半导体热敏电阻的电阻—温度特性
半导体热敏电阻的电阻—温度特性实验讲义

∞ 半导体热敏电阻的电阻—温度特性实验原理1. 半导体热敏电阻的电阻—温度特性某些金属氧化物半导体(如:Fe3O4、MgCr2O 4 等)的电阻与温度的关系满足式(1):B R = R e T (1) T ∞式中 R T 是温度为T 时的热敏电阻阻值,R ∞ 是T 趋于无穷时热敏电阻的阻值阻的材料常数,T 为热力学温度。
①,B 是热敏电热敏电阻对温度变化反应的灵敏度一般由电阻温度系数α来表示。
根据定义,电阻温 度系数可由式(2)来决定:α = 1 R T dR TdT (2)由于这类热敏电阻的α 值为负,因此被称为负温度系数(NTC )热敏电阻,这也是最 常见的一类热敏电阻。
2. 惠斯通电桥的工作原理半导体热敏电阻的工作阻值范围一般在 1~106Ω,需要较精确测量时常用电桥法,惠斯 通电桥是一种应用很广泛的仪器。
惠斯通电桥的原理如图 1 所示。
四个电阻 R 0 、R 1 、R 2 和 R x 组成一个四边形,其中 R x就是待测电阻。
在四边形的一对对角 A 和 C 之间连接电源;而在另一对对角 B 和D 之间接 入检流计 G 。
当 B 和 D 两点电势相等时,G 中无电流通过,电桥便达到了平衡。
平衡时必CR b 图 1 惠斯通电桥原理图 图 2 惠斯通电桥面板图① 由于(1)式只在某一温度范围内才适用,所以更确切的说 R 仅是公式的一个系数,而并非实际 T 趋于无穷时热敏电阻的阻值。
R R 1 有 R x = R 2 R 1 R 0 , 2 和 R 0 都已知, R x 即可求出。
R 0 为标准可变电阻,由有四个旋钮的电R 阻箱组成,最小改变量为 1Ω。
1 R2 称电桥的比率臂,由一个旋钮调节,它采用十进制固定值,共分 0.001,0.01,0.1,1,10,100,1000 七挡。
热敏电阻的电阻--温度特性曲线NTC

RT/R25 3.5 3 2.5 2 1.5 1 0.5
(25º C,1)
0
25
50
75
100 125
T/℃
15
RT / RT0--T特性曲线
2.正温度系数(PTC)热敏电阻器的电阻—温度特性 其特性是利用正温度热敏材料,在居里点附近结构发 生相变引起导电率突变来取得的,典型特性曲线如图
3.突变型负温度系数热敏电阻器(CTR) Chop Temperature Resistor
11
走进热敏电阻传感器的世界篇 ——热敏电阻的特性
12
(一)热敏电阻器的电阻——温度特性(RT—T)
RT/Ω 106 105 104 103 1 2 3
ρT—T与RT—T特 性曲线一致。
102 101 100 0 40 60 120 160 T/℃ 温度T/º C
以lnRT、T分别作为纵坐标和横坐标,得到下图。
18
)
lnRr1 lnRr2
lnRr BP β
mR
mr
lnRr0 T2 T1 BP=tgβ =mR/mr
T
lnRT~T 表示的PTC热敏电阻器电阻—温度曲线
若对上式微分,可得PTC热敏电阻的电阻温度系数αtp 1 dRT BP RT exp BP T T0 tp BP RT dT RT exp BP T T0
8
4.耗散系数 热敏电阻器温度变化1℃所耗散的功率。 其大小与热敏电阻的结构、形状以及所处 介质的种类、状态等有关。 5. 时间常数τ 在零功率测量状态下,当环境温度突 变时电阻器的温度变化量从开始到最 终变量的63.2%所需的时间。时间常 数表征热敏电阻加热或冷却的速度。
热敏电阻的温度特性

理论分析热敏电阻由半导体材料制成,其基本特性是温度特性. 它对温度的变化十分敏感,当温度变化为1 度时,金属材料的电阻值仅变化,而热敏电阻值变化可达3 %~6 %. 热敏电阻的体积可以做得很小,其中RC3 型珠状热敏电阻的大小仅与芝麻颗粒的大小相当,其电阻值可以做成几百欧姆到几千欧姆不等.半导体的导电能力取决于参与导电的自由电子数,也即载流子数. 载流子数目越多,导电能力越强,其电阻率也就越小. 和一般的金属不同,负温度系数热敏电阻有一个重要的特点:当温度升高时,其阻值急剧减小,并且其中的载流子数目是随着温度的升高而按指数规律迅速增加的,因此负温度系数热敏电阻的电阻值随着温度的升高将按指数规律迅速减小. 实验表明在一定温度范围内,半导体热敏电阻与温度的关系为:R t = A exp ( B/ T) (1)其中,A 、B 均为常数, B 是热敏电阻的材料常数, T 是绝对温度, R t 是温度为t 时的电阻. 根据电阻温度系数的定义:R2 = R1 [1 +α( t2 - t1 ) ] (2)α= 1R t·d Rd t(3)式中α为电阻温度系数. 若绘出热敏电阻的电阻温度特征曲线就可以得到特定温度范围内的电阻温度系数α. 对于半导体,公式(1) 两边对T 求导,带入公式(3) 可得:α= -BT2 (4)由公式(4) ,我们可以发现半导体的电阻温度系数为一负值,这一点也正好说明了其电阻温度特性.数据采集与处理(1) 在仿真操作界面上,按实验要求将所需的各种虚拟仪器组装成完整的实验系统,通过调节R1 、R2的大小选取电桥倍率k =R1R2= 1. 温度调到10 ℃,调节电阻箱R0 ,使检流计的读数为零,并记录此时的温度值t 和电阻值R t ; 调节温度到升温档,从10 ℃开始,每隔5 ℃测量一次,直至90 ℃,将所测温度和电阻值记录并填入表格中,如表1 所示.表1 半导体热敏电阻的温度特性(2) 绘出R t2t 曲线和ln R t2 1T曲线.t/ ℃10 15 20 25 30 35 40 45 50R t /Ω 3 494. 9 2 820. 4 2 292. 8 1 876. 9 1 546. 6 1 282. 5 1 069. 8 897. 5 757. 1( T = t + 273. 2) / K 283. 2 288. 2 293. 2 298. 2 303. 2 308. 2 313. 2 318. 2 323. 2(1 000/ T) / K 3. 531 3. 470 3. 411 3. 353 3. 298 3. 245 3. 193 3. 143 3. 094ln R t 8. 159 7. 945 7. 738 7. 537 7. 344 7. 157 6. 975 6. 800 6. 629t/ ℃55 60 65 70 75 80 85 90R t /Ω642. 0 547. 0 468. 3 402. 8 347. 9 301. 8 262. 8 229. 7( T = t + 273. 2) / K 328. 2 333. 2 338. 2 343. 2 348. 2 353. 2 358. 2 363. 2(1 000/ T) / K 3. 047 3. 001 2. 957 2. 914 2. 872 2. 831 2. 792 2. 753ln R t 6. 465 6. 304 6. 149 5. 998 5. 852 5. 710 5. 571 5. 437(3) 计算此半导体热敏电阻的材料常数B 以及常数A 和温度为20 ℃、50 ℃时的电阻温度系数αt ,最终写出此种半导体热敏电阻的电阻2温度关系表达式R t = A exp ( B/ T) .①此半导体的材料常数B 可以通过图5 求出,根据公式(1) 可以得到:ln R t =BT+ ln A (5)由以上分析可知ln R t~ 1T为一线性关系,其斜率与材料常数B 的值是一致的,求出图5 中直线的斜率便知道了B 的值. 在直线上任取两点a(3. 001 ×10 - 3 ,6. 304) 和b(3. 411 ×10 - 3 ,7. 738) ,则求得:B =ln R ta - ln R tb1T a- 1T b≈3. 500 ×103 (6)②求常数A ,任取一点带入公式(1) ,在这里我们取点c( R t = 547. 0 Ω, T = 333. 2 K) ,可以求得:A =R texp ( BT)= 547. 0exp ( (3. 500 ×103333. 2)≈0. 015 (Ω) (7)③求材料的电阻温度指数α,由公式(4) 可得:当t = 20 ℃,即T = 293. 2 K 时材料的电阻温度系数α。
半导体热敏电阻特性研究实验报告

半导体热敏电阻特性研究实验报告大学热敏电阻实验报告大学热敏电阻实验报告摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。
本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。
因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。
国产的主要是指MF91~MF96型半导体热敏电阻。
由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。
大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。
这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。
载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。
应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。
热敏电阻温度特性实验报告

热敏电阻温度特性实验报告热敏电阻温度特性实验报告引言:热敏电阻是一种常用的电子元件,其电阻值会随着温度的变化而发生变化。
了解热敏电阻的温度特性对于电子设备的温度测量和控制至关重要。
本实验旨在通过测量热敏电阻的温度特性曲线,探究其电阻值与温度之间的关系。
实验材料和方法:材料:热敏电阻、直流电源、数字万用表、温度计、恒温水槽、温度控制器、导线等。
方法:1. 将热敏电阻与直流电源、数字万用表连接,组成电路。
2. 将温度计放置在恒温水槽中,并通过温度控制器控制水槽的温度。
3. 将热敏电阻放置在水槽中,使其与水温保持一致。
4. 通过调节温度控制器,使水槽的温度从低到高逐渐升高。
5. 每隔一段时间,记录热敏电阻的电阻值和相应的温度。
实验结果:在实验过程中,我们记录了热敏电阻的电阻值和相应的温度,并绘制了电阻-温度曲线图。
实验结果显示,热敏电阻的电阻值随着温度的升高而减小,呈现出明显的负温度系数特性。
随着温度的升高,电阻值的变化越来越明显,呈现出非线性的趋势。
讨论与分析:热敏电阻的温度特性是由其材料的特性决定的。
一般来说,热敏电阻的材料是半导体材料,其电阻值与材料的导电性质和能带结构有关。
在低温下,半导体材料中的载流子浓度较低,电阻值较大;随着温度的升高,载流子浓度增加,电阻值减小。
这种负温度系数特性使得热敏电阻在温度测量和控制中有着广泛的应用。
此外,热敏电阻的温度特性还受到环境因素的影响。
例如,温度的变化速率、湿度等因素都会对热敏电阻的温度特性产生一定的影响。
因此,在实际应用中,我们需要根据具体的环境条件对热敏电阻的温度特性进行修正和校准。
结论:通过本实验,我们成功地测量了热敏电阻的温度特性,并得到了电阻-温度曲线。
实验结果表明,热敏电阻的电阻值随着温度的升高而减小,呈现出负温度系数特性。
这一特性使得热敏电阻在温度测量和控制中具有重要的应用价值。
然而,需要注意的是,热敏电阻的温度特性受到环境因素的影响,因此在实际应用中需要进行修正和校准。
实验半导体热敏电阻特性的研究

实验半导体热敏电阻特性的研究
半导体热敏电阻是一种用于测量温度变化的电子元件,其电阻值会随着温度的变化而
发生改变。
因此,研究其特性对于热敏测温技术的应用以及半导体材料的研究都具有重要
意义。
本文对半导体热敏电阻特性进行了实验研究。
实验使用了一块样品,通过搭建电路系
统测量了其在不同温度下的电阻变化以及热敏电压的变化。
实验中控制了样品的温度变化,得到了一系列数据,进一步分析和研究了半导体热敏电阻的特性。
实验结果表明,当样品温度升高时,其电阻值呈现出单调递减的趋势。
相应地,热敏
电压也呈现出单调递减的趋势。
同时,研究还发现,样品的电阻值变化与温度之间存在着
一种明显的非线性关系。
当温度较低时,电阻的变化比较缓慢;而随着温度升高,电阻值
的变化速率则逐渐加快,最终呈现出了急剧下降的趋势。
通过对实验结果的进一步分析,我们得出了如下结论:半导体热敏电阻的特性主要受
到两个因素的影响,即样品的温度以及载流子浓度。
当样品温度升高时,载流子的浓度也
会随之上升,这将导致电阻值的降低。
此外,半导体热敏电阻的特性还受到其他因素的影响,例如半导体材料的化学成分、掺杂方式以及结构等因素都可能对其特性产生影响。
综上所述,本文通过实验研究了半导体热敏电阻的特性。
实验结果显示,其电阻值与
温度之间存在着非线性关系。
这项研究对于半导体材料的应用以及热敏测温技术的发展都
具有一定的借鉴意义。
未来,我们可以在此基础上进一步探索该元件的特性,并拓展其在
实际应用中的应用范围。
热敏电阻的温度特性研究

热敏电阻的温度特性研究及其应用一、 实验目的1.了解热敏电阻和Cu50的基本结构及其应用。
2.研究热敏电阻的阻值与温度的关系,并测定电阻温度系数和热敏电阻材料常数。
3.比较Cu50的温度特性。
4.熟悉惠斯顿单臂电桥的工作原理和使用方法。
二、 实验原理物质的电阻值随温度而变化的现象称为热电阻效应。
在一定的温度范围内,可以通过测量电阻值的变化而进行温度变化的测量,这就是热电传感器的工作原理。
典型的热电传感器有热电偶、热电阻和热敏电阻。
其中,热敏电阻由半导体材料制成,它的电阻温度系数比金属的大几百倍,有着极其灵敏的电阻温度效应,同时它还具有体积小、反应快等优点。
热敏电阻是性能良好的温度传感元件,可以制成半导体温度计、湿度机、气压计、微波功率计等测量仪表,并广泛应用于工业自动控制。
热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。
其中,NTC 型热敏电阻的电阻值会随温度上升而下降,且电阻随温度的变化范围较大。
热敏电阻的电阻-温度特性曲线如图1所示。
图1NTC 型热敏电阻的电阻与温度的关系式为:T B T Ce R = (1)其中,T 为热力学温度,B 和C 都是与材料物理性质有关的常数,B 称作热敏电阻材料常数,一般为1500-6000K 。
热敏电阻的电阻温度系数T α定义为温度变化1℃时阻值的变化量与该温度下的阻值之比:dTdR R TT T 1=α (2)将式(1)代入上式中得: 2TBT -=α (3) 单位是K -1,一般为-2%~-6%K -1。
由式(3)可以看出,T α是随温度降低而迅速增大。
T α决定热敏电阻在全部工作范围内的温度灵敏度。
热敏电阻的测温灵敏度比金属热电阻的高很多。
Cu50是一种用铜丝做成的热电阻,它的电阻的阻值是随着温度线性变化的,在0℃时它的阻值为50Ω。
其电阻值计算公式为:Cu50的电阻值=实际温度值×k+50 其中k 为变化率,单位:Ω/℃。
ntc热敏电阻原理

ntc热敏电阻原理
NTC热敏电阻是一种温度敏感元件,其电阻值随温度的变化而变化。
NTC热敏电阻的原理是基于半导体材料的温度特性,当温度升高时,
半导体材料的导电性能会发生变化,导致电阻值的变化。
NTC热敏电阻的工作原理可以用以下公式表示:
Rt = R0 * e^(B*(1/T - 1/T0))
其中,Rt为NTC热敏电阻在温度为T时的电阻值,R0为NTC热敏
电阻在参考温度T0时的电阻值,B为材料常数,T为温度,e为自然
对数的底数。
从公式中可以看出,随着温度的升高,NTC热敏电阻的电阻值会下降。
这是因为半导体材料的导电性能随温度的升高而增强,导致电阻值的
下降。
NTC热敏电阻的应用非常广泛,例如温度传感器、温度补偿、电子温
度计等。
在温度传感器中,NTC热敏电阻可以将温度转换为电阻值,
从而实现温度的测量。
在温度补偿中,NTC热敏电阻可以用来补偿电
路中元件的温度漂移,从而提高电路的稳定性。
在电子温度计中,
NTC热敏电阻可以用来测量物体的温度,例如汽车发动机的温度。
总之,NTC热敏电阻是一种非常重要的温度敏感元件,其原理基于半导体材料的温度特性。
随着科技的不断发展,NTC热敏电阻的应用将会越来越广泛。