压杆稳定应力状态与强度理论习题解答
材料力学习题册答案第章压杆稳定

第九章压杆稳定之阳早格格创做一、采用题1、一理念匀称直杆受轴背压力P=P Q时处于直线仄稳状态.正在其受到一微弱横背搞扰力后爆收微弱蜿蜒变形,若此时排除搞扰力,则压杆<A).A、蜿蜒变形消得,回复直线形状;B、蜿蜒变形缩小,不克不迭回复直线形状;C、微直状态稳定;D、蜿蜒变形继启删大.2、一细少压杆当轴背力P=P Q时爆收得稳而处于微直仄稳状态,此时若排除压力P,则压杆的微直变形<C)A、实足消得B、有所慢战C、脆持稳定D、继启删大3、压杆属于细少杆,中少杆仍旧短细杆,是根据压杆的<D)去推断的.A、少度B、横截里尺寸C、临界应力D、柔度4、压杆的柔度集结天反映了压杆的< A )对付临界应力的效率.A、少度,拘束条件,截里尺寸战形状;B、资料,少度战拘束条件;C、资料,拘束条件,截里尺寸战形状;D、资料,少度,截里尺寸战形状;5、图示四根压杆的资料与横截里均相共,试推断哪一根最简单得稳.问案:<a )6、二端铰支的圆截里压杆,少1m,直径50mm.其柔度为 ( C >A.60;B.;C.80;D.507、正在横截里积等其余条件均相共的条件下,压杆采与图<D)所示截里形状,其宁静性最佳.8、细少压杆的<A),则其临界应力σ越大.A、弹性模量E越大或者柔度λ越小;B、弹性模量E越大或者柔度λ越大;C、弹性模量E越小或者柔度λ越大;D、弹性模量E越小或者柔度λ越小;9、欧推公式适用的条件是,压杆的柔度<C)AC10、正在资料相共的条件下,随着柔度的删大<C)A、细少杆的临界应力是减小的,中少杆不是;B、中少杆的临界应力是减小的,细少杆不是;C、细少杆战中少杆的临界应力均是减小的;D、细少杆战中少杆的临界应力均不是减小的;11、二根资料战柔度皆相共的压杆<A)A. 临界应力一定相等,临界压力纷歧定相等;B. 临界应力纷歧定相等,临界压力一定相等;C. 临界应力战临界压力一定相等;D. 临界应力战临界压力纷歧定相等;12、正在下列有闭压杆临界应力σe的论断中,<D)是精确的.A、细少杆的σe值与杆的资料无闭;B、中少杆的σe 值与杆的柔度无闭;C、中少杆的σe值与杆的资料无闭;D、细短杆的σe 值与杆的柔度无闭;13、细少杆启受轴背压力P的效率,其临界压力与<C )无闭.A、杆的材量B、杆的少度C、杆启受压力的大小D、杆的横截里形状战尺寸二、估计题1、有一少l=300 mm,截里宽b=6 mm、下h=10 mm的压杆.二端铰交,压杆资料为Q235钢,E=200 GPa,试估计压杆的临界应力战临界力.解:<1)供惯性半径i对付于矩形截里,如果得稳必正在刚刚度较小的仄里内爆收,故应供最小惯性半径<2)供柔度λλ=μl/i,μ=1,故λ=1×300/1.732=519>λp=100<3)用欧推公式估计临界应力<4)估计临界力F cr =σcr ×A =65.8×6×10=3948 N=3.95 kN2、一根二端铰支钢杆,所受最大压力KN P 8.47=.其直径mm d 45=,少度mm l 703=.钢材的E =210GPa ,p σ=280MPa ,2.432=λ.估计临界压力的公式有:(a> 欧推公式;(b> 直线公式cr σλ(MPa>.试 <1)推断此压杆的典型;<2)供此杆的临界压力;解:<1) 1=μ8621==PE σπλ5.624===d lilμμλ由于12λλλ<<,是中柔度杆. <2)cr σλMPa3、活塞杆<可瞅成是一端牢固、一端自由),用硅钢造成,其直径d=40mm ,中伸部分的最大少度l =1m ,弹性模量E=210Gpa ,1001=λ.试<1)推断此压杆的典型;<2)决定活塞杆的临界载荷. 解:瞅成是一端牢固、一端自由.此时2=μ,而,所以,.故属于大柔度杆-用大柔度杆临界应力公式估计.4、托架如图所示,正在横杆端面D 处受到P=30kN 的力效率.已知斜撑杆AB 二端柱形拘束<柱形较销钉笔直于托架仄里),为空心圆截里,中径D=50mm 、内径d=36mm ,资料为A3钢,E=210GPa 、p σ=200MPa 、s σ.若宁静仄安系数n w =2,试校杆AB 解 应用仄稳条件可有A3压杆的处事仄安系数BA压杆的处事仄安系数小于确定的宁静仄安系数,故不妨仄安处事.5、如图所示的结构中,梁AB为No.14一般热轧工字钢,CD为圆截里直杆,其直径为d=20mm,二者资料均为Q235、D.强度仄安.解:正在给定的结构中公有二个构件:梁AB,启受推伸与蜿蜒的推拢效率,属于强度问题;杆CD,启受压缩荷载,属宁静问题.现分别校核如下.(1> 大梁AB的强度校核.大梁AB正在截里C处的直矩最大,该处横截里为伤害截里,其上的直矩战轴力分别为由型钢表查得14号一般热轧工字钢的由此得到(2> 校核压杆CD的宁静性.由仄稳圆程供得压杆CD的轴背压力为果为是圆截里杆,故惯性半径为那标明,压杆CD为细少杆,故需采与式(9-7>估计其临界应力,有于是,压杆的处事仄安果数为那一截止证明,压杆的宁静性是仄安的.上述二项估计截止标明,所有结构的强度战宁静性皆是仄安的.6、一强度等第为TC13的圆紧木,少6m ,中径为300mm ,其强度许用应力为10MPa.现将圆木用去当做起沉机用的扒杆,试估计圆木所能启受的许可压力值.解:正在图示仄里内,若扒杆正在轴背压力的效率下得稳,则杆的轴线将直成半个正弦波,少度系数可与为1μ=.于是,其柔度为根据80λ=,供得木压杆的宁静果数为 进而可得圆木所能启受的许可压力为62[][]0.398(1010)(0.3)281.34F A ϕσπ==⨯⨯⨯⨯=(kN>如果扒杆的上端正在笔直于纸里的目标并不所有拘束,则杆正在笔直于纸里的仄里内得稳时,只可视为下端牢固而上端自由,即2μ=.于是有供得62[][]0.109(1010)(0.3)774F A ϕσπ==⨯⨯⨯⨯=(kN>隐然,圆木动做扒杆使用时,所能启受的许可压力应为77 kN ,而不是281.3 kN.7、 如图所示,一端牢固另一端自由的细少压杆,其杆少l = 2m ,截里形状为矩形,b = 20 mm 、h = 45 mm ,资料的弹性模量E = 200GPa .试估计该压杆的临界力.若把截里改为b = h =30 mm ,而脆持少度稳定,则该压杆的临界力又为多大?解:<一)、当b=20mm 、h=45mm 时 <1)估计压杆的柔度22000692.82012li μλ⨯===>123c λ=(所以是大柔度杆,可应用欧推公式> (2>估计截里的惯性矩由前述可知,该压杆必正在xy 仄里内得稳,故估计惯性矩 <3)估计临界力μ=2,果此临界力为<二)、当截里改为b = h = 30mm 时<1)估计压杆的柔度所以是大柔度杆,可应用欧推公式>(2>估计截里的惯性矩 代进欧推公式,可得从以上二种情况分解,其横截里里积相等,支启条件也相共,然而是,估计得到的临界力后者大于前者.可睹正在资料用量相共的条件下,采用妥当的截里形式不妨普及细少压杆的临界力.8、 图所示为二端铰支的圆形截里受压杆,用Q235钢造成,资料模量E=200Gpa ,伸服面应力σs =240MPa d=40mm ,试分别估计底下二种<1)杆少l =1.5m ;<2)杆少l =0.5m. 解:<1)估计杆少l 二端铰支果此 μ=1惯性半径(所以是大柔度杆,可应用欧推公式> <2)估计杆少lμ=1,i =10mm压杆为中细杆,其临界力为感动土木0906班王锦涛、刘元章共教! 申明:所有资料为自己支集整治,仅限部分教习使用,勿搞商业用途. 申明:所有资料为自己支集整治,仅限部分教习使用,勿搞商业用途.。
应力状态分析与强度理论-习题与答案

(A)受力构件横截面上各点的应力情况
(B)受力构件各点横截面上的应力情况
(C)构件未受力之前,各质点之间的相互作用力状况
(D)受力构件内某一点在不同横截面上的应力情况
2、一实心均质钢球,当其外表面迅速均匀加热,则球心O点处的应力状态是()
(A)单向拉伸应力状态(B)平面应力状态
(A)铸铁为塑性材料
(B)铸铁在三向压应力状态下产生塑性变形
(C)铸铁在单向压应力作用下产生弹性变形
(D)材料剥脱
7、混凝土立方试块在作单向压缩试验时,若在其上、下表面上涂有润滑剂,则试块破坏时将沿纵向裂开,其主要原因是()
(A)最大压应力(B)最大剪应力
(C)最大伸长线应变(D)存在横向拉应力
8、一中空钢球,内径d=20cm,内压p=15Mpa,材料的许用应力 =160Mpa,则钢球壁厚t只少是()
(A)t=47㎜(B)t=2.34㎜
(C)t=4.68㎜(D)t=9.38㎜
9、将沸水注入厚玻璃杯中,有时玻璃杯会发生破裂,这是因为()
(A)热膨胀时,玻璃杯环向线应变达到极限应变,从内、外壁同时发生破裂
(B)玻璃材料抗拉能力弱,玻璃杯从外壁开始破裂
(C)玻璃材料抗拉能力弱,玻璃杯从内壁开始破裂
(D)水作用下,玻璃杯从杯底开始破裂
因圆柱与钢筒之间的空隙 ,而 > ,故圆柱受钢筒弹性约束。设柱与筒之间的作用力为p,则铝柱中各点处主应力为
钢筒中各点处主应力为
设铝柱和钢筒的径向应变分别为 ,变形协变条件为
即
于是
得
p=2.74Mpa
故钢筒周向应力为
即
得
所以则其相当应力为
由于 <0.5
压杆稳定例题

压杆稳定问题/压杆的稳定计算
解:
2E p 99.35 p
y x z x
考虑xy平面失稳(绕z轴转动)
Iz bh 3 / 12 h iz A 12 bh
z l 1 2.3 z 132.8 h / 12 iz
考虑xz平面失稳(绕y轴转动)
3 b hb / 12 iy A 12 bh
材料力学
压杆稳定问题/中、小柔度杆的临界应力
例10-1 有一千斤顶,材料为A3钢.螺纹内径d=5.2cm,最大 高度l=50cm,求临界载荷 Fcr 。(已知 s 235MPa , p 200MPa )
F
解:
惯性半径:
柔度:
I d i A 4
l 2 0 .5 77 i d /4
6
462 kN
材料力学
压杆稳定问题/压杆的稳定计算
例10-2 已知:b=40 mm, h=60 mm, l=2300 mm,Q235钢, s 235MPa , p 200MPa E=200 GPa, FP=150 kN, nst=1.8, 校核:稳定性是否安全。
y
x
z
x
材料力学
EI Pcr 2 ( l)
2
2E
d4
为原压杆的
2 2
64 ( l) 2
1 16
(2)
Pcr正 Pcr圆
2 E I正
( l) 2
2 E I圆
( l) 2
I正 I圆
d 4 4 a 124 124 d d 64 64
3
y l 0.5 2.3 99.6 y i y b / 12 z y p
2020年材料力学习题册答案-第9章 压杆稳定

作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A、弯曲变形消失,恢复直线形状;B、弯曲变形减少,不能恢复直线形状;C、微弯状态不变;D、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C )A、完全消失B、有所缓和C、保持不变D、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A、长度B、横截面尺寸C、临界应力D、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A、长度,约束条件,截面尺寸和形状;B、材料,长度和约束条件;C、材料,约束条件,截面尺寸和形状;D、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( C )A.60;B.66.7;C.80;D.507、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤、λ≤C 、λ≥π D、λ≥10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
12 压杆稳定测试选择题(10题)和答案

1、 中心受压细长直杆丧失承载能力的原因为( )。
(A ) 横截面上的应力达到材料的比例极限;(B ) 横截面上的应力达到材料的屈服极限;(C ) 横截面上的应力达到材料的强度极限;(D ) 压杆丧失直线平衡状态的稳定性2、一细长压杆当轴向压力F =F cr 时发生失稳而处于微弯平衡状态。
此时若解除压力F ,则压杆的微弯变形( )。
A 、完全消失;B 、有所缓和;C 、保持不变;D 、继续增大。
3、压杆失稳将在( )的纵向平面内发生。
A 、长度系数μ最大;B 、截面惯性半径i 最小;C 、柔度λ最大;D 、柔度λ最小。
4、欧拉公式的适用条件是( )。
()A λ≤()B λ≥()C λ≥()D λ5、两根细长压杆a 、b 的长度,横截面面积、约束状态及材料均相同,若其横截面形状分别为正方形和圆形,则两压杆的临界压力F acr 和F bcr 的关系为( )。
A 、F acr <F bcr ;B 、F acr =F bcr ;C 、F acr >F bcr ;D 、不可确定。
6、在稳定性计算中,有可能发生两种情况:一是用细长杆的公式计算中长杆的临界压力;一是用中长杆的公式计算细长杆的临界压力。
其后果是( )。
A 、前者的结果偏于安全,后者偏于不安全;B 、二者的结果都偏于安全;C 、前者的结果偏于不安全,后者偏于安全;D 、二者的结果都偏于不安全。
7、由低碳钢制成的细长压杆,经过冷作硬化后,其( )。
A 、稳定性提高,强度不变;B 、稳定性不变,强度提高;C 、稳定性和强度都提高;D 、稳定性和强度都不变。
8、一正方形截面细长压杆,因实际需要在n-n 横截面处钻一横向小孔如图所示。
(1)在计算压杆的临界力时,所用的惯性矩为( );4()12b A 44()1264b d B π- 43()1212b bd C - 43()1212b b d D - (2)在对杆进行强度计算时,横截面面积应取( )。
压杆稳定习题

压杆稳定一、判断题1.临界力Fij只与压杆的长度及两端的支撑情况有关。
()2.对于细长压杆,临界应力σij的值不应大于比例极限σp。
()3.压杆的柔度与压杆的长度,横截面的形状和尺寸以及两端的支撑情况有关。
()4.压杆的杆端约束作用愈强,那么长度系数越小,临界压力越大。
()5.压杆的临界应力应该由欧拉公式计算。
()6.欧拉公式的适用条件是。
()7.细长压杆,若长度系数μ增大一倍,则临界力Fij增加一倍。
()图 18.两端铰支细长压杆,若在其中加一铰支座如图1所示,则欧拉临界力是原来的4倍。
()9.如果细长压杆有局部削弱,削弱部分对压杆的稳定性没有影响。
()10.在材料,长度,横截面形状和尺寸保持不变的情况下,杆端约束越强,则压杆的临界力越小。
11.压杆的临界荷载是压杆保持不稳定平衡所承受的最大轴向压力。
()二、选择题1.在压杆的材料、长度、横截面形状和尺寸保持不变的情况下,杆端约束越强,则压杆的临界力()。
A. 越大B.保持不变C.越小D.以上三种可能都有2.已知细长压杆两端球形铰支,若截面面积相等时,采用下列那种截面最稳定?()A B CD三、分析题1.在压杆稳定计算中,是一个与_______,________和______有关的参数,称为压杆的。
2.欧拉公式的适用范围是什么?3.图2两根杆件的截面形状、尺寸及材料均相同,试比较哪一根杆件稳定性好?为什么?图 24.两根细长压杆,材料相同,一根截面形状为正方形,一根截面为圆形。
假设两根杆截面面积相同,支承相同,试问:①横截面惯性矩各为多少?②哪根杆容易受压失稳?为什么?5.一压杆两端约束一定,在截面面积不变情况下,为了更有效地提高其临界力应采用()措施。
6.若两根细长压杆的回转半径()相等。
当相等时,它们的柔度()相等,若两杆的柔度相等,当_______相等时,它们的临界应力相等。
7.写出压杆稳定条件的计算公式。
8.图3所示两根直径均为d的圆截面压杆,材料相同,已知,d=20mm,试判断哪根压杆容易失稳图 3四、计算题1.二圆形截面受压杆的材料相同,尺寸如图4所示,已知二杆均为大柔度杆,试比较二杆的临界力和临界应力2.圆形截面受压杆,长L=1.5m,直径d=3cm,钢材的弹性模量,比例极限σp=200Mpa,试求压杆的临界力。
《材料力学》第7章应力状态和强度理论习题解..pdf

应力圆( O.Mohr 圆)
主单元体图
[ 习题 7-9 ( c)] 解:坐标面应力: X( -20 , -10 ); Y( -50 , 10)。根据以上数据作出如图所示的应
力圆。图中比例尺为 1cm 代表 10MPa 。按比例尺量得斜面的应力为:
1 0MPa , 2 16.25MPa , 3 53.75MPa ; 0 16.10 。
1 d3
d3
16
6
16 8 10 N mm 3.14 803 mm3
79.618MPa
[ 习题 7-1 ( b)] 解: A 点处于纯剪切应力状态。
MA 0
RB 1.2 0.8 2 0.4 0
RB 1.333(kN )
1
A A
QA RB 1.333( kN)
Q A 1.5
A
1333N 1.5 40 120 mm2
单元体图
应力圆( O.Mohr 圆)
主单元体图
[ 习题 7-9 ( d)] 解:坐标面应力: X( 80, 30); Y( 160, -30 )。根据以上数据作出如图所示的应
力圆。图中比例尺为 1cm 代表 20MPa 。按比例尺量得斜面的应力为:
1 170MPa , 2 70MPa , 3 0MPa ; 0 71.60 。
第七章 应力状态和强度理论 习题解
[ 习题 7-1] 试从图示各构件中 A 点和 B 点处取出单元体,并表明单元体各面上的应力。
[ 习题 7-1 ( a)]
解: A 点处于单向压应力状态。
N F 2F 4F
A
A
1 d2
d2
4
[ 习题 7-1 ( b)] 解: A 点处于纯剪切应力状态。
压杆稳定习题及答案

压杆稳定习题及答案【篇一:材料力学习题册答案-第9章压杆稳定】xt>一、选择题1、一理想均匀直杆受轴向压力p=pq时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( a )。
a、弯曲变形消失,恢复直线形状;b、弯曲变形减少,不能恢复直线形状; c、微弯状态不变; d、弯曲变形继续增大。
2、一细长压杆当轴向力p=pq时发生失稳而处于微弯平衡状态,此时若解除压力p,则压杆的微弯变形( c )a、完全消失b、有所缓和c、保持不变d、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( d)来判断的。
a、长度b、横截面尺寸c、临界应力d、柔度 4、压杆的柔度集中地反映了压杆的( a)对临界应力的影响。
a、长度,约束条件,截面尺寸和形状;b、材料,长度和约束条件;c、材料,约束条件,截面尺寸和形状;d、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( c )a.60;b.66.7;c.80;d.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( d )所示截面形状,其稳定性最好。
≤?≥?- 1 -10、在材料相同的条件下,随着柔度的增大( c)a、细长杆的临界应力是减小的,中长杆不是;b、中长杆的临界应力是减小的,细长杆不是; c、细长杆和中长杆的临界应力均是减小的; d、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( a )a. 临界应力一定相等,临界压力不一定相等;b. 临界应力不一定相等,临界压力一定相等;c. 临界应力和临界压力一定相等;d. 临界应力和临界压力不一定相等;a、杆的材质b、杆的长度c、杆承受压力的大小d、杆的横截面形状和尺寸二、计算题1、有一长l=300 mm,截面宽b=6 mm、高h=10 mm的压杆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 压杆稳定
主要知识点:(1)压杆稳定的概念;
(2)压杆的临界载荷; (3)压杆的稳定计算。
1. 怎样判别结构钢制成的压杆是属于细长杆、中长杆还是短杆?它们的正常工作条件是怎样的?
答:对于结构钢,当压杆柔度≥λ100;对于铸铁,当压杆柔度≥λ80时,压杆称为大柔度杆或细长杆。
正常工作条件是杆件压力小于用欧拉公式计算出来的临界力,不产生失稳现象。
对于结构钢,当10060<λ≤时,压杆称为中柔度杆或中长杆。
正常工作条件是杆件压力小于用经验公式计算出来的临界力,不产生失稳现象。
对于结构钢,当λ<60时,压杆称为小柔度杆或短杆。
短杆没有失稳现象,正常工作要求是满足压缩强度条件。
2. 用结构钢制成如图所示构架,规定稳定安全系数n st =2,试根据AB 杆的稳定条件求CD 杆D 处工作载荷F 的许可值。
解:(1)计算AB 杆的柔度λ
惯性半径m d d d A I
i 01.044
6412141====
ππ
长度系数μ=1μ=2。
于是柔度λ为:
808
.01=⨯=
=
l
μλ (2)计算临界力F cr
因为60<λ<100,所以属于中长杆,应用公式(11-3)计算临界应力cr σ:
a a cr MP MP
b a 214)8012.1304(=⨯-=-=λσ
临界力 kN N d F cr
cr 2694
04.014.3102144
26
21=⨯⨯⨯==πσ (3)规定稳定安全系数n st =2,所以AB 杆的所受的压力允许值为
kN F F st
cr
AB 135==
(4)AB 杆对CD 杆反作用力kN F F AB AB
135==',04.41800
600
arccos ==θ。
画CD 杆受力图(见图11-6),由0)(1=∑=n
i i C F M 得:
0900600sin =⨯-⨯'F F AB
θ 计算得到CD 杆D 处工作载荷F 的许可值为
kN F F AB
5.59900
600sin =⨯'=
θ
图11-3
第11章 应力状态与强度理论
主要知识点:(1)轴向拉压杆斜截面上的应力;
(2)应力状态分析; (3)强度理论。
轴向拉压杆斜截面上的应力
1. 求图示斜截面上的应力(图中应力单位均为MP a )。
解:按照正负号规定,x σ=+25MP a ,x τ=0,y σ=45MP a ,
α=600。
由公式(11-10)得到
a
x y
x y x MP 40120sin 0120cos 24525245252sin 2cos 2200=⨯-⨯-++=--+
+=
α
τασσσσσα
由公式(11-11)得到
a
x y
x MP 66.8120cos 0120sin 2
45252cos 2sin 00-=⨯+⨯-=+-=
ατασστα ατ负号表示与图11-13a 所示方向相反。
应力状态分析
2. 图示单元体分别属于什么应力状态(图中应力单位均为MP a )?
解:x σ=20MP a ,x τ=-20MP a ,y σ=20MP a 。
单元体最大主应力和最小主应力:
a
x y x y x MP ))(2020(202202022020222
2
22
min max ±=-+⎥⎦⎤⎢⎣⎡-±+=+⎪⎪⎭
⎫ ⎝⎛-±+=τσσσσσσ
即a MP 40max 1==σσ,032==σσ。
只有一个主应力不等于零,单元体属于单向应力状态。
3. 已知应力状态如图所示,图中应力单位均为MP a 。
试求: 主应力大小,主平面位置;
在单元体上画出主平面位置及主应力方向; 最大切应力。
解:x σ=-40MP a ,x τ=-40MP a ,y σ=-20MP a 。
单元体最大主应力和最小主应力:
a
a x y x y x MP MP )2.4130(}402)20(4022040{222
2
2
2
min
max ±-=-+⎥⎦⎤⎢⎣⎡---±--=+⎪⎪⎭
⎫ ⎝⎛-±+=)(τσσσσσσ 单元体最大主应力1σ=max σ=11.2 MP a , 最小主应力3σ=min σ=-71.2MP a 。
主平面法线与x 轴夹角:
000.38])
20(40402arctan[21)2arctan(2
1-=----⨯-=--
=)
(y x x σστα
在单元体上画出主平面位置及主应力方向如图11-3所示。
最大切应力
a a x y x MP MP 2.41}402)20(402
2
2
22
max =-+⎥⎦⎤⎢⎣⎡---=+⎪⎪⎭
⎫
⎝
⎛-=)(τσστ
强度理论
4. 平面应力状态如图所示,设各应力有三种情况: (1)a x a y a x MP MP MP 40,80,60-=τ-=σ=σ (2)0,50,40=τ=σ-=σx a y a x MP MP (3)a x y x MP 45,0,0===τσσ
试按第三强度理论和第四强度理论求相当应力3r σ、4r σ。
解:(1) 单元体最大主应力和最小主应力:
a
a x y x y x MP MP )6.8010(})40(2)80(6028060{222
2
2
2
min
max ±-=-+⎥⎦⎤⎢⎣⎡--±-=+⎪⎪⎭
⎫ ⎝⎛-±+=τσσσσσσ 单元体最大主应力1σ=max σ=70.6 MP a ,最小主应力3σ=min σ=-90.6MP a ,2σ=0。
按第三强度理论求相当应力
a r MP 161313=-=σσσ
按第四强度理论求相当应力
a
a r MP MP 140)6.90(6.7000)6.90(06.702221
332212
322214=-⨯----++=---++=σσσσσσσσσσ
(2) 单元体最大主应力和最小主应力:
a
a x y x y x MP MP )455(}025********{2222
2
2
min
max ±=+⎥⎦
⎤
⎢⎣⎡--±+-=+⎪⎪⎭
⎫ ⎝⎛-±+=τσσσσσσ
单元体最大主应力1σ=max σ=50 MP a ,最小主应力3σ=min σ=-40MP a ,2σ=0。
按第三强度理论求相当应力
a r MP 90313=-=σσσ
按第四强度理论求相当应力
a
a r MP MP 1.78)40(5000)40(0502221
332212
322214=-⨯----++=---++=σσσσσσσσσσ
(3) 单元体最大主应力和最小主应力:
a
a x y x y
x MP MP 45}45200200{2222
22
min
max ±=+⎥⎦
⎤⎢⎣⎡-±+=+⎪⎪⎭
⎫ ⎝
⎛-±+=τσσσσσσ
单元体最大主应力1σ=max σ=45 MP a ,最小主应力3σ=min σ=-45MP a ,2σ=0。
按第三强度理论求相当应力
a r MP 90313=-=σσσ
按第四强度理论求相当应力
a
a r MP MP 9.77)45(4500)45(0452221
332212
322214=-⨯----++=---++=σσσσσσσσσσ
5. 单元体的主应力分别为:a a a MP MP MP 20,40,75321-=σ=σ=σ。
若材料的许用应力[]a MP 120=σ,试用第三强度理论和第四强度理论校核各点的强度。
解:第三强度理论的强度条件为[]σ≤σ-σ31,
第四强度理论的强度条件为
()()()[]
[]σ≤σ-σ+σ-σ+σ-σ2132322212
1
[]σσσσ≤=-=a r MP 95313,按照第三强度理论校核,满足强度条件; ()()()[]
[]σσσσσσσσ≤=--+++-=-+-+-=a a r MP MP 2.83])7520()2040()4075[(2
1212222
132322214 按照第四强度理论校核,满足强度条件。