最新沪科版九年级数学上册《直角三角形相似的判定》教学设计(精品教案)
2020-2021学年最新沪科版九年级数学上册《相似三角形的判定》教学设计-优质课教案

相似三角形的判定(2)教学设计教学目标知识与技能:1、理解相似三角形判定定理1的推理过程。
2、能用相似三角形判定定理1解决简单问题过程与方法:经历探究相似三角形判定定理1的证明过程,学会将未知化为已知的思想方法。
情感、态度与价值观:通过学习利用相似三角形的判定1解决简单问题的过程,感受学习这个定理的意义。
学情介绍学生在学习了全等三角形的判定与性质以及相似三角形判定预备定理的基础上,利用化未知为已知的思想,主动建构相似三角形的判定定理1,应该难度不大。
内容分析教材在安排学习了全等三角形的知识和相似三角形的判定预备定理的基础上,引出了相似三角形的判定定理1,这部分知识既是预备的继续,又为后继定理的引入作好了铺垫。
教学重、难点重点:相似三角形的判定定理1的证明。
难点:利用相似三角形的判定定理1解决简单问题。
教学过程一、 知识回顾1、根据相似多边形的定义,你知道什么样的两个三角形相似吗? (请同学回答)显然当满足(1)对应角相等 (2)对应边成比例这两个条件的两个三角形是相似三角形.如果△A ′B ′C ′∽△ ABC 那么必须满足:∠A ′= ∠A, ∠ B ′=∠B, ∠ C ′=∠C2、请同学们画图表示相似三角形判定定理的预备定理。
(同学们在纸上作图,并把画好的部分同学作业,通过展示台展示)B C B ′′A AC C A BC CB AB B A ''=''=''DE ∥BC△ADE ∽△ ABC二、新课教学 课堂活动:(利用多媒体演示)已知在△ABC 和△A ′B ′C ′中.∠A=∠A ′,∠ B=∠B ′。
求证:△ABC ∽△A ′B ′C ′(合作交流:动手操作后,举手回答问题)(通过合作交流,培养学生分析问题,解决问题的能力。
) 问题解答:′ B ′ C ′ A B C DE E A BC AB C D E证明:在△ABC的边AB(或延长线)上截取AD=A′B′.过点D作DE ∥BC.交AC于点E.则有△ADE∽△ABC∵∠ADE=∠B ∠B=∠B′∴∠ADE=∠B′又∵∠A=∠A′AD=A′B′∴△ADE≌△A′B′C′(ASA)∴△A′B′C′∽△ABC问题:由上面的数学活动你发现了什么?(请同学们交流思考,并举手回答)师生共同归纳;由上面的数学活动我们可以得到判定三角形相似的定理定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等.那么这两个三角形相似.(可简单说成:两角对应相等的两个三角形相似)想一想:(多媒体演示)1、△ABC和△DEF中∠A=80°、∠B=40°、∠D=80°、∠E=60°.那么这两个三角形相似吗?2、等边三角形都相似吗?3、一个锐角对应相等的两个直角三角形相似吗?4、有一个内角对应相等的两个等腰三角形相似吗?5、各有一个内角为100°的两个等腰三角形相似吗?(设计理念:通过以上五题,对今天所学的相似三角形的判定1:两角对应相等的两三角形相似。
沪科版数学九年级上册22.2《相似三角形的判定》(第3课时)教学设计

沪科版数学九年级上册22.2《相似三角形的判定》(第3课时)教学设计一. 教材分析《相似三角形的判定》是沪科版数学九年级上册第22.2节的内容,本节课主要学习了相似三角形的判定方法。
教材通过引入生活中的实例,引导学生探究相似三角形的性质,从而总结出相似三角形的判定方法。
教材内容由浅入深,循序渐进,旨在让学生在理解的基础上,掌握相似三角形的判定方法,并能应用于实际问题中。
二. 学情分析九年级的学生已经学习了三角形的性质,平行线的性质等知识,对图形的变换有一定的了解。
但是,对于相似三角形的判定,学生可能还存在着一定的困难。
因此,在教学过程中,教师需要结合学生的实际情况,通过具体的实例,引导学生探究相似三角形的性质,从而得出判定方法。
三. 教学目标1.知识与技能:使学生掌握相似三角形的判定方法,能正确判断两个三角形是否相似。
2.过程与方法:通过观察、操作、猜想、归纳等方法,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学与生活的联系。
四. 教学重难点1.重点:相似三角形的判定方法。
2.难点:如何判断两个三角形是否相似。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提问,引导学生积极思考,自主探究相似三角形的性质。
3.合作学习法:分组讨论,让学生在合作中交流,共同解决问题。
4.巩固练习法:通过适量练习,使学生掌握相似三角形的判定方法。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,准备相关实例和教学素材。
2.学生准备:预习教材内容,了解相似三角形的定义,准备参与课堂讨论。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如相似的图形、图片等,引导学生观察,提问:“你们能找出这些图形之间的相似之处吗?”让学生初步感受相似的概念。
2.呈现(10分钟)教师展示两个三角形,提问:“如何判断这两个三角形是否相似呢?”引导学生思考,然后引导学生观察两个三角形的对应边和对应角,让学生尝试找出它们之间的相似之处。
最新沪科版 九年级数学初三上册22.2.2两角对应相等两三角形相似教案

相似三角形的判定(两角对应相等)
一、教学目标
1、知识目标
(1)探索判定两个三角形相似的条件,经历操作、归纳从而获得数学结论的过程。
(2)掌握“如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似”,并应用其解决相关问题。
2、能力目标
(1)通过观察、归纳、测量、推理等手段,让学生充分体验得出结论的过程,感受发现的乐趣。
让学生在观察中学会分析,在操作中学会感知,培养学生的合情推理能力、有条理的表达能力。
3、情感目标
(1)培养学生的合作交流意识,培养学生主动探索,敢于实践,勇于发现的科学精神。
(2)通过同学间的交流与合作,培养大家的合作精神。
二、教学重点、难点:
教学重点:探究并应用两角相等两个三角形相似的判定方法。
教学难点:在图形变化过程中应用相似判定方法。
教
大部分
实践探索,分析归纳
习
充分调动学
⑵所有的直角三角形都相似
AB=AE
对相似的三角形。
智慧型指导作
【教学设计说明】。
沪科版九年级数学上册教案《相似三角形的判定》

沪科版九年级数学上册教案《相似三角形的判定》《相似三角形的判定》教科书分析本节是上海科技版义务教育教科书《数学》九年级上册第二十二章《相似形》的第2节《相似三角形的判定》的教学内容,主要研究相似三角形的判定方法.本节内容是在学生学习了相似形和相关的线段比例性质之后在三角形相似中的判定.首先由生活中的图像讨论引出相似三角形的证明的,在此基础上进一步探究其他证明方法;接着证明直角三角形的相似的判定;最后解答,解决一些生活中的问题.本部分研究了三角形相似性的判定,体现了从特殊到一般的证明思想教学目标【知识和能力目标】理解相似三角形的判断方法【过程和方法】以问题的形式,创设一个有利于学生动手和探究的情境,达到学会本节课所学的相似三角形的判定方法.。
【情感态度与价值观】培养学生积极思考、动手和观察的能力,使学生意识到几何知识在生活中的价值教学重难点[教学要点]会应用相似三角形的两个判定方法。
怎样选择合格的判定方法来判定两个三角形相似。
【教学难点】掌握判断方法的条件,通过对已知条件的分析掌握图形的结构特征。
课前准备多媒体课件、教具等教学过程问题(1)相似形的定义与性质?(2)相似比的定义,如何判断相似性?【设计意图】:回忆相似形的相关概念和性质,为后面学习判定知识做铺垫。
1B1,那么,如果已知ab‖A1B1,这两只风筝的形状相似。
观察和思考:敢于猜测,a 能得到吗△ 基础知识≓? a1b1c1【设计意图】:具体生活中实际图片,为后面做铺垫,引出证明相似思考:已知,de//bc,且d是边ab的中点,de交ac于e,猜想:△ade与△abc有什么关系?并证明。
相似证据:≓德//公元前∠ 1 = ∠ B∠ 2 = ∠ C和∠ a=∠ A.∴△ade与△abc的对应角相等过e作ef//ab交bc于f,又∵de//bc四边形dbfe是平行四边形,∴de=bf,db=ef又∵ad=db,∴ad=ef∵∠a=∠3,∠2=∠c△ade≌△efc∴de=fc=bf,ae=ecae1de1adaede1?,,acbc2ac2bc2ab∴△a de与△abc的对应边成比例∴△ade∽△abc由三角形中线切割的三角形与原始三角形相似【设计意图】:特殊案例,体会从特殊到一般的证明思路,由易到难,当D点位于AB上的任意点时,上述结论仍然有效吗?已知:De//BC,两者之间的关系是什么△ 艾德和△ ABC?猜想:两者之间的关系是什么△ 艾德和△ ABC?aBdec平行于三角形一侧的定理是相似的。
最新沪科版九年级数学上册《相似三角形的判定1》教学设计(精品教案)

相似三角形的判定一. 教学要求1. 了解相似多边形的含义,经历相似多边形概念所形成的过程,探索相似多边形的本质特征。
2. 理解相似三角形的概念,深化对相似三角形的理解和认识。
3. 掌握两个三角形相似的判定条件,能够运用三角形的相似条件解决简单的问题。
二. 重点及难点重点:1、了解相似多边形的含义,正确理解概念的应用方法。
2、理解相似三角形的概念,掌握相似三角形的本质特征。
3、识别相似三角形,掌握相似三角形的判定条件,并运用三角形的相似条件解决简单的问题。
难点:1、多边形边角关系的理解。
2、深化对相似三角形的理解和认识。
3、运用相似三角形条件解决一些实际问题。
三. 课堂教学[知识要点]知识点1、相似多边形的概念:对应角相等,且对应边成比例的两个多边形叫做相似多边形。
例如:四边形ABCD 与四边形A B C D ''''说明:相似多边形的定义要注意一定要满足两个条件:对应角相等,对应边成比例,这两个条件缺一不可。
知识点2、相似比:相似多边形对应边的比叫作相似比。
说明:(1)两个全等的多边形一定是相似多边形,其相似比等于1。
(2)相似比大于零,因为两个多边形的边长都是正数,所以对应边的比,即相似比也必是正数。
如△ABC ∽△A’B’C’的相似比AB k A B ='',则△A’B’C’ ∽△ABC 的相似比是1A B AB k ''=。
知识点3、相似多边形定义的逆向思维:如果两个多边形相似,那么对应角相等,对应边成比例,如相似四边形ABCD ∽四边形A’B’C’D’则,,,A A B B C C D D ''''∠=∠∠=∠∠=∠∠=∠,AB BC CD DA A B B C C D D A ===''''''''。
知识点4、相似三角形的定义:三个角对应相等,且三边对应成比例的两个三角形叫做相似三角形。
沪科版数学九年级上册22.2《相似三角形的判定》(第1课时)教学设计

沪科版数学九年级上册22.2《相似三角形的判定》(第1课时)教学设计一. 教材分析《相似三角形的判定》是沪科版数学九年级上册第22章第2节的内容,本节内容是在学生已经掌握了三角形的基本概念、三角形的性质、三角形的全等、三角形的相似等知识的基础上进行学习的。
本节课的主要内容是让学生掌握相似三角形的判定方法,并通过实例让学生学会如何应用这些方法解决实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于三角形的基本概念和性质有一定的了解。
但是,对于相似三角形的判定方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
三. 说教学目标1.知识与技能目标:让学生掌握相似三角形的判定方法,并能够运用这些方法解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:相似三角形的判定方法。
2.教学难点:如何运用相似三角形的判定方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、实物模型、黑板等辅助教学。
六. 说教学过程1.导入:通过展示一些生活中的实例,如建筑物的设计、图案的绘制等,引出相似三角形的概念,激发学生的兴趣。
2.新课导入:介绍相似三角形的定义和性质,引导学生思考如何判断两个三角形是否相似。
3.判定方法的学习:通过具体的实例,引导学生探索相似三角形的判定方法,并进行总结。
4.练习与巩固:提供一些练习题,让学生应用所学的判定方法进行解答,巩固知识点。
5.应用拓展:提供一些实际问题,让学生运用相似三角形的判定方法进行解决,提高学生的应用能力。
6.总结与反思:让学生回顾本节课所学的知识,进行总结和反思,提高学生的思维能力。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
沪科版数学九年级上册22.2《相似三角形的判定》教学设计5

沪科版数学九年级上册22.2《相似三角形的判定》教学设计5一. 教材分析《相似三角形的判定》是沪科版数学九年级上册第22章第2节的内容。
本节课主要学习了相似三角形的判定方法,包括AA相似定理、SAS相似定理、SSS相似定理和直角三角形的相似定理。
通过本节课的学习,学生能够理解和掌握相似三角形的判定方法,并能够运用这些方法解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了三角形的性质、全等三角形的判定和性质等知识。
大部分学生对这些基础知识掌握较好,但部分学生在理解和运用方面存在困难。
此外,学生对于实际问题的解决能力也有所不同,需要教师在教学中给予关注和指导。
三. 教学目标1.理解相似三角形的定义和性质。
2.掌握相似三角形的判定方法。
3.能够运用相似三角形的知识解决实际问题。
4.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:相似三角形的判定方法。
2.难点:理解和运用相似三角形的判定方法解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究和合作交流来理解和掌握相似三角形的判定方法。
2.利用多媒体课件和实物模型辅助教学,帮助学生直观地理解相似三角形的性质和判定方法。
3.结合例题和练习题,引导学生运用相似三角形的判定方法解决实际问题。
4.采用分组讨论和小组竞赛的形式,激发学生的学习兴趣和竞争意识。
六. 教学准备1.多媒体课件和实物模型。
2.练习题和测试题。
3.分组讨论和小组竞赛的准备。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些实际问题,引导学生思考如何利用相似三角形的知识来解决这些问题。
2.呈现(10分钟)介绍相似三角形的定义和性质,通过实物模型和多媒体课件展示相似三角形的判定方法,包括AA相似定理、SAS相似定理、SSS相似定理和直角三角形的相似定理。
3.操练(10分钟)学生分组讨论,结合例题和练习题,运用相似三角形的判定方法进行解题。
教师巡回指导,解答学生的疑问。
沪科版九年级数学上册《相似三角形的判定》教案

《相似三角形的判定》教案教学目标1、经历三角形相似的判定的探索过程.2、掌握三角形相似的判定方法.3、能运用判定方法判定两个三角形相似.重点与难点1、相似三角形的判定方法及其应用.知识要点三角形相似的条件:1、有两个角对应相等的两个三角形相似.2、两边对应成比例,且夹角相等的两个三角形相似.3、三边对应成比例的两个三角形线相似.重要方法1、利用两对对应角相等证相似,关键是找出两对对应角.2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大对大,小对小,中对中.3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角.教学过程1、我们已经学习了几种判定三角形相似的方法?C(1)平行于三角形一边直线定理∵DE∥BC,∴△ADE∽△ABC(2)判定定理1:如果三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.∵∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′(3)直角三角形中的一个重要结论∵∠ACB是直角,CD⊥AB,∴△ABC∽△ACD∽△CDB2、合作学习:下面我们来探究还可用哪些条件来判定两个三角形相似?我们学习了三角形相似的判定定理1,类似于三角形全等的“SAS”、“SSS”判定方法,三角形相似还有两个判定方法,即判定定理2和判定定理3.3、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.可以简单说成“两边对应成比例且夹角相等,两三角形相似”.4、判定定理3:如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.可简单说成:三边对应成比例,两三角形相似.在直角三角形的相似判定中,我们有特殊的判定方法:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.教师详细讲解课本习题,让学生独立完成教材练习,教师给予指导.探究活动:在有平行横线的练习薄上画一条线段AB,使线段A,B恰好在两条平行线上,线段AB就被平行线分成了相等的三小段,你能说出这一事实的数学原理吗?如果只给你圆规和直尺,你会把任意一条线段AB五等分吗?请试一试,并说明你的画法的依据.小结你学到了什么?还有什么疑惑?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的判定(三)
一、教学目标
1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.
2.掌握三角形相似的判定条件(AA)。
3.会运用“两个角对应相等的三角形相似”判断常见图形中的三角形相似,并应用判定三解决简单的问题.
二、教学重点
1.相似三角形的判定三的应用。
与三角形相似的预备定理及平行线平分线段成比例定理和推论.
2.认识直角三角形斜边上的高所分的两个三角形与原三角形相似
三、教学难点
1.相似三角形的判定三的证明。
2.相似三角形的判定三的应用.
3.难点的突破方法
(1)对于判定三的证明,参考判定一和判定二的证明思路,
把较小的三角形移到另一个三角形的内的思路,即利用已有条件构造全等三角形。
(2)利用圆中的相似三角形和直角三角形斜边上的高构成的相似三角形的展示,让学生形成应用判定三的意识,即:如果两个三角形具有公共角或对顶角,或两个三角形是直角三角形,那么只要再有一个角对应相等就会相似。
四、教学过程
(一)、引入
我们学习了哪几种判定三角形相似的方法?
1、定义
2、预备定理(由平行得到相似)
3、相似三角形的判定一
4、相似三角形的判定二
探究:如图:△ABC和△A′B′C′,当它们具备什么样的条件时,能够判定它们相似?
(通过探究,进一步巩固判定一、二)
判定三的引入:对比思考 A
B C
A
'
B
'
C
'
观察下表中全等三角形和相似三角形的判定方法,对比之后
进行思考:全等
三角形中的A
SA和AAS
应该对应相似
中的什么方法
呢?
在学生猜想出AA后提出问题:
在刚才的探究问题中,如果△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.问△ABC与△A′B′C′是否相似?
(二)、新课讲解
1、判定三的证明
猜想:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
如图,已知:在△ABC 和△A′B′C′中,∠A=∠A′,∠B=B′。
求证:△ABC∽△A′B′C′
分析:把小的三角形移动到
大的三角形上。
如何移动呢?
证明:在ΔABC的边AB、
AC上,分别截取AD= A′
B ′,AE=A ′
C ′ , 连结DE 。
∵AD=A ′B ′,∠A=∠A ′,AE=A ′C ′ ∴ΔADE ≌ΔA ′B ′C ′ ∴∠ADE=∠B ′,
又∵∠B ′=∠B , ∴∠ADE=∠B , ∴DE//BC ,
∴ΔADE ∽ΔABC 。
∴ΔA ′B ′C ′∽ΔABC 判定三小结:
判定定理3:如果一个三角形的两个角与另一个三角形的两个角对应相等,么这两个三角形相似。
简单说成:两角对应相等的两个三角形相似。
几何语言:
∴△ABC ∽△ A'B'C'
2、判定三的简单应用
'
',B B A A ∠=∠∠=∠ 18.3.3
18.3.3
圆中常见的相似:大家用刚学的定理3,AA 来寻找下列图中的相似三角形
P
A
B
C
D
D E
A
B
C
E
C
A
B
D
E
D
O
B
C
A
E
D
O
B
C
A
注意:公共角和对顶角的使用 3、例题分析
例2 如图,Rt ⊿ABC 中,∠C =90°,AB =10,AC =8,E 是AC 上一点,AE =5,ED ⊥AB ,垂足为D 。
求AD 的长。
B
E
C A
D
解:∵ ED ⊥AB , ∴ ∠EDA =90°,
又∠C =90°,得∠EDA =∠C , 又∠A =∠A ,
∴⊿AED ∽⊿ABC 。
思路小结:由三角形相似的条件可知,如果两个直角三角形满足一个锐角相等,或两组直角边成比例,那么这两个直角三角形相似。
练习1,已知:Rt △ABC 中,∠ACB =90°,CD ⊥AB , 试说明图中有几对相似三角形。
并尝试证明。
已知:如图Rt △ABC 中,CD 是斜边上的高。
求证:△ABC ∽△CBD ∽△ACD 证明:∵∠B=∠B,∠CDB=∠ACB=90°,
.AB AE AC AD =∴410
5
8=⨯=⋅=
∴AB AE AC
AD
∴△ABC ∽△CDB(两个角对应相等的两个三角形相似). 同理可证:△ABC ∽△ACD ∴△ABC ∽△CBD ∽△ACD.
提出思考:当AD左右平移时,图形会有什么变化,几个三角形是否还会相似?(利用几何画板进行动画演示)
练习2,选择
下列结论中,不正确的是( ) A、有一个角为90°的两个等腰三角形相似 B、有一个角为60°的两个等腰三角形相似 C、有一个角为30°的两个等腰三角形相似 D、有一个角为100°的两个等腰三角形相似 练习3:思考
1、如图,在ΔABC 中 ,点D 、E 分别是边AB 、AC 上的点,连结DE ,利用所学的知识讨论:当具备怎样的条件时,ΔADE 与 ΔABC 相似?
A
B C D E
A
B C
D
E
平截A 型 斜截A 型 强调思路小结:记住,当两个三角形有公共角或对顶角,或两个是直角三角形时,只要再有一对角相等时,就可以得到相似。
比如:请观察下图中Rt ⊿ABC 和Rt ⊿CDE 是否相似?
如果把图中的直角改成60度,⊿ABC 和⊿CDE 是否仍然相似?
如图:在等边⊿ABD 中,AB =9,BC =3,∠ACE =60°,求ED 的长。
E
B
D
A
C
(三)课堂小结:
识别三角形相似的方法有哪些?
方法1:运用定义(不常用)
方法2:预备定理:(由平行
得到相似)
方法3:相似三角形的判定定
理1:(SSS)
方法4:相似三角形的判定定理2:(SAS)方法5:相似三角形的判定定理3:(AA)
(四)作业
1. P42:第7题
2. 如图:在等边⊿ABD中,AB
=9,BC=3,∠ACE=60°,求ED的长。
E
A
B D
C
60°
E
A
B D
C
60°。