一级直齿圆柱齿轮减速器 课程设计

合集下载

一级直齿圆柱齿轮减速器设计书

一级直齿圆柱齿轮减速器设计书

一级直齿圆柱齿轮减速器设计书第一部分课程设计任务书一、设计课题:设计一级直齿圆柱齿轮减速器,工作机效率为0.96(包含其支承轴承效率的损失),使用限期8年(300天/年),2班制工作,运输允许速度偏差为5%,车间有三相沟通,电压380/220V。

二. 设计要求:减速器装置图一张。

绘制轴、齿轮等部件图各一张。

设计说明书一份。

三. 设计步骤:传动装置整体设计方案电动机的选择确立传动装置的总传动比和分派传动比计算传动装置的运动和动力参数设计V带和带轮齿轮的设计转动轴承和传动轴的设计1.键联接设计专业.专注箱体构造设计润滑密封设计联轴器设计第二部分传动装置整体设计方案构成:传动装置由电机、减速器、工作机构成。

特色:齿轮相对于轴承对称散布。

确立传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。

其传动方案以下:图一: 传动装置整体设计图初步确立传动系统整体方案如 :传动装置整体设计图所示。

选择V带传动和一级圆柱直齿轮减速器。

专业.专注计算传动装置的总效率a:a= ×2×××1为V带的效率, 2为轴承的效率, 3为齿轮啮合传动的效率 , 4为联轴器的效率, 5为工作机的效率(包含工作机和对应轴承的效率)。

第三部分电动机的选择1电动机的选择皮带速度v:工作机的功率pw:w F×V1620×p=1000=1000=KW电动机所需工作功率为:p wpd=ηa==KW履行机构的曲柄转速为:n=60×1000V=60×1000×=r/minπ×Dπ×280经查表按介绍的传动比合理范围,V带传动的传动比i1=2~4,一级圆柱直齿轮减速器传动比i2=3~6,则总传动比合理范围为ia=6~24,电动机转速的可选范围为nd=i a×n=(6×24)×=。

综合考虑电动机和传动装置的尺寸、重量、价钱和带传动、减速器的传动比,选定型号为Y112M-4专业.专注的三相异步电动机,额定功率为4KW,满载转速nm=1440r/min,同步转速1500r/min。

机械基础课程设计一级直齿圆柱齿轮减速器

机械基础课程设计一级直齿圆柱齿轮减速器

机械基础课程设计说明书设计题目:一级直齿圆柱齿轮减速器班级学号学生:指导老师:完成日期:所在单位:设计任务书1、题目设计用于带式输送机的机械传动装置——一级直齿圆柱齿轮减速器。

2、参考方案(1)V带传动和一级闭式齿轮传动(2)一级闭式齿轮传动和链传动(3)两级齿轮传动3、原始数据4、其他原始条件(1)工作情况:两班制,输送机连续单向运转,载荷较平稳。

(2)使用期限:5年。

(3)动力来源:三相交流(220V/380V)电源。

(4)允许误差:允许输送带速度误差5%±。

5、设计任务(1)设计图。

一级直齿(或斜齿)圆柱齿轮减速器装配图一,要求有主、俯、侧三个视图,图幅A1,比例1:1(当齿轮副的啮合中心距110a≤时)或1:1.5(当齿轮副的啮合中心距110a>时)。

(2)设计计算说明书一份(16开论文纸,约20页,8000字)。

目录一传动装置的总体设计 (3)二传动零件的设计 (7)三齿轮传动的设计计算 (9)四轴的计算 (11)五、箱体尺寸及附件的设计 (24)六装配图 (28)设计容:一、传动装置的总体设计1、确定传动方案本次设计选用的带式输送机的机械传动装置方案为V带传动和一级闭式齿轮传动,其传动装置见下图。

2,选择电动机(1) 选择电动机的类型按工作要求及工作条件选用三相异步电动机,封闭自扇冷式结构,电压380V ,Y 系列。

(2) 选择电动机的额定功率① 带式输送机的性能参数选用表1的第 6组数据,即:表一工作机所需功率为:kW sm N Fv w 44.51000/7.132001000P =⨯==②从电动机到工作机的传动总效率为:212345ηηηηηη=其中1η、2η、3η、4η、5η分别为V 带传动、齿轮传动、滚动轴承、弹性套柱销联轴器和滚筒的效率,查取《机械基础》P 459的附录3 选取1η=0.95 、2η=0.97(8级精度)、3η=0.99(球轴承)、4η=0.995、5η=0.96 故22123450.950.970.990.9950.960.8609664143520.862ηηηηηη==⨯⨯⨯⨯=≈ ③ 电动机所需功率为kW sm N Fv d 33.6852.0*1000/7.1*32001000P ===η 又因为电动机的额定功d ed P P ≥(3) 确定电动机的转速 传动滚筒轴工作转速:min r/2.814007.1100060v 100060=⨯⨯=⨯⨯=ππD n 滚筒查《机械基础》P 459附录3, V 带常用传动比为i 1=2~4,圆柱齿轮传动一级减速器常用传动比围为i 2=3~5(8级精度)。

机械设计基础课程设计一级圆柱齿轮减速器

机械设计基础课程设计一级圆柱齿轮减速器

机械设计基础课程设计计算说明书设计题目:一级圆柱齿轮减速器学院:材料学院班级:冶金0901学号:1109090105设计者:夏裕翔指导教师:姜勇日期:2021年7月目录一.设计任务书 (3)二.传动系统方案的拟定 (3)三.电动机的选择 (3)四.传动比的分派 (4)五.传动系统的运动和动力参数计算 (5)六.传动零件的设计计算 (6)七.减速器轴的设计 (11)八.轴承的选择与校核 (18)九.键的选择与校核 (19)十.联轴器的选择 (22)十一.减速器润滑方式,润滑剂及密封装置 (22)十二.箱体结构的设计 (23)十三.参考文献 (26)计算及说明 结果一、设计任务书一、设计任务设计带式输送机的传动系统,采纳带传动和一级圆柱齿轮减速器。

2、原始数据输送带轴所需扭矩 τ=1050Nm 输送带工作速度 ν=/s输送带滚筒直径 d =380mm 减速器设计寿命为8年(两班制),大修期限四年。

3、工作条件两班制工作,空载起动载荷平稳,常温下持续(单向)运转,工作环境多尘;三相交流电源,电压为380/220V 。

二、传动系统方案的拟定带式输送机传动系统方案如下图:(画方案图)带式输送机由电动机驱动。

电动机1将动力传到带传动2,再由带传动传入 一级减速器3,再经联轴器4将动力传至输送机滚筒5,带动输送带6工作 。

传动系统中采纳带传动及一级圆柱齿轮减速器,采纳直齿圆柱齿轮传动。

三、电动机的选择按设计要求及工作条件选用Y 系列三相异步电动机,卧式封锁结构,电压 380V 。

一、电动机的功率依照已知条件由计算得知工作机所需有效效率KW FvP w 42.410008.038.0105021000=⨯⨯==设:η1—联轴器效率=0.97; η2— η3— η4— η5—由电动机至运输带的传动总效率为8588.096.099.096.099.097.03534321=⨯⨯⨯⨯==ηηηηηη工作机所需电动机总功率 KW P w5.158588.042.4P r ===η由表所列Y 系列三相异步电动机技术数据中能够确信,知足Pm ≥Pr 条件的 电动机额定功率Pm 应取为KW计算及说明 结果二、电动机转速的选择依照已知条件由计算得知输送机滚筒的工作转速min /23.4038014.38.0100060100060r d v n w=⨯⨯⨯=⨯=π额定功率相同的同类型电动机,能够有几种转速供选择,如三相异步电动机就有四种经常使用的同步转速,即min /3000r 、min /1500r 、min /1000r 、 min /750r 。

带式运输机的一级圆柱或圆锥齿轮减速器课程设计说明书

带式运输机的一级圆柱或圆锥齿轮减速器课程设计说明书

课程设计说明书目录一、设计课题及主要任务 (2)二、传动方案拟定 (2)三、电动机的选择 (4)四、确定传动装置的总传动比和运动(动力)参数的计算 (5)五、V带的设计 (7)六、齿轮传动的设计 (9)七、轴的设计 (12)八、箱体结构设计及附件选择 (22)九、键联接设计 (25)十、轴承设计 (26)十一、密封和润滑的设计 (27)十二. 联轴器的设计 (27)十三、设计小结 (28)附: 参考资料 (30)四、确定传动装置的总传动比和运动(动力)参数的计算:1.传动装置总传动比为:2.分配各级传动装置传动比:3.运动参数及动力参数的计算: 由选定的电动机满载转速nm 和工作机主动轴转速n: i 总= nm/n=nm/n 滚筒=960/76.4=12.57总传动比等于各传动比的乘积 分配传动装置传动比:i= i1×i2 式中i1.i2分别为带传动和减速器的传动比 根据《机械零件课程设计》表2--5, 取io =3(普通V 带 i=2~4) 因为: io =i1×i2所以: i2=io /i1=12.57/3=4.19 根据《机械零件课程设计》公式(2-7)(2-8)计算出各轴的功率(P 电机轴、P 高速轴、P 低速轴、P 滚筒轴)、转速(n 电机轴、n 高速轴、n 低速轴、n 滚筒轴)和转矩(T 电机轴、T 高速轴、T 低速轴、T 滚筒轴) 计算各轴的转速: Ⅰ轴(高速轴): n 高速轴=nm/io=960/3.0=320r/min Ⅱ轴(低速轴): n 低速轴=n 高速轴/i1=320/4.19=76.4r/min 滚筒轴: n 滚筒轴=n 低速轴= 76.4r/mini 总=12.57io =3i2=4.19n 高速轴=320r/min n 低速轴= 76.4r/min n 滚筒轴= 76.4r/min七、轴的设计(一)输入轴的设计计算: 1、齿轮轴的设计: 轴简图:选择轴材料:由已知条件知减速器传递的功率属于中小功率, 对材料无特殊要求, 故选用45钢并经调质处理。

一级直齿圆柱齿轮减速器课程设计

一级直齿圆柱齿轮减速器课程设计

一级直齿圆柱齿轮减速器课程设计
以下是一级直齿圆柱齿轮减速器的课程设计,包括装配图和零件图。

设计任务是设计带式输送机传动装置中的一级圆柱齿轮减速器,工作条件为使用年限 10 年,每年按 300 天计算,两班制工作,载
荷平稳,滚筒圆周力 F=1.7KN,带速 V=1.4ms,滚筒直径 D=220mm。

一、传动方案拟定
1. 设计要求:根据已知工作要求和条件,选用 Y 系列三相异步电动机,电动机类型和结构型式的选择按已知的工作要求和条件进行。

2. 确定电动机的功率和转速:根据滚筒轴的工作转速
Nw=601000V,计算得到电动机的额定功率 Pd=3KW,额定转速
N=1420r/min。

3. 合理分配各级传动比:根据总传动比 i 总=11.68,取 i 带
=3,分配各级传动比:i 齿=11.68,i 总=3*11.68=39.36,i 带=3-1=2。

二、电动机选择及装配图
1. 电动机选择:选用 Y100L2-4 型电动机,其主要性能:额定
功率:3KW,满载转速 1420r/min,额定转矩 2.2N·m。

一级直齿减速器课程设计

一级直齿减速器课程设计

机械设计课程设计任务书单级圆柱直齿齿轮减速器一、目的任务1、通过机械设计课程设计,综合运用机械设计课程和其他有关先修课程的理论和实际知识,使所学知识进一步巩固、深化和发展。

2、让学生了解机械设计的基本过程、一般方法和设计思路,能够初步根据要求进行传动装置的方案设计和主要传动零件的设计,并绘制总装配图和主要零件工作图。

3、培养学生树立正确的设计思想和分析问题、解决问题的能力。

4、培养学生机械设计的基本技能,如:计算、绘图、查阅设计资料与手册,熟悉设计标准和规范等。

5、为今后的毕业设计和工作打下良好的基础。

二、设计内容1.已知条件:1)带式运输机传动系统示意图:2)工作条件:单向运转,轻微振动,空载启动,两班制(每班8小时),使用年限10年,每年250天,允许滚筒转速误差为±5%。

3)原始数据:2.设计内容完成传动系统的结构设计,绘制传动系统的装配图和主要零件工作图,编写设计说明书。

三、时间安排本次课程设计大体可按以下几个步骤及进度进行:1、设计准备(约占总设计时间的5%)阅读设计任务书,明确设计要求,工作条件,内容和步骤;通过参观或减速器拆装实验,了解设计对象;阅读有关资料,明确进行课程设计的方法,并初步拟定设计计划。

2、传动装置的总体设计(约占总设计时间的10%)分析和选定传动装置的方案(已给定);选择电动机;确定总传动比分配和各级传动比;计算各轴的转速,转矩和功率;画传动装置方案简图。

3、传动零件的设计计算(约占总设计时间的10%)传动零件的设计及几何尺寸的计算(主要包括:带传动、齿轮传动等)。

4、装配工作草图的绘制及轴、轴承、箱体等零部件的设计(约占总设计时间的35%)(1)轴的设计及强度计算(包括联轴器的选择和键的选择)。

(2)滚动轴承的选择、寿命校核及组合设计。

(3)减速器的润滑和密封。

(4)箱体的设计及减速器附件设计(窥视孔盖和窥视孔、放油螺塞、油标、通气器、启盖螺钉、定位销、吊环或吊钩等)。

单级直齿圆柱齿轮减速器课程设计

单级直齿圆柱齿轮减速器课程设计

单级直齿圆柱齿轮减速器课程设计一、设计任务本课程设计的设计任务是:根据给定的要求,设计一台单级直齿圆柱齿轮减速器。

二、设计要求1. 减速比为5;2. 输入轴转速为1500r/min;3. 输出轴转矩为1500N.m;4. 齿轮材料为40Cr;5. 要求减速器传动效率不低于90%。

三、设计步骤1. 确定输入轴和输出轴的位置关系和方向;2. 根据减速比和输入轴转速,计算输出轴转速;3. 根据输出轴转矩和输出轴转速,计算输出功率;4. 根据输入功率和传动效率,计算输出功率;5. 根据输出功率和输出轴转速,计算输出轴扭矩;6. 选择合适的齿轮模数、齿数、中心距等参数,并绘制齿轮剖面图和总体布置图;7. 计算齿轮尺寸,并绘制零件图。

四、设计计算1. 计算减速比:减速比 = 输出转速 / 输入转速 = 1500 / 300 = 52. 计算输出功率:Pout = Tout × ωout = 1500 × 2π × 25 / 60 = 393.44W3. 计算输入功率:Pin = Pout / η = 393.44 / 0.9 = 437.16W4. 计算输出轴扭矩:Tout = Pout / ωout = 1500 × 1000 / (2π × 25) = 377 N.m5. 计算齿轮尺寸:(1) 齿轮模数的选择:根据齿轮传动功率和转速,选择合适的齿轮模数。

本次设计中,选择齿轮模数为6。

(2) 齿数的确定:根据减速比和齿轮模数,计算出输入齿轮和输出齿轮的齿数。

本次设计中,输入齿轮Z1=30,输出齿轮Z2=150。

(3) 中心距的确定:根据输入、输出齿轮的模数、压力角、法向变位系数等参数,计算出中心距。

本次设计中,中心距a=240mm。

五、零件图绘制根据计算结果和要求,绘制零件图,并进行配合公差分析。

六、结论通过本次课程设计,我们成功地设计出了一台单级直齿圆柱齿轮减速器。

机械设计一级直齿圆柱齿轮减速器设计课程设计

机械设计一级直齿圆柱齿轮减速器设计课程设计

机械设计一级直齿圆柱齿轮减速器设计课程设计
课程设计题目:机械设计一级直齿圆柱齿轮减速器设计
设计目标:
1. 设计一级直齿圆柱齿轮减速器,传递功率为10kW,转速比
为10:1。

2. 设计输出轴,输出轴径向载荷和轴向载荷均不得超过允许范围。

3. 设计减速器的选型和传动比。

4. 绘制减速器的总布置图,齿轮的半径及齿宽尺寸、加工精度等技术要求。

5. 计算并选择减速器各配件如轴、轴承、密封件的类型和规格。

设计步骤:
1. 根据传递功率和转速比计算输出轴的转速和齿轮的齿数。

2. 选用齿轮的材料和模数,计算齿轮的模数、齿宽和齿数。

3. 绘制减速器的总布置图,并计算齿轮的半径、啮合角度、齿数比、齿宽等尺寸。

4. 计算减速器输出轴所承受的径向和轴向载荷,根据承载能力选择输出轴的材料和直径。

5. 选择减速器的配件如轴、轴承、密封件的类型和规格,根据耐久度和安全性进行计算和选择。

6. 编写减速器的总结和使用说明,注意减速器的使用和维护。

设计要求和注意事项:
1. 选用适当的齿轮材料和模数,齿轮啮合要求要达到一定的精度。

2. 考虑减速器的结构紧凑性和传动效率,尽量减小噪声和振动。

3. 对于配件的选择和计算,要根据实际情况进行,注意耐久度和安全性。

4. 在设计过程中,要充分考虑制造工艺和加工精度的要求,使得减速器具有稳定的性能和可靠的使用寿命。

5. 最后编写减速器的总结和使用说明,并对减速器进行检验和试运行,保证其能够正常运行和使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论本论文主要内容是进行一级圆柱直齿轮的设计计算,在设计计算中运用到了《机械设计基础》、《机械制图》、《工程力学》、《公差与互换性》等多门课程知识,并运用《AUTOCAD》软件进行绘图,因此是一个非常重要的综合实践环节,也是一次全面的、规范的实践训练。

通过这次训练,使我们在众多方面得到了锻炼和培养。

主要体现在如下几个方面:(1)培养了我们理论联系实际的设计思想,训练了综合运用机械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力,巩固、深化和扩展了相关机械设计方面的知识。

(2)通过对通用机械零件、常用机械传动或简单机械的设计,使我们掌握了一般机械设计的程序和方法,树立正确的工程设计思想,培养独立、全面、科学的工程设计能力和创新能力。

(3)另外培养了我们查阅和使用标准、规范、手册、图册及相关技术资料的能力以及计算、绘图数据处理、计算机辅助设计方面的能力。

(4)加强了我们对Office软件中Word功能的认识和运用。

第二章课题题目及主要参数说明2.1 课题题目:单级圆柱齿轮减速器2.2 传动方案分析及原始数据设计要求:带式运输机连续单向运转,载荷较平稳,空载启动,两班制工作(每班工作8小时),室内环境。

减速器设计寿命为8年,大修期为3年,小批量生产,生产条件为中等规模机械厂,可加工7-8级精度的齿轮;动力来源为三相交流电源的电压为380/220V;运输带速允许误差为+5%。

➢原始数据:A11运输带工作拉力F(N):2500;运输带卷筒工作转速n (r/min):89;卷筒直径D (mm):280;➢设计任务:1)减速器装配图1张(A0或A1图纸);2)零件工作图2~3张(传动零件、轴、箱体等,A3图纸);3)设计计算说明书1份,6000~8000字。

说明书内容应包括:拟定机械系统方案,进行机构运动和动力分析,选择电动机,进行传动装置运动动力学参数计算,传动零件设计,轴承寿命计算、轴(许用应力法和安全系数法)、键的强度校核,联轴器的选择、设计总结、参考文献、设计小结等内容。

➢结构设计简图:图1 带式输送机传动系统简图➢设计计算说明书第三章减速器结构选择及相关性能参数计算第三章皮带传动的设计计算第四章齿轮的设计计算[]aF F F MP S 3605.21450lim1lim 1===σσ[]aF F F MP S 2565.21320lim2lim 2===σσ(3)按齿面接触强度设计计算)(52.92/32010.39550/9550111m N n P T ⋅=⨯==小齿轮分度圆直径为:=√2×1.3×92.52×1030.8×3+13(2.5×189.8370)23=87.04(mm )取小齿轮齿数 Z 1=27,则大齿轮齿数为Z 2=98 模数m =d 1Z 1=87.0427=3.22mm齿宽b =ϕd d 1=0.8×87.04mm =69.63mm 由表8-2知标准模数m=4mmd 1=mZ 1=4×27mm =108mm d 2=mZ 2=4×98mm =392mm经圆整后b 1=ϕd d 1=0.8×108mm =86.4mm 中心距a=d 1+d 22=108+3922=250mm精密机械设计P141表8-2大齿轮的有关尺寸计算如下轴孔直径d=53mm轮毂直径D1=1.6d=1.6×53=84.8mm 取D1=85mm轮毂长度L=B2=1.5d=79.5mm 取B2=80mm轮缘厚度δ0=(3−4)m=12−16mm取δ0=16mm轮缘内径D2=d a2−2h−2δ0=400−2×9−2×16= 350mm腹板厚度c=0.3B2=0.3×80=24mm腹板中心孔直径D0=0.5(D1+D2)=217.4mm 取D0= 218mm腹板孔直径d0=0.25(D2−D1)=66.3mm取d0=67mm 齿轮倒角n=0.5m=2mm齿轮结构图如下:第五章轴的设计计算考虑到键槽则估计值加大3%则d1=23.49~25.90mm选择标准值d1=25mm(2)计算d2d2=d1+2a1=25+2×(0.07~0.1)×25=28.5~30mm取标准值d2=30mm(3)计算d3d3=d2+(1~5)mm=31~35mm 且d3必须与轴承的内径一致,圆整d3=35mm,初选轴承型号为6207,查表的B=17mm,D=72mm,C r=25.5kN,C a=15.2kN;(4)计算d4 机械设计基础P225表14-3机械设计课程设计P154表14-1d 4=d 3+(1~5)mm=36~40mm ,为装配方便而加大直径,圆整后取d 4=40mm (5)计算d 5d 5=d 4+2a 4=40+2×(0.07~0.1)×40=45.6~48mm 取标准值d 5=50 (6)计算d 6d 6=d 3=35mm ,同一轴上选择同一型号,以便减少轴承孔镗制和减少轴承类型。

3、计算轴各段长度 (1)计算L 1L 1段部分为插入皮带轮的长度查表7-4小带轮宽B 1=(Z-1)e+2f=(4-1)15+2×9=63mm 取L 1=70(2)计算L 2L 2=ℓ1+e +m轴承端盖采用凸缘式轴承端盖,取ℓ1=20mm ,e =1.2d 3=8.4mm ,其中d 3为螺钉直径M8,由轴承外径D=72mm ,查表得取d 3=7mm名称 d 1 d 2 d 3 d 4 d 5 d 6 直径(mm)253035405035精密机械设计P118m=L-▽3-B轴承=+c1+c2+(3~8)-▽3-B轴承式中,为箱体壁厚,取=8mm,取轴旁连接螺栓直径为10mm,查得c1=16mm,c2=14mm;由于轴承的轴颈直径与转速的乘积<(1.5~2)×105,故轴承采用脂润滑,取▽3=9mm,所以m=8+16+14+8-9-17=20mm所以L2=ℓ1+e+m=20+8.4+20=48.4mm取 L2=49mm;(3)计算L3L3=B轴承+∇2+∇3+2=17+12.5+9=38.5mm式中,∇2为大齿轮端面至箱体内壁距离,应考虑两齿轮的宽度差,两齿轮的宽度为5mm,取小齿轮至箱体内壁距离为10mm,则∇2=∇2小+B小轮−B大轮2=10+2.5=12.5取L3=39mm5.2.1Ⅱ轴几何尺寸的设计计算2、初步计算各轴段直径(1)计算d1,按下列公式初步计算出轴的直径,输出轴的功率P 和扭矩TP 2=2.98kw T 2=319.80N ·m最小直径计算(查精密机械设计教材表10-2,c 值107-118)d ≥c√P 1n 13=(107~118)×√2.9888.993=(34.49~38.03)mm考虑到键槽则估计值加大3%则d 1=35.65~39.30mm 取d 1=40mm(2)计算d 2d 2=d 1+2a 1=40+2×(0.07~0.1)×40=45.6~48mm 取标准值d 2=48mm3、计算轴各段的长度(1)计算L1半联轴器的长度L=52mm,为保证轴端挡圈只压在半联轴器上,而不是在轴的端面上,故第一段的长度应比L略短一些取L1=50mm(2)计算L2L2=ℓ1+ℯ+m轴承端盖采用凸缘式轴承端盖,取ℓ1=20mm ,ℯ=1.2d3=8.4mm,其中d3为螺钉直径M8,由轴承外径D=90mm,查表,取d3=7mmm=L−∇3−B轴承=δ+c1+c2+(3~8)−∇3−B轴承式中,为箱体厚度,取δ=8mm,取轴旁连接螺栓的直径为10mm,查得c1=16mm c2=14mm;由于轴承的轴颈直径和转速的乘积<(1.5~2)105故轴承采用脂润滑剂,取∇3=9mm所以m=8+16+14+8-9-20=17mm所以L2=ℓ1+ℯ+m=20+8.4+17=45.4mm 取L2=46mm(3)计算L3L3=B轴承+∇2+∇3+2=20+12.5+9+2=43.5mm 式中,∇2为大齿轮端面至箱体内壁距离,应考虑两齿轮的宽度差,两齿轮的宽度为5mm,取小齿轮至箱体内壁距离为10mm,则∇2=∇2小+B小轮−B大轮2=10+2.5=12.5mm取L3=44mm(4)计算L4L4=b大齿轮−2=86.4−2=84.4mm取L4=85mm(5)计算L5=1.4a4=1.4(0.07~0.1)d4=8.33~11.9mm 取L5=10mm(6)计算L6L6=B轴承+∇2+∇3−L5=20+12.5+9−10=30.5mm 取L6=40mm各段轴长列表如下:名称L1L2L3L4L5L6长度/mm50 46 44 85 10 40第六章轴承、键和联轴器的选择减速器润滑、密封及附件的选择确定以及箱体主要结构尺寸的计算及装配(5~10)m/s查《机械零件设计手册》P981,选用1500.025a+1≥88 箱座厚度箱盖厚度δ20.85δ≥88 箱盖凸缘厚度箱座凸缘厚度箱座底凸缘厚度地脚螺钉直径地脚螺钉数目轴承旁联结螺栓直径盖与座联结螺栓直径轴承端盖螺钉直径视孔盖螺钉直径定位销直径至外箱壁的距离至凸缘边缘距离。

相关文档
最新文档