求曲线轨迹方程的五种方法
轨迹方程的五种求法

轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,则点P 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x =·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.5b ==∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系. 设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta=+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD = ,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x =1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-. 答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①³②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
高中数学解题方法-----求轨迹方程的常用方法

练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;
求曲线的轨迹方程的方法

成都市新都香城中学数学组
李发林
2014年2月25日星期二
几种常见求轨迹方程的方法
1.直接法
由题设所给(或通过分析图形的几何性 质而得出)的动点所满足的几何条件列 出等式,再用坐标代替这等式,化简 得曲线的方程,这种方法叫直接法.
例1:已知一曲线是与两个定 点O(0,0)、A(3,0)距离的比为 1/2 的点的轨迹,求此曲线 的方程。教材P.86例5
3、过点P(2,4)作两条互 相垂直的直线l1,l2, l1交x轴 于A点,l2交y轴于点B,求 线段AB的中点M的轨迹方 程。
4、已知方程
x y 2(m 3) x 2(1 4m ) y 16m 9 0
2 2 2 4
表示一个圆。求圆心的轨迹方程。
结论:到两个定点A、B的距离之比等于常 数的点的轨迹:当=1时,轨迹是线段AB的 垂直平分线;当 1时,轨迹是圆。
练习:设两点A、B的距离 为8,求到A、B两点距离 的平方和是50的动点的轨 迹方程。
2.相关点法
若动点P(x,y)随已知曲线上的点 Q(x0,y0)的变动而变动,且x0、y0可 用x、y表示,则将Q点坐标表达式代 入已知曲线方程,即得点P的轨迹方 程.这种方法称为相关点法(或代换 法).
Y
p
o
A
X
变式2:如图,已知点P是圆x2+ y2=16上的一个动点,点A是x轴上的 定点,坐标为(12,0).若D点是AOP 的平分线与PA的交点,当点P在圆上 运动时,求点D的轨迹方程。Y Nhomakorabeap
o
A
X
练习:三角形ABC的两个顶点A, B的坐标分别是A(0,0),B (6,0)顶点C在曲线y=x2+3上 运动,求三角形ABC的重心G的 轨迹方程。
高中数学选择性必修第一册 专题研究二 求曲线的轨迹方程

探究 2 (1)相关点法求曲线方程时一般有两个动点,一个是主动的,另一个 是被动的.
(2)当题目中的条件同时具有以下特征时,一般可以用相关点法求其轨迹方 程:
①某个动点 P 在已知方程的曲线上移动; ②另一个动点 M 随 P 的变化而变化; ③在变化过程中 P 和 M 满足一定的规律.
谢
谢
观
看
2 0 22
专题研究二 求曲线的轨迹方程
专题讲解
例 1 设圆 C:(x-1)2+y2=1,过原点 O 作圆的任意弦,求所作弦的中点的 轨迹方程.
【解析】 方法一(直接法):设 OQ 为过 O 的一条弦,P(x,y)为其中点,则 CP⊥OP,OC 中点为 M12,0,
则|MP|=12|OC|=12,得方程x-122+y2=14,考虑轨迹的范围知 0<x≤1. 方法二(定义法):∵∠OPC=90°, ∴动点 P 在以 M12,0为圆心,OC 为直径的圆上,|OC|=1,再利用圆的方 程得解.
探究 1 本题中的四种方法是求轨迹方程的常用方法,我们已在本章的前几 节中做过较多的讨论,故解析时只做扼要总结即可.
例 2 设动直线 l 垂直于 x 轴,且与椭圆 x2+2y2=4 交于 A,B 两点,P 是 l 上满足P→A·P→B=1 的点,求点 P 的轨迹方程.
【解析】 设 P(x,y),A,B y2=t2,1<t<3 与椭圆 C2:x92+y2 =1 相交于 A,B,C,D 四点,点 A1,A2 分别为 C2 的左、右 顶点.求直线 AA1 与直线 A2B 的交点 M 的轨迹方程.
【解析】 由椭圆 C2:x92+y2=1,知 A1(-3,0),A2(3,0). 设点 A 的坐标为(x0,y0),由圆和椭圆的对称性,得点 B 的坐标为(x0,-y0). 设点 M 的坐标为(x,y),
求曲线轨迹方程的五种方法

求曲线轨迹方程的五种方法The final edition was revised on December 14th, 2020.求曲线轨迹方程的五种方法一、直接法如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。
例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。
解:设点P的坐标为(x,y),则A(2x,0),B(0,2y),由|AB|=2a得2)2x-2(y+-=2a20()0化简得x2+y2=a,即为所求轨迹方程点评:本题中存在几何等式|AB|=2a,故可用直接法解之。
二、定义法如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。
例2 动点P到直线x+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是()A、直线B、椭圆C、双曲线D、抛物线解法一:由题意,动点P到点M(2,0)的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D。
解法二:设P点坐标为(x,y),则|x+4|-22-=2x+(y)2当x ≥-4时,x+4-22)2(y x +-=2化简得当时,y 2=8x当x <-4时,-x-4-22)2(y x +-=2无解所以P 点轨迹是抛物线y 2=8x点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。
三、 代入法如果轨迹点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法。
例3 P 在以F 1、F 2为焦点的双曲线191622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 。
曲线轨迹方程的求法

于 设四 形4 c 的 积 .J 是, 边 日D 面 为s贝 『
| s
:
肝
.
2
l 4 =l ・4 .o 肋 cl 2l _xTt .— 酬 / 2 i2 +sn
。 ’
・ + 1
S 0 ̄ 2
且 。 科 叫 早
且 。 6 o e 2一4s2 叫 + ss o 2 i a‘ c2i e +n on 2
Z B的垂 直平分线 . 是 Z 上 内切 ;3动 圆 与 圆 C内切 , () 与圆 外切 ;4 动 圆 中心 的任 意弦 ,是线段 A ()
与圆 C外切 , 圆 内切 . 。 与
异于椭圆中心的点. I O lA 若 M = l( l 0为坐标原
, 求点 的轨迹方程. 在情况 ()( ) , 1 、2下 动圆圆心 的轨迹方程为 xO - . 点 )当点 A在椭 圆 C 上运动时 ,
4X#3
.
、 / ~ /
2
.
例 2 (08年全 国 I卷理科第 l 题 )已知 F I z+c 20 I 5 ACI -
设
i
翰
¨
。s
抛 线cy x 焦点过F 率为1 直 I 为 物 : 4的 . 且斜  ̄ = 的 线交
>膪 。 。 。 ’ 则 ‘ 。 船 的比
8
3 . 用动点和相关点的坐标表示以上关系; 代点.
因为 为 A B中点 , A( ,) (, ) 则 0, O2 . B y 又因
l
4 . 把以上关系式化简; 化简.
5 明. 明所得方程为所求 曲线的轨迹方程 . . 证 证
z z z z过点 P 2 4 , P P. k ・ 2 上且 , ( , )则 A上 B即
轨迹方程的求法

轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。
求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、已知直角坐标系中,点Q (2,0),圆C 的方程为221x y +=,动点M 到圆C 的切线长与MQ 的比等于常数()0λλ>,求动点M 的轨迹。
◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得PM . 试建立适当的坐标系,并求动点P 的轨迹方程.2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
例2、动圆过定点,02p ⎛⎫ ⎪⎝⎭,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程.◎◎ 已知圆C 的方程为 (x-2)2+y 2=100,点A 的坐标为(-2,0),M 为圆C 上任一点,AM 的垂直平分线交CM 于点P ,求点P 的方程。
◎◎已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.三、代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。
例3、P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 求PD 中点的轨迹方程.◎◎已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT 求点T 的轨迹C 的方程.练习:1、方程y=122+--x x 表示的曲线是: ( )A 、双曲线B 、半圆C 、两条射线D 、抛物线2. 抛物线的准线l 的方程是y =1, 且抛物线恒过点P (1,-1), 则抛物线焦点弦的另一个端点Q 的轨迹方程是( ).A. (x -1)2=-8(y -1)B. (x -1)2=-8(y -1) (x ≠1)C. (y -1)2=8(x -1)D. (y -1)2=8(x -1) (x ≠1)3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( )A 、(x -2)2+y 2=4B 、(x -2)2+y 2=4(0≤x <1)C 、(x -1)2+y 2=4D 、(x -1)2+y 2=4(0≤x <1)7 . P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 则PD 中点的轨迹方程为( ). A. 116922=+y x B. 196422=+y x C. 14922=+y x D. 19422=+y x 8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( )A 、抛物线B 、圆C 、双曲线的一支D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( )A 、y 2=12xB 、y 2=12x(x>0)C 、y 2=6xD 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=21B 、x 2+y 2=41C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 222222222222A. 1 B. 1 C. 1 D.12575752525757525x y x y x y x y +=+=+=+= 13、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( )A 、x 2+y 2=2a 2B 、x 2+y 2=4a 2C 、x 2-y 2=4a 2D 、x 2-y 2=a 214、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。
轨迹方程的五种求法例题

动点轨迹方程的求法一、直接法按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时.例1已知直角坐标平面上点Q 2,0和圆C :,动点M 到圆C 的切线长与的比等于常数如图,求动点M 的轨迹方程,说明它表示什么曲线.解析:设Mx ,y ,直线MN 切圆C 于N ,则有,,即,,.整理得,这就是动点M的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆.二、代入法若动点Mx,y 依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况.例2,已知抛物线,定点A 3,1,B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 解析:设,,由题设,P 分线段AB 的比,,∴,,解得, 又点B 在抛物线上,其坐标适合抛物线方程,∴,,整理得点P 的轨迹方程为其轨迹为抛物线.三、定义法若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3,若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是A ,,,,,,,,,,,,,,B122=+y x MQ ()0>λλλ=MQMN λ=-MQONMO 22λ=+--+2222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45=x )0,45(2222222)1(3112-+=+-λλλλy x )-()0,12(22-λλ13122-+λλ12+=x y ),(),,(11y x B y x P 2==PBAPλ.2121,212311++=++=y y x x 2123,232311-=-=y y x x 12+=x y .1)2323()2123(2+-=-x y ),31(32)31(2-=-x y 4)2(22=++y x 012122=+-x y 012122=-+x yC ,,,,,,,,,,,,,,,,,,,D解析:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心-2,0的距离等于它到定直线x =4的距离,故所求轨迹是以-2,0为焦点,直线x =4为准线的抛物线,并且p =6,顶点是1,0,开口向左,所以方程是.选B .例4,一动圆与两圆和都外切,则动圆圆心轨迹为 A 抛物线,,,,,,,,,B 圆,,,,,,,,C 双曲线的一支,,,,,D 椭圆解析:如图,设动圆圆心为M ,半径为r ,则有动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支,选C .四、参数法若动点Px ,y 的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出x 、y 关于另一变量的参数方程,再化为普通方程.例5设椭圆中心为原点O ,一个焦点为F 0,1,长轴和短轴的长度之比为t .1求椭圆的方程;2设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.解析:1设所求椭圆方程为由题意得解得,,,,,所以椭圆方程为. 2设点解方程组得,,,,,由和得其中t >1.消去t ,得点P 轨迹方程为和.其082=+x y 082=-x y )1(122--=x y 122=+y x 012822=+-+x y x .1,2,1=-+=+=MO MC r MC r MO 12-=t t OQOP ).0(12222>>b a b x a y =+⎪⎩⎪⎨⎧==-,,122t ba b a ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 222222)1()1(t y t x t t =-+-),,(),,(11y x Q y x P ⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 12-=t t OQ OP 1x x OQ OP =⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222ty t x t y t x 或)22(222>=x y x )22(222-<-=x y x轨迹为抛物线在直线右侧的部分和抛物线在直线在侧的部分. 五、交轨法一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.例6,已知两点以及一条直线:y =x ,设长为的线段AB 在直线上移动,求直线PA 和QB 交点M 的轨迹方程.解析:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设,则PA :Q QB :消去t ,得当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M的轨迹方程是以上是求动点轨迹方程的主要方法,也是常用方法,如果动点的运动和角度有明显的关系,还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法,都要注意所求轨迹方程中变量的取值范围.y x 222=22=x y x 222-=22-=x )2,0(),2,2(Q P -ι2λ)1,1(),,(++t t B t t A ),2)(2(222-≠++-=-t x t t y ).1(112-≠+-=-t x t t y .082222=+-+-y x y x .0822222=+--+-y x x y x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求曲线轨迹方程的五种方法
一、直接法
如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。
例1长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。
解:设点P的坐标为(x, y),
则A( 2x,0),B(0,2y),由|AB|=2a 得
(2x 0)2(0 2y)2=2a
化简得x2+y2=a,即为所求轨迹方程
点评:本题中存在几何等式|AB|=2a,故可用直接法解之。
二、定义法
如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。
例2动点P到直线x+4=0的距离减去它到M (2, 0)的距离之
差等于2,则点P的轨迹是( )
A、直线
B、椭圆
C、双曲线
D、抛物线
解法一:由题意,动点P到点M (2, 0)的距离等于这点到直线
x=-2的距离,因此动点P的轨迹是抛物线,故选D。
解法二:设P点坐标为(x,y),贝S
|x+4卜(x 2)2 y2=2
当x>-4 时,x+4- , (x 2)2 y2=2 化简得
当时,y 2=8x
当 X V -4 时,-x-4- .. (x 2)2 y 2 =2 无解
所以P 点轨迹是抛物线y 2=8x
点评:解法一与解法二分别用定义法和直接法求轨迹方程, 明显, 解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义 法,则优先采用定义法,它能大量地简化计算。
三、代入法
如果轨迹点P (x ,y )依赖于另一动点Q ( a , b ),而Q ( a, b ) 又在某已知曲线上,则可先列出关于 x 、y 、a 、b 的方程组,利用X 、 y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点 P 的轨迹方程, 此法称为代入法。
2
仝1上运动,则厶F 1F 2P
9
的重心G 的轨迹方程是 _____________________
解:设 P (X 。
,y 。
),G (x ,y ),则有
由于G 不在F 1F 2上,所以卄0
四、参数法 x
1(x 4 X 。
) y
1(0
0 y o ) x 2 2 y 1得 9x 2
16 9 16
即9x2
2 y 1 16
即x 3x ,代入 y 。
3y 磴1 9
P 在以F i 、F 2为焦点的双曲线 2 x 16
如果轨迹动点P (x, y)的坐标之间的关系不易找到,也没有相关的点可用时,可先考虑将x、y用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法。
例4 已知点M在圆13X1 2+13y2-15x-36y=0上,点N在射线0M 上,且满足|0M| • |ON|=12,求动点N的轨迹方程。
分析:点N在射线0M上,而同一条以坐标原点为端点的射线上两点坐标的关系为(x,『)与(kx, ky) (k> 0),故采用参数法求轨迹方程。
解:设N (x, y),则M (kx, ky), k>0
由|0M| • |ON|=12 得
、k2 (x2 y2) • . x2 y2=12
••• k (x2+y2) =12,又点M在已知圆上,
••• 13k2x2+13k2y2-15kx-36ky=0
由上述两式消去x2+y2得
5x+12y-52=0
点评:用参数法求轨迹,设参尽量要少,消参较易。
五、交轨法
若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点方程,此法称为交轨法。
2 2
例5已知A i A是椭圆x2与1 (a>b>0)的长轴,CD是垂
a b
直于A i A的椭圆的弦,求直线A i C与AD的交点P的轨迹方程。
解:设P (x, y), C (x°, y°), D (心-y°),(沪 0)
T A i (-a, 0), A (a, 0),由A「C、P 共线及A、D、P 共线得
y。
y
x0 a x a
_y^ y
x0 a x a
2 2 2 2 两式相乘并由智乌1,消去x°,y°,得,所求轨迹方程为笃爲1 a b a b (0)
点评:交轨法的难点是消参,如何巧妙地消参是我们研究的问题。