1,整理得(3+4k2)x2-8k(3k-32)x+36k2-36k-27=0,设B(x1,y1),由韦达定理得3+x1=8k(3k-32)3+4k2,3x1=36k2-36k-273+4k2所以|BP|=1+k2|x1-3|=1+k2(8k(3k-32)3+4k2)2-364k2-4k-33+4k2=43k2+13k2+9k+2744k2+3,点A到直线PB的距离h2=|3k+32|k2+1,所以△ABP的面积S=12|BP|∙h2=|3k+32|k2+1=9,解得k=12或32,所以直线l的方程为y=12x或y=32x-3.综上,直线l的方程为x-2y=0或3x-2y-6=0.17.(15分)如图,四棱锥P-ABCD中,P A⊥底面ABCD,P A=AC=2,BC=1,AB=3.(1)若AD⊥PB,证明:AD⎳平面PBC;(2)若AD⊥DC,且二面角A-CP-D的正弦值为427,求AD.AB CDP 【答案】(1)略;(2)3.【解析】(1)证明:因为P A ⊥底面ABCD ,BC ⊂底面ABCD ,所以P A ⊥BC ,P A ⊥AD ,因为AC =2,BC =1,AB =3,所以AB 2+BC 2=AC 2,即AB ⊥BC ,又P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥平面P AB ,因为PB ⊥AD ,P A ∩PB =P ,P A ,PB ⊂平面P AB ,所以AD ⊥平面P AB ,所以AD ⎳BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以AD ⎳平面PBC .(2)过D 作DQ ⊥平面ABCD ,以DA ,DC ,DQ 分别为x ,y ,z 轴,建立空间直角坐标系D -xyz ,A BCDPz xyQ设DA =a ,DC =b ,则D (0,0,0),A (a ,0,0),C (0,b ,0),P (a ,0,2),且a 2+b 2=4,①所以AC =(-a ,b ,0),AP =(0,0,2),DC =(0,b ,0),DP =(a ,0,2),设平面APC 的一个法向量为n 1=(x 1,y 1,z 1),则AC∙n 1=0,AP ∙n 1=0 ,即-ax 1+by 1=0,2z 1=0 ,令x 1=b ,则n 1=(b ,a ,0),设平面PCD 的一个法向量为n 2=(x 2,y 2,z 2),则DC∙n 2=0,DP ∙n 2=0 ,即by 2=0,ax 1+2z 1=0 ,令x 1=2,则n 2=(2,0,-a ),所以‹n 1,n 2›cos =n 1∙n 2|n 1||n 2|=2ba 2+b 2a 2+4=ba 2+4,设二面角A -CP -D 的平面角为θ,则θsin =427,所以|θcos |=|‹n 1,n 2›cos |=b a 2+4=17,即7b 2=a 2+4,②由①②得a =3,b =1,所以AD =a = 3.【总结】本题建系可以设两个变量,也可以设一个变量,注意运算.18.(17分)已知函数f x =lnx2-x+ax +b x -1 3.(1)若b =0,且f x ≥0,求a 的最小值;(2)证明:曲线y =f x 是中心对称图形;(3)若f x >-2当且仅当1<x <2,求b 的取值范围.【答案】(1)-2;(2)略;(3)[-23,+∞).【解析】(1)由x2-x>0,得0<x <2,所以f (x )的定义域为(0,2),当b =0时,f (x )=ln x 2-x +ax ,f '(x )=1x +12-x +a ≥0,因为1x +12-x ≥(1+1)2x +2-x =2,当且仅当x =1时取等号,所以f '(x )min =2+a ≥0,解得a ≥-2,所以a 的最小值为-2;(2)发现f (1)=a ,猜测f (x )关于(1,a )对称,下面尝试证明此结论,因为f (1+x )+f (1-x )=ln 1+x 1-x +a (1+x )+bx 3+ln 1-x1+x+a (1-x )+b -x 3=2a ,所以f (x )关于(1,a )对称.(3)当且仅当1<x <2时f (x )>-2,则f (1)=a =-2,所以f (x )=ln x2-x-2x +b x -1 3,f '(x )=1x +12-x -2+3b (x -1)2=(x -1)22(2-x )+3b (x -1)2=(x -1)2[2x (2-x )+3b ]~2x (2-x )+3b ,发现f '(1)=2+3b ≥0,则b ≥-23,当b ≥-23时,2x (2-x )+3b ≥2x (2-x )-2=2(x -1)22(2-x )≥0,即f '(x )≥0,所以f (x )在(0,2)↗,因为f (1)=-2,所以f (x )>-2=f (1)⇔1<x <2,符合题意;当b <-23时,则2x (2-x )∈[2,+∞),f '(x )∈[3b +2,+∞),存在1<x 1<2,使得当x ∈(1,x 1)时,f '(x )<0,f (x )在(1,x 1)↘,所以f (x )<f (1)=-2,不符合题意;综上,实数b 的取值范围是[-23,+∞).19.(17分)设m 为正整数,数列a 1,a 2,⋯,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使得数列a 1,a 2,⋯,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,⋯,a 4m +2是2,13 -可分数列;(3)从1,2,⋯,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,⋯,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)(1,2),(5,6),(1,6);(2)略;(3)略.【解析】(1)对于特殊的情况,我们不难分析出来,要么一边删除2个,要么两边各删除1个,所以满足题意的(i ,j )为:(1,2),(5,6),(1,6).(2)下标和项是成等差的充要条件,即m ,n ,k 成等差⇔a m ,a n ,a k 成等差(证明略).首先我们证明,当m =3时成立,那么m ≥3时都会成立.当m =3时,4m +2=14,那么当m >3时,整个{a n }可以拆成两段,为1≤n ≤14和n >14,不管m 取值如何,都有4m -12个数,也就是可以分成m -3组,而这m -3组只要按照原来的顺序依次分组,显然都是等差数列.如:m =6,前面14个按照m =3分组,后面的按照顺序,每4个一组,显然这样分满足题意.下面证明m =3时成立,可以采用列举法,只要有一种方法成立就行,去掉i =2,j =13,可以分为{1,4,7,10},{5,8,11,14},{3,6,9,12}这三组,满足题意.(3)设在给定m 的情况下,(i ,j )的组数为b m ,当m 变成m +1时,数列就变成了a 1,a 2,a 3,a 4,a 5,⋯,a 4m +2,a 4m +3,a 4m +4,a 4m +5,a 4m +6,这里可以分成3组,前4个一组即{a 1,a 2,a 3,a 4},中间的一组,后4个一组即{a 4m +3,a 4m +4,a 4m +5,a 4m +6},此时我们要在这里面删除2个数,那么会有以下几种情况:一、两个都在中间中间有4m -2个数,且为等差数列,删除2个的话,总数为b m -1种;二、一个在第一组,一个在中间组或两个都在第一组第一组和中间组连起来,会变成4m +2个数的等差数列,这里面总共有b m 种方法,但是要去掉两个都在中间的情况,共有b m -b m -1种;三、一个在中间组,一个在最后一组,或者都在最后一组和上面一样,也是共有b m -b m -1种;四、一个在第一组,一个在最后一组此时,将a 1,a 4m +6同时删除是肯定可以的,这算一种;然后,从(2)的结果来看,把a 2,a 4m +5同时删除也是可以的,因为m =3成立之后,当m >3时,只是相当于往中间加了4个连续的等差数而已,其它是不变的,这也算一种.综上,就会有b m +1≥b m -1+2(b m -b m -1)+2=2b m -b m -1+2,因为b 0=0,b 1=3,所以b m ≥m 2+2m ,如果你是随便删除,总共有C 24m +2=8m 2+6m +1种,所以P m =b m C 24m +2≥m 2+2m 8m 2+6m +1>18.。

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题1. 若函数f(x) = 2x^3 3x^2 + x + 1,则f'(1)的值为多少?A. 6B. 7C. 8D. 9答案:B解析:我们需要求出函数f(x)的导数f'(x)。

根据导数的定义,f'(x) = 6x^2 6x + 1。

将x = 1代入f'(x)中,得到f'(1) = 61^2 6 1 + 1 = 1。

因此,f'(1)的值为1,选项B正确。

2. 若直线y = kx + b与圆(x 2)^2 + (y 3)^2 = 25相切,则k的值是多少?A. 1/2B. 1C. 2D. 3答案:A解析:由于直线与圆相切,它们在切点处具有相同的斜率。

直线的斜率为k,圆的斜率可以通过求导得到。

对圆的方程求导,得到2(x 2) + 2(y 3)y' = 0。

在切点处,x和y的值满足圆的方程,因此可以解出y' = 1/2。

由于直线和圆在切点处斜率相同,所以k = 1/2。

因此,选项A正确。

3. 若等差数列{an}的前n项和为Sn,且a1 = 2,d = 3,则S10的值为多少?A. 155B. 165C. 175D. 185答案:C解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。

由于an = a1 + (n 1)d,代入a1 = 2和d = 3,得到an = 2 + 3(n 1)= 3n 1。

将an代入Sn的公式中,得到Sn = n/2 (2 + 3n 1) =n/2 (3n + 1)。

将n = 10代入,得到S10 = 10/2 (3 10 + 1) = 175。

因此,选项C正确。

4. 若函数f(x) = log2(x) + log2(x + 1),则f(1)的值为多少?A. 1B. 2C. 3D. 4答案:C解析:将x = 1代入函数f(x)中,得到f(1) = log2(1) +log2(1 + 1) = log2(1) + log2(2) = 0 + 1 = 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新数学高考试题带答案一、选择题1.如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )A .B .C .D .2.设函数()()21,04,0x log x x f x x ⎧-<=⎨≥⎩,则()()233f f log -+=( )A .9B .11C .13D .153.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A .19B .29C .49D .7184.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ). A 2B 3C 5D .65.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( )A .43y x =±B .34y x C .35y x =± D .53y x =±6.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}7.下列函数中,最小正周期为π,且图象关于直线3x π=对称的函数是( )A .2sin 23y x π⎛⎫=+⎪⎝⎭B .2sin 26y x π⎛⎫=-⎪⎝⎭C .2sin 23x y π⎛⎫=+⎪⎝⎭ D .2sin 23y x π⎛⎫=-⎪⎝⎭8.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( ) A .1x <-或4x > B .0x 或2x -C .0x <或2x >D .12x -或3x 9.设集合,,则=( )A .B .C .D .10.函数()f x 的图象如图所示,()f x '为函数()f x 的导函数,下列数值排序正确是( )A .()()()()02332f f f f ''<<<-B .()()()()03322f f f f ''<<-<C .()()()()03232f f f f ''<<<-D .()()()()03223f f f f ''<-<<11.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .212.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( )A 3B .2C 6D 5二、填空题13.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2EF ,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.14.复数()1i i +的实部为 .15.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.16.若9()a x x-的展开式中3x 的系数是84-,则a = .17.函数()lg 12sin y x =-的定义域是________. 18.()sin 5013tan10+=________________.19.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,2,求三棱锥C 一A 1DE 的体积. 22.已知2256x ≤且21log 2x ≥,求函数22()log 22x xf x =⋅的最大值和最小值. 23.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1- (1)求m 的值;(2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 24.(辽宁省葫芦岛市2018年二模)直角坐标系xOy 中,直线l 的参数方程为21x tcos y tsin αα=+⎧⎨=+⎩ (t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为6cos ρθ=.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()2,1,求PA PB +的最小值. 25.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+=,M 为l 3与C 的交点,求M 的极径.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】圆(y ﹣1)2+x 2=4的圆心为(0,1),半径r =2,与抛物线的焦点重合,可得|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A ,即可得出三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3,利用1<y B <3,即可得出. 【详解】抛物线x 2=4y 的焦点为(0,1),准线方程为y =﹣1, 圆(y ﹣1)2+x 2=4的圆心为(0,1), 与抛物线的焦点重合,且半径r =2, ∴|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A , ∴三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3, ∵1<y B <3,∴三角形ABF 的周长的取值范围是(4,6).故选:B . 【点睛】本题考查了抛物线的定义与圆的标准方程及其性质、三角形的周长,考查了推理能力与计算能力,属于中档题.2.B解析:B 【解析】 【分析】根据自变量所在的范围代入相应的解析式计算即可得到答案. 【详解】 ∵函数2log (1),0()4,0xx x f x x -<⎧=⎨≥⎩, ∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11.故选B . 【点睛】本题考查函数值的求法,考查指对函数的运算性质,是基础题.3.C解析:C 【解析】试题分析:由题为古典概型,两人取数作差的绝对值的情况共有36种,满足|a-b|≤1的有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,2)(2,1)(3,2)(2,3)(3,4)(4,3)(5,4)(4,5)(5,6)(6,5)共16种情况,则概率为;164369p == 考点:古典概型的计算.4.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,2,MF x NF x MN x ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得22x a =,所以12222,22NF a a NF a =+=,01245FNF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()2220222222222222cos45a aac a a a ++-=+⋅,解得3ce a== 故选B.【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.5.A解析:A 【解析】 【分析】依据题意作出图象,由双曲线定义可得1122PF F F c ==,又直线PF 2与以C 的实轴为直径的圆相切,可得2MF b =,对2OF M ∠在两个三角形中分别用余弦定理及余弦定义列方程,即可求得2b a c =+,联立222c a b =+,即可求得43b a =,问题得解. 【详解】依据题意作出图象,如下:则1122PF F F c ==,OM a =, 又直线PF 2与以C 的实轴为直径的圆相切, 所以2OM PF ⊥, 所以222MF c a b =-=由双曲线定义可得:212PF PF a -=,所以222PFc a =+,所以()()()()22222222cos 2222c a c c b OF M c c a c ++-∠==⨯⨯+整理得:2b a c =+,即:2b a c -= 将2c b a =-代入222c a b =+,整理得:43b a =, 所以C 的渐近线方程为43b y x x a =±=± 故选A 【点睛】本题主要考查了双曲线的定义及圆的曲线性质,还考查了三角函数定义及余弦定理,考查计算能力及方程思想,属于难题.6.C解析:C 【解析】 【分析】由题意先解出集合A,进而得到结果. 【详解】解:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C. 【点睛】本题主要考查交集的运算,属于基础题.7.B解析:B 【解析】 【分析】首先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值,而函数sin()y A x B ωϕ=++在对称轴处取最值,即可求出结果. 【详解】先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D求得函数值为0,,而函数sin()y A x B ωϕ=++在对称轴处取最值. 故选:B . 【点睛】本题考查三角函数的周期性、对称性,难度较易.解析:C 【解析】 【分析】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,题目可以转化为找x≤-12或x≥3的必要不充分条件条件,依次分析选项即可得答案. 【详解】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,则2x 2-5x-3≥0⇔x≤12-或3x ,所以可以转化为找x≤-12或x≥3的必要不充分条件; 依次选项可得:x 1<-或x 4>是12x ≤-或x≥3成立的充分不必要条件; x 0≥或x 2≤-是12x ≤-或x≥3成立的既不充分也不必要条件x 0<或x 2>是12x ≤-或x≥3成立的必要不充分条件; x≤-12或x≥3是12x ≤-或x≥3成立的充要条件; 故选C . 【点睛】本题考查了充分必要条件,涉及一元二次不等式的解答,关键是正确解不等式2x 2-5x-3≥0.9.B解析:B 【解析】 试题分析:集合,故选B.考点:集合的交集运算.10.B解析:B 【解析】 【分析】根据导数的几何意义可对比切线斜率得到()()032f f ''<<,将()()32f f -看作过()()22f ,和()()3,3f 的割线的斜率,由图象可得斜率的大小关系,进而得到结果.【详解】由()f x 图象可知,()f x 在2x =处的切线斜率大于在3x =处的切线斜率,且斜率为()()032f f ''∴<<,()()()()323232f f f f --=-,()()32f f ∴-可看作过()()22f ,和()()3,3f 的割线的斜率,由图象可知()()()()3322f f f f ''<-<,()()()()03322f f f f ''∴<<-<.故选:B . 【点睛】本题考查导数几何意义的应用,关键是能够将问题转化为切线和割线斜率大小关系的比较,进而根据图象得到结果.11.C解析:C 【解析】试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可. 解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素, 当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素, 当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素, 当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素, 故选C .点评:本题考查元素与集合的关系,基本知识的考查.12.D解析:D 【解析】由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y x a y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以e == D. 【点睛】双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±.直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点. 当∆<0时,直线与抛物线相离,没有交点.二、填空题13.【解析】【分析】对于①可由线面垂直证两线垂直;对于②可由线面平行的定义证明线面平行;对于③可证明棱锥的高与底面积都是定值得出体积为定值;对于④可由两个特殊位置说明两异面直线所成的角不是定值【详解】对 解析:①②③【解析】 【分析】对于①,可由线面垂直证两线垂直;对于②,可由线面平行的定义证明线面平行;对于③,可证明棱锥的高与底面积都是定值得出体积为定值;对于④,可由两个特殊位置说明两异面直线所成的角不是定值. 【详解】对于①,由1,AC BD AC BB ⊥⊥,可得AC ⊥面11DD BB ,故可得出AC BE ⊥,此命题正确;对于②,由正方体1111ABCD A B C D -的两个底面平行,EF 在平面1111D C B A 内,故EF 与平面ABCD 无公共点,故有//EF 平面ABCD ,此命题正确;对于③,EF 为定值,B 到EF 距离为定值,所以三角形BEF 的面积是定值,又因为A 点到面11DD BB 距离是定值,故可得三棱锥A BEF -的体积为定值,此命题正确; 对于④,由图知,当F 与1B 重合时,此时E 与上底面中心为O 重合,则两异面直线所成的角是1A AO ∠,当E 与1D 重合时,此时点F 与O 重合,则两异面直线所成的角是1OBC ∠,此二角不相等,故异面直线,AE BF 所成的角不为定值,此命题错误.综上知①②③正确,故答案为①②③ 【点睛】本题通过对多个命题真假的判断,综合考查线面平行的判断、线面垂直的判断与性质、棱锥的体积公式以及异面直线所成的角,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.14.【解析】复数其实部为考点:复数的乘法运算实部 解析:1-【解析】复数(1)11i i i i +=-=-+,其实部为1-. 考点:复数的乘法运算、实部.15.【解析】【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单解析:1,22⎡⎤⎢⎥⎣⎦【解析】【分析】作出可行域,y x表示(),x y 与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解. 【详解】如图,不等式组201030y x y x y -⎧⎪--⎨⎪+-⎩表示的平面区域ABC (包括边界),所以y x 表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B ,,所以122OA OB k k ==,,故1,22y x ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.16.1【解析】【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的项的系数再根据的系数是列方程求解即可【详解】展开式的的通项为令的展开式中的系数为故答案为1【点睛】本题主要考查二 解析:1【解析】【分析】先求出二项式9()ax x-的展开式的通项公式,令x 的指数等于4,求出r 的值,即可求得展开式中3x 的项的系数,再根据3x 的系数是84-列方程求解即可.【详解】9()a x x -展开式的的通项为()992199rr r r r r r a T C x C x a x --+⎛⎫=-=- ⎪⎝⎭, 令9233r r -=⇒=,9()a x x-的展开式中3x 的系数为()339841C a a -=-⇒=, 故答案为1.【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r r r n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.17.【解析】由题意可得函数满足即解得即函数的定义域为 解析:513|22,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭【解析】由题意可得,函数lg(12sin )y x =-满足12sin 0x ->,即1sin 2x , 解得51322,66k x k k Z ππππ+<<+∈, 即函数lg(12sin )y x =-的定义域为513{|22,}66x k x k k Z ππππ+<<+∈. 18.【解析】【分析】利用弦化切的运算技巧得出然后利用辅助角二倍角正弦以及诱导公式可计算出结果【详解】原式故答案为:【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值在计算时要结合角之间的关系选择 解析:1【解析】【分析】 利用弦化切的运算技巧得出()cos103sin10sin 50cos 0sin 5013t 1an10++=⋅,然后利用辅助角、二倍角正弦以及诱导公式可计算出结果.【详解】原式()2sin 1030sin50cos103sin102sin 40cos 40sin50cos10cos10cos10++=⋅==()sin 9010sin80cos101cos10cos10cos10-====. 故答案为:1.【点睛】 本题考查利用三角恒等变换思想求非特殊角的三角函数值,在计算时要结合角之间的关系选择合适的公式化简计算,考查计算能力,属于中等题.19.8【解析】【详解】由题意知a ∈Pb ∈Q 则a+b 的取值分别为123467811故集合P+Q 中的元素有8个点睛:求元素(个数)的方法根据题目一一列举可能取值(应用列举法和分类讨论思想)然后根据集合元素的解析:8【解析】【详解】由题意知a ∈P ,b ∈Q ,则a+b 的取值分别为1,2,3,4,6,7,8,11.故集合P+Q 中的元素有8个. 点睛:求元素(个数)的方法,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.20.2025【解析】设这三个数:()则成等比数列则或(舍)则原三个数:152025解析:20 25【解析】 设这三个数:、、(),则、、成等比数列,则或(舍),则原三个数:15、20、25三、解答题21.(Ⅰ)见解析(Ⅱ)111632132C A DE V -=⨯⨯⨯⨯= 【解析】试题分析:(Ⅰ)连接AC 1交A 1C 于点F ,则DF 为三角形ABC 1的中位线,故DF ∥BC 1.再根据直线和平面平行的判定定理证得BC 1∥平面A 1CD .(Ⅱ)由题意可得此直三棱柱的底面ABC 为等腰直角三角形,由D 为AB 的中点可得CD ⊥平面ABB 1A 1.求得CD 的值,利用勾股定理求得A 1D 、DE 和A 1E 的值,可得A 1D ⊥DE .进而求得S △A 1DE 的值,再根据三棱锥C-A 1DE 的体积为13•S △A1DE •CD ,运算求得结果 试题解析:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点又D 是AB 中点, 连结DF ,则BC 1∥DF . 3分因为DF ⊂平面A 1CD ,BC 1不包含于平面A 1CD , 4分所以BC 1∥平面A 1CD . 5分(2)解:因为ABC ﹣A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC=CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB=A ,于是CD ⊥平面ABB 1A 1. 8分由AA 1=AC=CB=2,得∠ACB=90°,,,,A 1E=3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D 10分所以三菱锥C ﹣A 1DE 的体积为:==1. 12分 考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积22.最小值为14-,最大值为2. 【解析】【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭. 当23log ,2x =()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.23.(1)1;(2)见解析【解析】【分析】 (1)由条件可得()2f x m x +=-,故有0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,进而可得结果;(2)根据()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭利用基本不等式即可得结果.【详解】 (1)函数()2f x m x =--,m R ∈,故()2f x m x +=-,由题意可得0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,故1m =. (2)由a ,b ,R c ∈,且111 123m a b c++==, ∴()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭ 23321112233b c a c a b a a b b c c=++++++++233233692233b c a c a b a a b b c c=++++++≥+=, 当且仅当2332 12233bc a c a b a a b b c c======时,等号成立. 所以239a b c ++≥.【点睛】 本题主要考查带有绝对值的函数的值域,基本不等式在最值问题中的应用,属于中档题.24.(1)()2239x y -+=(2)【解析】分析:(1)将6cos ρθ=两边同乘ρ,根据直角坐标与极坐标的对应关系得出直角坐标方程;(2)将直线的参数方程代入圆的普通方程,根据参数的几何意义与根与系数的关系得出PA PB +.详解:(1)由26cos ,6cos ρθρρθ==得,化为直角坐标方程为226x y x +=,即()2239x y -+=(2)将l 的参数方程带入圆C 的直角坐标方程,得()22cos sin 70t t αα+--= 因为0>,可设12,t t 是上述方程的两根,()12122cos sin 7t t t t αα⎧+=--⎨⋅=-⎩所以又因为(2,1)为直线所过定点,1212PA PB t t t t ∴+=+=-==≥=所以PA PB 的最小值为∴+点睛:本题考查了极坐标方程与直角坐标方程的转化,参数方程的几何意义与应用,属于基础题.25.(1)()2240x y y -=≠(2【解析】(1)消去参数t 得1l 的普通方程()1:2l y k x =-;消去参数m 得l 2的普通方程()21:2l y x k=+. 设(),P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠.所以C 的普通方程为()2240x y y -=≠. (2)C 的极坐标方程为()()222cos sin 402π,πρθθθθ-=<<≠. 联立()()222cos sin 4,cos sin 0ρθθρθθ⎧-=⎪⎨+=⎪⎩得()cos sin 2cos sin θθθθ-=+. 故1tan 3θ=-, 从而2291cos ,sin 1010θθ==. 代入()222cos sin 4ρθθ-=得25ρ=,所以交点M【名师点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.。

相关文档
最新文档