2021年数列中不定方程问题的几种解题策略

合集下载

(2021年整理)不定方程组的经典解题方法

(2021年整理)不定方程组的经典解题方法

国家公务员|事业单位 | 村官 | 选调生 | 教师招聘 | 银行招聘 | 信用社 | 乡镇公务员| 各省公务员|(完整)不定方程组的经典解题方法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)不定方程组的经典解题方法)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为(完整)不定方程组的经典解题方法的全部内容。

国家公务员| 事业单位 | 村官 | 选调生 | 教师招聘 | 银行招聘 | 信用社 | 乡镇公务员| 各省公务员|不定方程组的经典解题方法——-—————————-——海南华图数资老师,胡军亮对于不定方程组很多同学都觉得摸不着头脑,未知数和方程数都较多,感觉自己好像会其实又不会。

那本文就来给大家讲解不定方程组的经典解法。

不定方程组常分为两种形式,一种是不定方程组求个体,另一种是不定方程组求整体的.【例1】某公司的6名员工一起去用餐,他们各自购买了三种不同食品中的一种,且每人只购买了一份。

已知盖饭15元一份,水饺7元一份,面条9元一份,他们一共花费了60元。

问他们中最多有几人买了水饺?( )A 。

1 B. 2 C. 3 D. 4解析:此题是典型的不定方程组求个体的题型,方法是消元变成不定方程用数字特性或者代入排除法。

列式为:⎩⎨⎧=++=++6097156z y x z y x因为求的是水饺,消掉未知数z 得到不定方程3x —y=3,变形得到方程y=3x —3,根据数字特性知道y 应该是3的倍数,答案选C 。

代入排除,只有选项C 带入x 可以得到整体,满足题意,答案选C 。

【例2】甲买了3支签字笔、7支圆珠笔和1支铅笔,共花了32元,乙买了4支同样的签字笔、10支圆珠笔和1支铅笔,共花了43元。

不定方程的四种基本解法

不定方程的四种基本解法

不定方程的四种基本解法哎,说起不定方程啊,可能不少小伙伴儿一听这个词儿,脑瓜子就开始嗡嗡的。

但其实呢,不定方程这东西,虽然看上去复杂了点儿,但咱们只要掌握了四种基本解法,就能跟它说拜拜,从此不再头疼啦!第一种解法,咱们叫它“试探法”,也叫“瞎猫碰上死耗子法”。

为啥这么说呢?因为这种方法就是靠咱们的感觉和运气,去猜一个可能的解。

听起来有点儿不靠谱是吧?但其实,有时候咱们还真能歪打正着,找到答案呢!比如说,给定一个不定方程,咱们可以先试着代入几个数,看看符不符合条件。

如果不行,就再换几个试试。

这种方法虽然有点笨,但有时候还真能解决问题。

毕竟,谁说运气不是实力的一部分呢?第二种解法,咱们得叫它“枚举法”,听着就挺高大上的吧?其实说白了,就是“一一列举法”。

这种方法适用于那些可能的解不太多的情况。

咱们可以把所有可能的解都列出来,然后一个个地检查,看哪个是符合条件的。

这种方法虽然有点儿费时费力,但胜在稳妥。

毕竟,咱们只要耐心点儿,总能找到正确答案的。

这就跟咱们平时找东西一样,虽然过程可能有点儿曲折,但总能找到的,对吧?第三种解法,咱们叫它“公式法”。

这种方法比较厉害,它是根据不定方程的特点,推导出一种公式,然后用这个公式去求解。

这种方法的好处是,只要咱们掌握了公式,就能很快地找到答案。

不过呢,这种方法也有个缺点,就是公式有时候挺难记的。

不过,这难不倒咱们,咱们可以多练习几次,就能把公式牢牢地记在脑子里了。

毕竟,熟能生巧嘛!第四种解法,咱们叫它“图像法”。

这种方法比较直观,它是用图形来表示不定方程的解。

咱们可以在坐标轴上画出不定方程的图像,然后通过观察图像,来找到符合条件的解。

这种方法的好处是,能让咱们更直观地理解不定方程的解,而且有时候还能发现一些隐藏的规律呢!不过呢,这种方法也有个缺点,就是得有点儿想象力。

毕竟,咱们得把抽象的不定方程想象成具体的图形,这可得费点儿劲儿。

不过,只要咱们肯动脑筋,就一定能做到的!其实啊,不定方程的解法还有很多,但上面这四种是最常用的。

解不定方程的常用技法

解不定方程的常用技法
v2 ∈Z ,且 u2 > v2 > 0) . 于是 ,有 u2 + v2 = 82.
2 2
再令 u2 + v2 = 2 u3 , u2 - v2 = 2 v3 ,得
u3 + v3 = 41.
2 2
此时 , u3 、 v3 必为一奇一偶 , 且 0 < v3 <
u3 ≤ [
41 ] = 6.
2
取 v3 = 1 ,2 ,3 ,4 ,5 ,得相应的 u3 = 40 ,37 ,
28 m = 27 m + q .
2 2 由 28 m - 27 m = q ≥ 0 ,知 m = 1. 2 2
利用不定方程未知数之间的关系 ( 如常 见的倍数关系 ) , 通过代换消去未知数或倍 数 ,使方程简化 ,从而达到求解目的 . 例3 试求方程 x - 23 xy + 1 989 y = 0 的整数解 . 讲解 : 显然 , x = y = 0 是方程的一个解 , 且若一个未知数取值为 0 , 则另一个未知数 的取值也为 0. 设 x≠ 0 ,且 y ≠ 0. 显然 , y | x , 故可令
2 2 2 故 3 y = 4 n - (2 x + y) = (2 n + 2 x + y ) ( 2 n - 2 x - y ) . 又 y 是质数 ,且 2 n - 2 x - y < 2 n + 2 x + y ,因此 ,有以下三种情形 . (1) 2 n - 2 x - y = y ,2 n + 2 x + y = 3 y , 得 x = 0 ,舍去 . ( 2) 2 n - 2 x - y = 3 ,2 n + 2 x + y = y2 ,则 2 y - 3 =4x +2y 2 2 = 4 ( m + y) + 2 y = 4 m + 6 y , 2 2 即 ( y - 3) - 4 m = 12.

不定方程常用六大解法

不定方程常用六大解法

不定方程常用六大解法不定方程,听起来是不是有点高深?其实嘛,这就像找一把钥匙,钥匙能打开无数扇门。

今天咱们就聊聊不定方程的常用六大解法,轻松又幽默地走一遭,保证你听了后,能够眉开眼笑。

我们得说说“枚举法”。

这法子就像是逛超市,看见什么就试什么。

对于简单的不定方程,咱可以一个个地把可能的解都试一遍,最后总能找到那个合适的,简直就是开盲盒的乐趣!比如,假如有个方程让你找两个数,能不能说得通呢?你就一个个试着往里代,嘿,看看有没有合适的答案,简直像是在和数学玩捉迷藏。

接下来是“辗转相除法”。

这法子就像是把问题拆开,从大到小,一步步走。

这就像是做减法,遇到难题,咱就把它分解成更小的部分,慢慢来。

比如说你有个复杂的方程,先算出个简单的结果,然后再逐步递推,真是稳扎稳打,像是爬山一样,一步一个脚印,最后能看到山顶的美景。

然后,我们不能忘记“数形结合法”。

这玩意儿就像把方程画成图,形象化的东西总是让人觉得好理解。

想象一下,把数轴上点一点,给每个可能的解都标上一个小旗子,嘿!一眼就能看出哪些地方有解,哪些地方是死胡同,简直就像开了一场小小的数学派对,大家欢聚一堂,热热闹闹。

再往下说“求解特解法”。

这个方法有点像找特定的那种解,比如你想找一个特定的答案,可以试着先求出特解,然后再加上一些通解,哇,简直就是在做数学的“DIY”。

把各种材料拼凑在一起,最终呈现出一个完整的方程,就像做蛋糕,先有底再加上奶油,最后切开一看,哇,真香!接着咱们说说“同余法”。

这玩意儿有点像打麻将,讲究的是配合和策略。

你得找到一些数字之间的关系,像是把牌搭配起来,才能找到那种刚刚好的解。

用同余法解决不定方程,就像是在解谜,你得灵活应对,变换策略,嘿,最后能把谜底揭开,真是让人倍感成就感。

最后得提一下“二次方程法”,听上去很专业对吧?但其实不然。

这个方法就像是利用已知的解来推导未知的解。

比如说,你已经知道了一个方程的解,接着就可以运用二次方程的方法,推导出更多的解,简直就像是在编故事,从一个角色引出另外的角色,最后形成一个完整的故事链。

2021年高考数学数列题型解题方法范文答题技巧

2021年高考数学数列题型解题方法范文答题技巧

2021年高考数学数列题型解题方法范文答题技巧摘要:为了帮助考生们了解高考信息,分享了高考数学数列题型解题方法,供您参考!高考数学之数列问题的题型与方法数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

知识整合1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.高考数学数列题型解题方法就介绍到这里了,更多精彩内容请继续关注!。

简单不定方程的四种基本解法

简单不定方程的四种基本解法

简单不定方程的四种基本解法
简单不定方程的四种基本解法
简介
不定方程是指含有未知数的整数方程,其解为整数或分数。

不定方程
是数论中的一个重要分支,具有广泛的应用价值。

在实际问题中,往
往需要求解不定方程来得到问题的解答。

本文将介绍四种基本的解决
不定方程的方法。

一、贪心算法
贪心算法是一种常见且有效的算法,它通常用于求解最优化问题。


求解不定方程时,贪心算法可以通过枚举未知数的值来逐步逼近最优解。

二、辗转相除法
辗转相除法也称为欧几里得算法,它是一种求最大公约数的有效方法。

在求解不定方程时,我们可以使用辗转相除法来判断是否存在整数解。

三、裴蜀定理
裴蜀定理是指对于任意给定的整数a和b,它们的最大公约数d可以
表示成ax+by的形式,其中x和y为整数。

在求解不定方程时,我们可以使用裴蜀定理来判断是否存在整数解,并且可以通过扩展欧几里
得算法来求得x和y。

四、同余模运算
同余模运算是指在模n的情况下,两个整数a和b满足a≡b(mod n)。

在求解不定方程时,我们可以使用同余模运算来判断是否存在整数解,并且可以通过中国剩余定理来求得解的具体值。

结论
以上四种方法是求解不定方程的基本方法,在实际问题中,我们可以
根据具体情况选择合适的方法来求解问题。

同时,需要注意的是,在
使用这些方法时需要注意算法复杂度和精度问题,以保证算法的正确
性和效率。

不定方程的四种常用解法,多种方法叠加使用效果更佳

不定方程的四种常用解法,多种方法叠加使用效果更佳

不定方程的四种常用解法,多种方法叠加使用效果更佳含有未知数的等式称之为方程。

小学阶段最开始接触的是一个方程只有一个未知数的情况。

比如3x+2=8,解得x=2,这样解出来的答案是唯一性的。

但是有时候我们会遇到一个方程,有两个甚至三个未知数。

这样未知数个数大于方程个数的方程(组)叫不定方程(组)。

不定方程,一般情况下解是不唯一的。

方程比如说x+y=10,问这个方程有多少组解?如果不给其他条件限制,那么这个方程会有无数组解。

所以大多数的不定方程都会有较多的限制条件。

比如说限制这些未知数均为自然数,或在某个范围内。

还是以x+y=10为例,如果x、y都是自然数,那么x、y的解会有11组。

在小升初或各大小学杯赛题目中,会出现解不定方程。

不定方程,有四种比较常用的解法。

第一种:枚举法。

枚举法在很多地方都会用得上。

比如说计数,找规律等,虽然效率不是很高但适用范围比较广。

这种方法适用于一些系数比较大的不定方程。

因为系数比较大,出现的可能性就比较少,所以可以利用枚举的方法来解答。

比如说求这个不定方程的解,7x+2y=24(x、y均为自然数)。

因为x前面的它的系数比较大,所以说x的取值范围相对来说会比较小。

因为x、y都属于自然数,x最大是3,最小是0。

也就是说,x 有可能等于0、1、2、3,最多就这4种情况,我们可以把这些x的值分别代入这个方程中解出y的值。

我们会发现x=1和x=3这两种情况是不成立的。

第二种方法,奇偶性分析。

照样以上面的例题为例,我们用奇偶分析来帮助我们缩小x的取值范围。

两个数的和等于24,是一个偶数。

2y也一定是个偶数,所以说7x 的值一定是个偶数。

7是奇数,所以说x只能是偶数。

那么x又是从0~3,那么所以说x只能是0或者2这两种可能。

最后算出有两组答案:x=0,y=12;x=2,y=5。

第三种:余数分析。

也是用的比较多的方法,通常从系数较小的未知数入手。

它的原理其实就是利用了:和的余数等于余数的和,进行判断分析。

不定方程的所有解法

不定方程的所有解法

不定方程的所有解法全文共四篇示例,供读者参考第一篇示例:不定方程是指含有未知数的方程,且未知数的值不受限制,可以是整数、分数、无理数等。

解不定方程的方法有很多种,根据方程的形式和要求选择不同的解法。

本文将介绍不定方程的所有解法,包括质因数分解法、辗转相除法、模运算法、裴蜀定理、试错法等各种方法。

1. 质因数分解法对于形如ax+by=c的不定方程,可以通过质因数分解的方法来求解。

首先分别对a和b进行质因数分解,得到a=p1^a1 * p2^a2 * ... * pn^an,b=q1^b1 * q2^b2 * ... * qm^bm。

然后利用质因数分解的特性,可知如果c不能被a和b的所有质因数整除,那么方程就无整数解;如果c能被a和b的所有质因数整除,那么方程就有整数解。

这个方法在求解一些简单的不定方程时很有效。

2. 辗转相除法辗转相除法又称为欧几里德算法,用于求两个整数的最大公约数。

对于形如ax+by=c的不定方程,可以先利用辗转相除法求出a和b的最大公约数d,然后如果c能被d整除,就存在整数解;如果不能被d整除,那么方程就无解。

这个方法比较简单,但只适用于求解一次不定方程。

3. 模运算法模运算法是一种基于模运算的解法,对于形如ax≡b(mod m)的不定方程,可以通过求解同余方程得到解。

将方程转化为标准形式ax-my=b,然后求解同余方程ax≡b(mod m),如果方程有解,则可以通过一些变换得到原方程的解。

这个方法适用于求解模运算的不定方程。

4. 裴蜀定理裴蜀定理也称为贝祖定理,是解一元不定方程的重要方法。

对于形如ax+by=c的不定方程,根据裴蜀定理,当且仅当c是a和b的最大公约数的倍数时,方程有整数解。

此时可以通过扩展欧几里德算法求出一组解,然后通过变换得到所有解。

这个方法适用于求解一元不定方程的情况。

5. 试错法试错法是一种通过列举所有可能解,然后逐一验证的方法。

对于一些简单的不定方程,可以通过试错法找到所有整数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列中不定方程问题的几种解题策略欧阳光明(2021.03.07)王海东(江苏省丹阳市第五中学,212300)数列是高中数学的重要内容,又是学习高等数学的基础,在高考中占有极其重要的地位.数列中不定方程的整数解问题逐渐成为一个新的热点,在近年来的高考模拟卷中,这类问题屡见不鲜,本文中的例题也都是近年来大市模考题的改编.本文试图对与数列有关的不定方程的整数解问题的解法作初步的探讨,以期给同学们的学习带来帮助。

题型一:二元不定方程 双变量的不定方程,在高中阶段主要是求出此类不定方程的整数解,方法较灵活,下面介绍3种常用的方法。

方法 1.因式分解法:先将不定方程两边的数分解为质因数的乘积,多项式分解为若干个因式的乘积,再由题意分类讨论求解。

题1(2014·浙江卷)已知等差数列{}n a 的公差d >0.设{}n a 的前n 项和为n S ,11=a ,3632=⋅S S . (1)求d 及S n ; (2)求m ,k (m ,k ∈N *)的值,使得65...21=+++++++k m m m m a a a a .解析(1)略(2)由(1)得2,12n S n a n n =-=(n ∈N *)所以65)1)(12(=+-+k k m ,由m ,k ∈N *知1112>+≥-+k k m65151365⨯=⨯=,故⎩⎨⎧=+=-+511312k k m 所以⎩⎨⎧==45k m点评 本题中将不定方程变形为()()135112⨯=+⋅-+k k m ,因为分解方式是唯一的,所以可以得到关于k m ,的二元一次方程组求解。

方法 2.利用整除性质 在二元不定方程中,当其中一个变量很好分离时,可分离变量后利用整除性质解决.题2.设数列{}n b 的通项公式为2121n n b n t -=-+,问:是否存在正整数t ,使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.解析:要使得12,,m b b b 成等差数列,则212m b b b =+ 即:312123121m t t m t -=+++-+ 即:431m t =+- ∵,m t N *∈,∴t 只能取2,3,5 当2t =时,7m =;当3t =时,5m =;当5t =时,4m =.点评 本题利用t 表示 m 从而由431m t =+-得到14-t 是整数,于是1-t 是4的约数,从而估计出可能的所有取值,再逐一检验即可,当然,本题也可以利用m 表示t 来处理.方法 3.不等式估计法:利用不等式工具确定不定方程中某些字母的范围或等式一边的范围,再分别求解。

如转化为()()n g m f =型,利用()n g 的上界或下界来估计()m f 的范围,通过解不等式得出m 的范围,再一一验证即可。

题3:已知n n nb 3=,试问是否存在正整数q p , (其中q p <<1),使q p b b b ,,1成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.解析:假设存在正整数数组(p ,q ),使成等比数列,则21333p q p q =+.2p ≥时,112(1)224333p p p p p p +++--=<0,故数列{23pp }(2p ≥)为递减数列, 2113333p q p q =+>,且数列{23p p }(2p ≥)为递减数列, 当2p =时,241933p p =>成立;当3p ≥时,2232127933p p ⨯≤=<, 因此,由2133p p >得,2p =,此时3q = 点评:本题利用等式右边q q 331+的上界31来估算左边p p 32的范围, 解2133p p >时,我们是构造函数()p p p f 32=再由其单调性得出整数解。

题型二 :三元不定方程 一个方程中三个未知量,在高中通常判定此类不定方程是否有解,通常都是假设存在满足题意的三个变量,再用反证法证明不成立。

反证法中如何找出矛盾,以下两种方法比较常用。

1.等式两边的奇偶性分析法题4.已知1(21)4n n a n -=+,是否存在互不相同的正整数,,r s t ,使得,,r s t a a a 成等比数列?若存在,给出,,r s t 满足的条件;若不存在,说明理由。

解析:若存在,,r s t a a a 成等比数列,则22(21)(21)4(21)r t s r t s +-++=+ 由奇偶性知右边为奇数,当且仅当20r t s +-=时,左边也为偶数, 所以2(21)(21)(1)r t r t ++=++,即r t =,这与r t ≠矛盾.故不存在互不相同的正整数,,r s t ,使得,,r s t a a a 成等比数列点评:本题中等式22(21)(21)4(21)r t s r t s +-++=+要是成立,左右两边的奇偶性要相同,右边为奇数,左边只有当等式20r t s +-=才为奇数,所以用20r t s +-=进一步代入进行求解。

题5.已知n n a 2=, 证明{}n a 中任意三项不可能构成等差数列。

解析:假设}{n a 中存在三项,,r s t a a a ()t s r <<构成等差数列, 则t r s a a a +=2,t r s 2222+=⋅,等式两边同除以r 2,得r t r s --++=2121 因为等式左边为偶数,右边为奇数,矛盾.∴假设不成立,故不存在任意三项能构成等差数列题6.已知n n a ⎪⎭⎫ ⎝⎛=32, 证明{}n a 中任意三项不可能构成等差数列。

解析:假设}{n a 中存在三项,,r s t a a a ()t s r <<构成等差数列,则t r s a a a +=2,t r s ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⋅3232322,等式两边同乘以t 3,得t r t r s t s 232321+⋅=⋅--+,等式两边再同除以r 2,得r t r t s t r s ---++=⋅2332-1 因为等式左边为偶数,右边为奇数,矛盾.∴假设不成立,故不存在任意三项能构成等差数列点评 题5和题6都是用反证法证明不存在满足题意的三项,考试中常见此题型,放在一起便于比较,题5中化简t r s 2222+=⋅时,等式两边同除以r 2,t s 2,2中的最小值,题6中化简t r s ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⋅3232322时,等式两边同乘以t s r 3,3,3中的最大值,将分数整数化,然后利用奇偶性寻找矛盾.二.等式两边是有理数或无理数分析题7.已知2+=n b n ,求证:数列{}n b 中任意不同的三项都不可能成为等比数例。

解析:假设数列{}n b 中存在三项p q r b b b ,,(p q r ,,为互不相等的正整数)成等比数列,则2q p r b b b =.即2((q p r +=++.p q r *∈N ,,,2020q pr q p r ⎧-=∴⎨--=⎩,,22()02p r pr p r p r +⎛⎫∴=-=∴= ⎪⎝⎭,,.与p r ≠矛盾.所以数列{}n b 中任意不同的三项都不可能成等比数列.点评 在反证法中利用有理数性质产生矛盾.若02≠--r p q ,则等式化为rp q q pr ---=222,等式左边为无理数,右边为有理数,矛盾。

题8(选修2-2教材P84第9题)证明:13不可能是一个等差数列中的三项.解析:假设1,,3是某一公差为d 的等差数列的三项,则有,12md +=nd +=13)(*,N n m ∈。

由上两式消去d ,得n n m 22=+,易见上式左边为有理数,右边为无理数,故等式不能成立。

所以1,,3不可能是等差数列的三项。

点评:书本中的每个习题都要重视,是命题的来源,下面的这个高考题中就可以找到题7,题8的影子。

题9(2008江苏第19题改编)求证:对于给定的正整数n (4n ≥),存在一个各项及公差均不为零的等差数列12b b ,,,n b ,其中任意三项(按原来的顺序)都不能组成等比数列.解析:假设对于某个正整数n ,存在一个公差为d 的n 项等差数列n b b b ,......,21,其中111,,x y z b b b +++(01x y z n ≤<<≤-)为任意三项成等比数列,则2111y x z b b b +++=⋅,即2111()()()b yd b xd b zd +=+⋅+,化简得221()(2)y xz d x z y b d -=+- (*)由10b d ≠知,2y xz -与2x z y +-同时为0或同时不为0当2y xz -与2x z y +-同时为0时,有x y z ==与题设矛盾.故2y xz -与2x z y +-同时不为0,所以由(*)得212b y xz d x z y-=+- 因为01x y z n ≤<<≤-,且x 、y 、z 为整数,所以上式右边为有理数,从而1b d 为有理数.于是,对于任意的正整数)4(≥n n ,只要1b d 为无理数,相应的数列就是满足题意要求的数列.如题7中的数列2+=n b n 就是满足题意的数列。

上面给出了数列中不定方程的常见解题策略,这些策略有一个共同的特征,就是对等式两边适当的变形选择等式一边的特征进行解题,如整除的性质,范围上界或下界,因数分解的形式,是否为有理数,奇偶性等。

数列与不定方程(函数或不等式)的交汇使得试题变化多样,精彩纷呈,解法也有很大的灵活性.以上仅列举了几种常用的探求方法,具体问题还需具体分析,根据题设条件灵活处理.。

相关文档
最新文档