三角形“四心”向量形式的充要条件应用知识总结

合集下载

三角形四心与向量(最新整理)

三角形四心与向量(最新整理)
例 7 若 O 为 ABC 内一点, OA OB OC ,则 O 是 ABC 的( )
-2-
A.内心
B.外心 C.垂心 D.重心
解析:由向量模的定义知 O 到 ABC 的三顶点距离相等。故 O 是 ABC 的外心 ,选 B。
(五)将平面向量与三角形四心结合考查
例 8.已知向量 OP1 , OP2 , OP3 满足条件 OP1 + OP2 + OP3 =0,| OP1 |=| OP2 |=| OP3 |=1,
向量 ( AB AC )( 0) 所在直线过 ABC 的内心(是 BAC 的角平分线所在直 B
| AB | | AC |
线);
范例
(一)将平面向量与三角形内心结合考查
A
e1
C
P
e2
C C
例 1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点 P 满足 OP OA ( AB AC ) , 0,
例 3.(湖南)P 是△ABC 所在平面上一点,若 PA PB PB PC PC PA ,则 P 是△ABC 的(D )
A.外心
B.内心
C.重心
D.垂心
解析:由 PA PB PB PC得PA PB PB PC 0 .即 PB (PA PC) 0,即PB CA 0
(B )
A.AB 边中线的中点
B.AB 边中线的三等分点(非重心)
C.重心
D.AB 边的中点
1. B 取 AB 边的中点 M,则 OA OB 2OM ,由 OP = 1 ( 1 OA + 1 OB +2 OC )可得 3 OP 3OM 2MC ,
32
2

MP
2 3

平面向量与三角形“四心”(较全面)

平面向量与三角形“四心”(较全面)

平面向量与三角形“四心”(较全面)一、“四心”概念(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心1):外心到三角形各顶点的距离相等.二、“四心”的充要条件(1)⇔=++→→→→0OC OB OA 是△ABC 的重心.【证法1】:设()y x O ,,()11,y x A ,()22,y x B ,()33,y x C⇔=++→→→→0OC OB OA ()()()()()()⎩⎨⎧=-+-+-=-+-+-00321321y y y y y y x x x x x x ⎪⎩⎪⎨⎧++=++=⇔33321321y y y y x x x x ⇔是的重心.【证法2】:∵→→→→→→=+=++02ODOAOCOBOA,∴→→=ODAO2∴A,O,D三点共线,且O分AD为2:1,∴是△ABC的重心.(2)⇔⋅=⋅=⋅→→→→→→OA OC OC OB OB OA 为△ABC 的垂心.【证明】:如图,O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC ,D 、E 是垂足.→→→→→→→→→→→⊥⇔=⋅=-⇔⋅=⋅AC OB CA OB OC OA OB OC OB OB OA 0)(同理→→⊥OB OA ,⇔⊥→→AB OC O 为△ABC 的垂心. (3) ⇔=++→→→→0OC c OB b OA a O 为△ABC 的内心. 【证明】:∵bAC c AB →→,分别为→→AC AB ,方向上的单位向量,bACc AB →→+平分BAC ∠,(λ=→AO )bAC c AB →→+,令c b a bc ++=λ cb a bcAO ++=→)(bAC c AB →→+,化简得→→→→=++++0)(AC c AB b OA c b a ,→→→→=++0OC c OB b OA a .(4)⇔==→→→||||||OC OB OA 为△ABC 的外心.三、“四心”的向量表达1.⇒⎪⎩⎪⎨⎧+=+=→→→→→→)(31)(31BC BA BO AC AB AO O 为△ABC 的重心;【证】:由),0[,sin sin +∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP ,即)(sin →→→+=AC B A C b AP λ,故→AP 与→→+AC AB 共线,又→→+AC AB 过BC 中点D ,故P 点的轨迹也过中点D , 故点P 过三角形的重心.2. ⇒⎪⎩⎪⎨⎧=⋅=⋅→→→→00AC BO BC AO O 为△ABC 的垂心.(1)由C B A S S S AOB AOC BOC tan :tan :tan ::=∆∆∆⇒→→→→=++0tan tan tan OC C OB B OA A . (2)222222→→→→→→+=+=+B A OC CA OB BC OA .【证】:由⎪⎭⎫ ⎝⎛++=→→→→AC b B A c OA OP λ知,⎪⎭⎫ ⎝⎛+=→→→AC b B B A c C AP cos cos λ, =⋅→→BC AP )cos cos (→→→→⋅+⋅⋅BC AC bB C B AB c C λ 0)cos cos cos cos (=+-=C B C B a λ,故→AP 与向量→BC 垂直, 故点P 的轨迹过垂心.【证】:由),0[,2sin 2sin 22+∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP 知,,2sin 2sin 22⎪⎪⎪⎭⎫ ⎝⎛+=→→→C b AC B c AB AP λ故⎪⎪⎪⎭⎫ ⎝⎛⋅+⋅=⋅→→→→→→C b BC AC B c BC AB BC AP 2sin 2sin 22λ,则0)sin sin (2=+-=⋅→→C b a B c a BC AP λ, 故点P 轨迹过三角形的垂心.【解】:AD 垂直BC ,BE 垂直AC , D 、E 是垂足.→→→→→⋅⎪⎪⎪⎭⎫ ⎝⎛+BC C AC AC B AB AB cos ||cos ||C AC BC AC B AB BC AB cos ||cos ||→→→→→→⋅+⋅=C AC C BC AC B AB B BC AB cos ||cos ||||cos ||cos ||||→→→→→→⋅+⋅-=0=+-=→→BC BC ∴点的轨迹一定通过△ABC 的垂心.3. ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=>+=→→→→→→→→→→0),||||(0),||||(t BC BCBA BA t BO AC AC AB AB AO λλO 为△ABC 的内心;(1)c b a S S S AOB AOC BOC ::::=∆∆∆⇒→→→→=++0sin sin sin OC C OB B OA A(2)→→→→→→→→→→→→→→→→=⎪⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎪⎭⎫ ⎝⎛-⋅0||||||||||||CB CB CA CAOC BC BC BA BA OB AC AC AB AB OA【解】:由),0[,sin sin 22+∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP 知,)0)(||||(sin >+=→→→→→λλAC AC AB AB B c AP , 故动点P 的轨迹一定通过ABC ∆的内心.满足⎪⎪⎪⎭⎫ ⎝⎛++=→→→→→→||||AC AC AB AB OA OP λ,),0[+∞∈λ ,则点的轨迹一定通过△ABC 的____.【解】:∵如图,设||,||→→→→→→==AC AC AF AB ABAE 分别为→→AC AB ,方向上的单位向量, 易知四边形AETF 是菱形,∴||||→→→→+AC AC AB AB 平分BAC ∠,∴点的轨迹一定通过△ABC的内心.4.两点分别是△ABC的边上的中点,且⇒⎪⎩⎪⎨⎧⋅=⋅⋅=⋅→→→→→→→→OA EO OC EO OC DO OB DO O 为△ABC 的外心; (1)0=++→∆→∆→∆OC S OB S OA S AOB AOC BOC (外心向量定理) (2)由AOB AOC BOC S S S AOB AOC BOC ∠∠∠=∆∆∆sin :sin :sin ::C B A 2sin :2sin :2sin =⇒→→→→=⋅+⋅+⋅02sin 2sin 2sin OC C OB B OA A .四、欧拉线及其向量法证明三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线叫三角形的欧拉线. 在△ABC 中,已知Q 、G 、H 分别是三角形的外心、重心、垂心.求证:Q 、G 、H 三点共线,且QG:GH=1:2. 【证明】:以A 为原点,AB 所在的直线为x 轴,建立直角坐标系。

三角形四心向量形式知识总结

三角形四心向量形式知识总结

三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心⇔=++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++ ⇔G 为ABC ∆的重心.2.O 是ABC ∆的垂心⇔⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S A OBA OC BOC ::::=∆∆∆故0OC C tan OB B tan OA A tan =++3.O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222O O O ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOBAOC BOC =∠∠∠=∆∆∆::::故C 2sin B 2sin A 2sin =++4.O是内心ABC ∆的充要条件是|CB ||CA |(|BC ||BA |(AC|AB |(=⋅=⋅=⋅引进单位向量,使条件变得更简洁。

如果记CA ,BC,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成0)e e (O C )e e (O B )e e (O A 322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 。

若O 是ABC ∆的内心,则c b a S S S A OB A OC BOC ::::=∆∆∆故C sin B sin A sin c b a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(一)将平面向量与三角形内心结合考查例1.O是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心AB 的单位向量设AB 与AC方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略)) 例3.(湖南)P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的(D)A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅得.即0,0)(=⋅=-⋅即则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心. 证明 作图如右,图中=+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将GE GC GB =+代入GC GB GA ++=0,得+=0⇒2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略)) 例6 若O 为ABC ∆内一点,0OA OB OC ++=,则O 是ABC ∆ 的()A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++= 得OB OC OA +=- ,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=,由平行四边形性质知12OE OD =,2OA OE=,同理可证其它两边上的这个性质,所以是重心,选D 。

专题08 三角形”四心“向量形式的充要条件(教师版)-2024年高考二级结论速解技巧

专题08 三角形”四心“向量形式的充要条件(教师版)-2024年高考二级结论速解技巧
一、单选题 1.(2022·全国·高三专题练习)平面上有 ABC 及其内一点 O,构成如图所示图形,若将OAB ,△OBC ,
OCA 的面积分别记作 Sc , Sa , Sb ,则有关系式 Sa ⋅OA + Sb ⋅OB + Sc ⋅OC = 0 .因图形和奔驰车的 logo 很相
似,常把上述结论称为“奔驰定理”.已知 ABC 的内角 A,B,C 的对边分别为 a,b,c,若满足
1 2
a

h2

S
OA=C
1 2
b

h3

S
OA=B
1 2
c

h1

因为
S△OBC

OA
+
S△OAC

OB
+
S△OAB

OC
= 0 ,则
1 2
a

h2

OA
+
1 2
b

h3

OB
+
1 2
c

h3

OC =0
,即
a ⋅ h2 ⋅ OA + b ⋅ h3 ⋅ OB + c ⋅ h1 ⋅ OC =0 ,又因为 a ⋅ OA + b ⋅ OB + c ⋅ OC =0 ,所以 h=1 h=2 h3 ,所以点 P 是△ABC 的内
内的一点,∠BAC,∠ABC,∠ACB 分别是的△ABC 三个内角,以下命题正确的有( )
A.若 OA + 2OB + 3OC = 0 ,则 SA : SB : SC = 1: 2 : 3
B.若 O=A

三角形“四心”向量形式的充要条件应用知识总结

三角形“四心”向量形式的充要条件应用知识总结

三角形“四心”向量形式的充要条件应用1.O 是的重心;若O 是的重心,则故;1()3PG PA PB PC =++u u u r u u u r u u u r u u u r ⇔G 为ABC ∆的重心.2.O 是的垂心;若O 是(非直角三角形)的垂心,则故3.O 是的外心(或) 若O 是的外心则故 4.O是内心的充要条件是引进单位向量,使条件变得更简洁。

如果记的单位向量为,则刚才O 是内心的充要条件可以写成 ,O 是内心的充要条件也可以是 。

若O 是的内心,则故;||||||0AB PC BC PA CA PB P ++=⇔u u u r u u u r u u u r u u u r u u u r u u u r r是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠u u u r u u u ru u ur u u u r 所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(一)将平面向量与三角形内心结合考查例1.O是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心是向量AB u u u r 的单位向量设AB u u u r 与AC u u ur 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略)) 例3.(湖南)P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的(D)A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅即则AB PC BC PA CA PB⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心. 证明 作图如右,图中=+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将=+代入++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3+++++= ∵G 是△ABC 的重心 ∴++=0⇒++=0,即++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略)) 例6 若O 为ABC ∆内一点,0OA OB OC ++=u u u r u u u r u u u r r,则O 是ABC ∆ 的()A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++=u u u r u u u r u u u r r 得OB OC OA +=-u u u r u u u r u u u r ,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=u u u r u u u r u u u r,由平行四边形性质知12OE OD =u u u r u u u r,2OA OE=,同理可证其它两边上的这个性质,所以是重心,选D 。

三角形“四心”向量形式的充要条件应用

三角形“四心”向量形式的充要条件应用

三角形“四心”向量形式的充要条件应用有关三角形重心、垂心、外心、内心向量形式的充要条件。

现归纳总结如下: 一、 知识点总结1)O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则ABCAOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++; 1()3PG PA PB PC =++⇔G 为A B C ∆的重心. 2)O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OBOA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4)O 是内心ABC ∆的充要条件是OC OB OA =-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。

如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e (OC )e e (OB )e e (OA 322131=+⋅=+⋅=+⋅ O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA C A PB P ++=⇔A B C ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过A B C ∆的内心(是B A C ∠的角平分线所在直线); 二、 范例(一).将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心 解析:因为是向量AB 的单位向量设AB与A C方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC∆中,AP 平分BAC ∠,则知选B.点评:这道题给人的印象当然是“新颖、陌生”是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。

“四心”向量形式的充要条件及应用 (1)

“四心”向量形式的充要条件及应用 (1)

三角形“四心”向量形式的充要条件及应用(修改稿)《平面向量》的学习中,通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。

现归纳总结如下: 一、、范例回顾(一).将平面向量与三角形内心结合考查 例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( B )(A )外心(B )内心(C )重心(D )垂心 (二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心.由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略)) (三)将平面向量与三角形重心结合考查“重心定理” 例3. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明 作图如右,图中=+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例4.P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=.证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31++=.(反之亦然(证略))(五) 将平面向量与三角形四心结合考查例5.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证 △P 1P 2P 3是正三角形.(《数学》第一册(下),复习参考题五B 组第6题)证明 由已知1OP +2OP =-3OP ,两边平方得1OP ·2OP =21-, 同理 2OP ·3OP =3OP ·1OP =21-, ∴|21P P |=|32P P |=|13P P |=3,从而△P 1P 2P 3是正三角形.反之,若点O 是正三角形△P 1P 2P 3的中心,则显然有1+2OP +3OP =0且|1OP |=|2OP |=|3OP |.即O 是△ABC 所在平面内一点,1OP +2OP +3OP =0且|1OP |=|2OP |=|3OP |⇔点O 是正△P 1P 2P 3的中心.例6.在△ABC 中,已知Q 、G 、H 分别是三角形的外心、重心、垂心。

三角形四心向量形式的应用

三角形四心向量形式的应用

三角形“四心”向量形式的应用一. 知识总结1、三角形的重心的向量表示及应用(中线交点) 命题一:G 是△ABC 的重心⇔0GA GB GC ++=命题二:1()3PG PA PB PC =++⇔G 为△ABC 的重心(P 是平面上的点). 命题三:点O 是三角形ABC 的重心则∆∆∆AOB BOC COA S = S = S变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则AD BE CF ++=0. 变式引申:平行四边形ABCD 的中心为O ,P 为该平面上任意一点,则1()4PO PA PB PC PD =+++2、三角形的垂心的向量表示及应用:(三边高线交点) 命题一:H 是△ABC 的垂心⇔HA HB HB HC HC HA •=•=•例1:若H 为△ABC 所在平面内一点,且222222HA BC HB CA HC AB +=+=+ 则点H 是△ABC 的垂心3.外心(三边垂直平分线交点,外接圆圆心) 命题一:O 是△ABC 的外心⇔|OA |=|OB |=|OC |(或OA 2=OB 2=OC 2)(点O 到三边距离相等)4.内心(角平分线交点,内切圆圆心) 命题一:O 是△ABC 的内心⇔()()()0||||||||||||AB ACBA BCCA CBOA OB OC AB AC BA BC CA CB •-=•-=•-=命题二:||||||0AB PC BC PA CA PB P ++=⇔为△ABC 的内心; 变式:向量()(0)||||AB ACAB AC λλ+≠所在直线过△ABC的内心(是∠BAC 的角平分线所在直线);例 1.已知O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足(),(0,)cos cos AB AC OP OA AB BAC Cλλ=++∈+∞,则动点P 的轨迹一定通过△ABC 的( )A .外心 B.内心 C 重心 D 垂心变形:(1)(),(0,)sin sin AB ACOP OA AB B AC Cλλ=++∈+∞ (2)sin sin (),(0,)AB C AC B OP OA AB AC λλ=++∈+∞(3)(),(0,)cos cos AB AC PB PC AB BAC Cλλ=-++∈+∞例2: 点O 在△ABC 内部且满足220OA OB OC ++=,则△ABC 面积与凹四边形ABOC的面积之比( )A 0 B 3/2 C 5/4 D 4/3变形引申:0OA mOB nOC ++=,求△ABC 面积与凹四边形ABOC 的面积之比5.外心与重心:O 是△ABC 的外心,G 是重心,则3OA OB OCOG ++=6.外心与垂心:O 是△ABC 的外心,H 是垂心,则OH OA OB OC =++7.重心与垂心:G 是△ABC 的重心,H 是垂心,则3HA HB HCHG ++=8.外心、重心、垂心:O 、G 、H 分别是锐角△ABC 的外心、重心、垂心,则13OG OH =9. “欧拉定理”:锐角三角形的“三心”——外心、重心、垂心的 (1)三角形的外心、重心、垂心三点共线——“欧拉线”;(2)三角形的重心在“欧拉线”上,且为外——垂连线的第一个三分点,即重心到垂心的距离是重心到外心距离的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心0OC OB OA=++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故=++;1()3PG PA PB PC =++u u u r u u u r u u u r u u u r ⇔G 为ABC ∆的重心.2.O 是ABC ∆的垂心OA OC OC OB OBOA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆故C tan B tan A tan=++3.O 是ABC ∆的外心||||||==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆::::故0OC C 2sin OB B 2sin OAA 2sin =++4.O是内心ABC ∆的充要条件是|CB ||CA |(|BC ||BA |(AC|AB |(=⋅=⋅=⋅引进单位向量,使条件变得更简洁。

如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e ()e e ()e e (322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是0OC c OB b OAa =++ 。

若O 是ABC ∆的内心,则cb a S S S AOB AOC BOC ::::=∆∆∆故0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔u u u r u u u r u u u r u u u r u u u r u u u r r是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠u u u r u u u ru u ur u u u r 所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(一)将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的()(A )外心(B )内心(C )重心(D )垂心是向量AB u u u r 的单位向量设AB u u u r 与AC u u ur 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略)) 例3.(湖南)P 是△ABC 所在平面上一点,若PA PC PC PB PBPA ⋅=⋅=⋅,则P 是△ABC 的(D)A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅CA PB PC PA PB 即则AB PC BC PA CA PB⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心. 证明 作图如右,图中GE GC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略)) 例6 若O 为ABC ∆内一点,0OA OB OC ++=u u u r u u u r u u u r r,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++=u u u r u u u r u u u r r 得OB OC OA +=-u u u r u u u r u u u r ,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=u u u r u u u r u u u r,由平行四边形性质知12OE OD =u u u r u u u r,2OA OE=,同理可证其它两边上的这个性质,所以是重心,选D 。

(四) 将平面向量与三角形外心结合考查例7若O 为ABC ∆内一点,OA OB OC==u u u r u u u r u u u r,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心解析:由向量模的定义知O 到ABC ∆的三顶点距离相等。

故O 是ABC ∆ 的外心,选B 。

(五)将平面向量与三角形四心结合考查例8.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1, 求证 △P 1P 2P 3是正三角形.(《数学》第一册(下),复习参考题五B 组第6题) 证明 由已知1OP +2OP =-3OP ,两边平方得1OP ·2OP =21-, 同理 2OP ·3OP =3OP ·1OP =21-, ∴|21P P |=|32P P |=|13P P |=3,从而△P 1P 2P 3是正三角形.反之,若点O 是正三角形△P 1P 2P 3的中心,则显然有1OP +2OP +3OP =0且|1OP |=|2OP |=|3OP |. 即O 是△ABC 所在平面内一点,1OP +2OP +3OP =0且|1OP |=|2OP |=|3OP |⇔点O 是正△P 1P 2P 3的中心.例9.在△ABC 中,已知Q 、G 、H 分别是三角形的外心、重心、垂心。

求证:Q 、G 、H 三点共线,且QG:GH=1:2。

【证明】:以A 为原点,AB 所在的直线为x 轴,建立如图所示的直角坐标系。

设A(0,0)、B (x 1,0)、C(x 2,y 2),D 、E 、F 分别为AB 、BC 、AC 的中点,则有:112222,0)(,)(,22222x x x y x y E F +D (、、 由题设可设1324,)(,)2x Q y H x y (、, 122(,)33x x y G +212243(,)(,)222x x y AH x y QF y ∴==--u u u u r u u u r ,212(,)BC x x y =-u u u r2212422142()0()AH BC AH BC x x x y y x x x y y ⊥∴•=-+=-∴=-u u u u r u u u r Q u u u u r u u u r212223221232()()0222()22QF AC x x yQF AC x y y x x x y y y ⊥∴•=-+-=-∴=+u u u r u u u u r Q u u u r u u u u r121221224323()(,),22x x x x x x y QH x y y --∴=--=--u u u u r 2(22y2112212221232122122122122()(,),)3233223()23()1 (,(,6321 =3x x x y x x y x x x y QG y x x x x x y x x x x x y QH+--∴=--=------=--=--u u u r u u uu r 222(62y 66y 22y 即=3QH QG u u u u r u u u r,故Q 、G 、H 三点共线,且QG :GH =1:2例10.若O 、H 分别是△ABC 的外心和垂心.求证 OC OB OA OH ++=. 证明 若△ABC 的垂心为H ,外心为O ,如图. 连BO 并延长交外接圆于D ,连结AD ,CD .∴AB AD ⊥,BC CD ⊥.又垂心为H ,BC AH ⊥,AB CH ⊥, ∴AH ∥CD ,CH ∥AD ,∴四边形AHCD 为平行四边形,∴OC DO DC AH +==,故OC OB OA AH OA OH ++=+=.着名的“欧拉定理”讲的是锐角三角形的“三心”——外心、重心、垂心的位置关系: (1)三角形的外心、重心、垂心三点共线——“欧拉线”;(2)三角形的重心在“欧拉线”上,且为外——垂连线的第一个三分点,即重心到垂心的距离是重心到外心距离的2倍。

“欧拉定理”的向量形式显得特别简单,可简化成如下的向量问题.例11. 设O 、G 、H 分别是锐角△ABC 的外心、重心、垂心. 求证 OH OG 31= 证明 按重心定理 G 是△ABC 的重心⇔)(31OC OB OA OG ++=按垂心定理 OC OB OA OH ++= 由此可得 OH OG 31=. 补充练习1.已知A 、B 、C 是平面上不共线的三点,O 是三角形ABC 的重心,动点P 满足OP =31 (21OA +OB 21+2OC ),则点P 一定为三角形ABC 的 ( B ) 边中线的中点 边中线的三等分点(非重心) C.重心 边的中点 1. B 取AB 边的中点M ,则OMOB OA 2=+,由OP=31 (21OA +OB 21+2OC)可得3MC OM OP 23+=,∴MC MP 32=,即点P 为三角形中AB 边上的中线的一个三等分点,且点P 不过重心,故选B.2.在同一个平面上有ABC ∆及一点O满足关系式:2O A u u u u u r +2BC u u u u u u r =2OB u u u u u u r +2CA u u u u u r =2OC u u u u u u r +2AB u u u u u u r,则O为ABC ∆的 (D )A 外心 B 内心 C 重心 D 垂心2.已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足:0PA PB PC ++=u u u r u u u r u u u r ,则P 为ABC∆的(C )A 外心 B 内心 C 重心 D 垂心3.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足:)(AC AB OA OP ++=λ,则P 的轨迹一定通过△ABC 的 (C )A 外心 B 内心 C 重心 D 垂心4.已知△ABC ,P 为三角形所在平面上的动点,且动点P 满足:0PA PC PA PB PB PC •+•+•=u u u r u u u r u u u r u u u r u u u r u u u r,则P 点为三角形的 (D )A 外心 B 内心 C 重心 D 垂心5.已知△ABC ,P 为三角形所在平面上的一点,且点P 满足:0a PA b PB c PC ⋅+⋅+•=u u u r u u u r u u u r,则P 点为三角形的(B )A 外心 B 内心 C 重心 D 垂心 6.在三角形ABC 中,动点P 满足:CPAB CB CA •-=222,则P 点轨迹一定通过△ABC 的:( B )A 外心 B 内心 C 重心 D 垂心7.已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形解析:非零向量与满足(||||AB AC AB AC +u u u r u u u r u u u r u u u r )·=0,即角A 的平分线垂直于BC ,∴ AB =AC ,又cos A =||||AB AC AB AC ⋅u u u r u u u ru u u r u u u r =12 ,∠A =3π,所以△ABC 为等边三角形,选D .8.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(m ++=,则实数m = 19.点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OBOA ⋅=⋅=⋅,则点O 是ABC ∆的(B)(A )三个内角的角平分线的交点 (B )三条边的垂直平分线的交点(C )三条中线的交点(D )三条高的交点10. 如图1,已知点G 是ABC ∆的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM xAB =u u u u v u u u v, AN y AC =u u u v u u u v ,则113x y+=。

相关文档
最新文档