二次根式的运算PPT课件

合集下载

二次根式ppt课件

二次根式ppt课件
3. 代数式的概念是什么?
用基本运算符号把数或表示数的字母连接起来的式子,称为代数式.
随堂检测
1.计算( 0.04)2 的值是(
A.0.2
B.0.04
C.-0.2
B
).
D.-0.04
2.二次根式− ( 10 − 11)2 的值是(
A. 10 − 11
B.-1
A
C. 11 − 10
).
D.1
随堂检测
乘方和开方)把数或表示数的字母连接起来的式子,我们称这样
的式子为代数式.
课堂小结
1. 二次根式的性质有哪些?
平方在里面,夹上绝对值,分类来讨论.
( )2 =a(a≥0);
2 =a(a≥0)
平方在外面,直接去根号;
2 = ||.
2.运用二次根式的性质进行化简,需要注意什么?
取值a的取值范围,( )2 =a(a≥0); 2 =a(a≥0).
2.从以上的结论中你能发现什么规律?你能用一个式子表示这
个规律吗?
= ( ≥ )
典型例题
化简:
(1) 16
(2) (−5)2
解:(1) 16= 42 =4;
(2) ( − 5)2 = 52 =5.
= ( ≥ )
= ||
跟踪训练
1.计算:
(1) 9=
3
(3) ( − 7)2 =
7

(2) ( − 4)2 =
4

(4) (3 − )2 =
π-3
2.如果 (3 − )2 =x-3,那么x的取值范围是
x≥3
.

.
探究活动3


回顾我们学过的式子,如 5,, + ,−, ,− 3 , 3, ( ≥ 0)

二次根式的乘除法PPT课件

二次根式的乘除法PPT课件

二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。

表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。

乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。

非负性$sqrt{a} geq 0$($a geq 0$)。

除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。

二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。

根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。

计算$frac{sqrt{20}}{sqrt{5}}$。

根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。

化简$sqrt{18}$。

首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。

典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。

如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。

不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。

浙教版八年级下册 1.3 二次根式的运算 课件(共26张PPT)

浙教版八年级下册 1.3 二次根式的运算 课件(共26张PPT)

拓展提升
如图,一张边长为22cm的等边三角形彩色纸,CD⊥AB,小明在
等边三角形纸片中裁出三条宽度相同的长方形纸条,其中最上面的那
个长方形恰好为正方形,分别求出三张长方形纸条的长度.
解:

22
22
22
巩固练习
在Rt△ABC中,∠C=Rt∠,AB=c,BC=a,AC=b.
(1)若: =
1
,则:
( 3) 2 3
(1 2) 2 1 2
(1 2)
2 1
三. 性质复习
最简二次根式
1.根号内是一个不含平
方因数的整数
例1 计算
1
3
(2)
4
12 24 化成最简二次根式
2.分母中不含根号
8
2
1
2
2
2


解:原式=
6 -12 2
2 2
2
2
2
1
3
3 2
3
AB=_______m.
B

A

2
C
斜坡的竖直高度和对应的水平距离的比叫做坡比.
例题分析
例6 如图,扶梯AB的坡比为1:0.8,滑梯CD的坡比为1:1.6,AE=
BC=

.一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,

A
E
C
F
D
m,
经过的总路
程为多少米(要求先化简,再取近似值,结果精确到0.01m)?
方法总结:
二次根式的运算
直角三角形三边计算
A
C
感悟提升
一个概念
斜坡的竖直高度和对应的水平宽度的比叫做坡比

二次根式及其运算ppt课件

二次根式及其运算ppt课件
15
【解后感悟】比较两个二次根式大小时要注意: (1)负号不能移到根号内;(2)根号外的正因数要平 方后才能从根号外移到根号内.
8.(1)(2015·嘉兴)与无理数31 最接近的是 ( C )
A.4
B.5
C.6
D.7
(2)(2015·杭州)若k< 90 <k+1(k是整数),
则k=
( D)
A.6
B.7
不等于0列式进行计算即可得解.(2)根据二次根
式的性质化简得到k,m及n的值,即可作出判断.
【答案】(1)根据题意得,2x+1≥0且x-1≠0,
解得x≥- 1 且x≠1.故选A. 2
(2) 135 3 15 , 450 15 2 ,180 6 5 ,
可得:k=3,m=2,n=5,则m<k<n.
整理得出即可. 【答案】(1)原式= 2
23
2
23
2,
32
2
2
故答案为: 2 ;
(2) 3( 2 3) 24 6 3 6 3 2 6 (3 6)
=-6. 故答案为:-6. 13
【解后感悟】(1)二次根式的加减运算,关键是掌握 二次根式的化简及同类二次根式的合并;(2)二次 根式的混合运算,正确化简二次根式是解题关键.
【归纳】通过开放式问题,归纳、疏理二次根式的性质
和运算法则. 6
类型一 平方根、算术平方根、立方根
例1 (1)(2015·黄冈)9的平方根是
() A.±3
1
B. 3
C.3
D.-3
(2)(2015·湖州)4的算术平方根是 2( )
A.±2
B.2 C.-2 D.
(3)(2015·荆门)64的立方根是

2024年二次根式的乘除课件初中数学PPT课件

2024年二次根式的乘除课件初中数学PPT课件

2024/2/29
3
二次根式定义及表示方法
二次根式定义
形如$sqrt{a}$($a geq 0$)的代数式叫做二次根 式。
表示方法
被开方数是非负数,根指数是2,通常省略不写。
注意事项
负数没有平方根,在实数范围内,平方根的结果为 非负数。
2024/2/29
4
二次根式性质介绍
01
02
03
04
性质1
$sqrt{a^2} = |a|$($a$为任 意实数)。
2024/2/29
强调最简二次根式的定义,即被开方数的因 数是整数,因式是整式;被开方数中不含能 开得尽方的因数或因式。
27
学生自我评价报告分享
分享学习心得
邀请学生分享学习二次根式乘除 过程中的心得和体会,以及遇到
的困难和解决方法。
展示解题技巧
鼓励学生展示自己在解题过程中 掌握的技巧和方法,以及对于不
应用实例
如 $sqrt{8} + sqrt{18}$ 可以化简 为 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。
19
利用分配律简化复杂表达式
分配律
对于形如 $(sqrt{a} + sqrt{b})(sqrt{a} - sqrt{b})$ 的表达式 ,可以利用分配律展开得到 $a - b$ 。
乘法运算结果应化为最简二次根式或整数。
12
03
二次根式除法运算规则
2024/2/29
13
同类二次根式除法法则
80%
法则内容
同类二次根式相除,把系数相除 ,作为商的系数,根式部分不变 。
100%
示例
$frac{3sqrt{2}}{2sqrt{2}} = frac{3}{2}$

二次根式的加减ppt课件

二次根式的加减ppt课件
通过加减法可以简化复杂的二次根式 ,使其更易于理解和计算。
解决实际问题
在解决一些实际问题时,如物理、工 程、建筑等领域,需要使用二次根式 的加减法来计算结果。
02
二次根式的加减法运算
根式的合并同类项
合并二次根式中的同类项
在二次根式的加减法中,需要将具有相同根指数和被开方数 的项进行合并,简化表达式。
在几何图形中,周长的计算也需要使用到二次根式加减法运算。例如,在矩形、三角形、 多边形等图形中,需要使用到周长公式进行计算。
04
二次根式的加减法注意事项
根式加减法的限制条件
根式加减法仅适用于 被开方数相同的二次 根式。
根式加减法要求根号 内的表达式必须有意 义,即不能有虚数次 方根。
被开方数相同的二次 根式才能进行加减运 算。
计算 $2sqrt{2} - sqrt{3}$ 计算 $3sqrt{2} + 2sqrt{3}$
提高练习题
01
计算 $(sqrt{2} + sqrt{3})^2$
02
计算 $(2sqrt{2} - sqrt{3})^2$
03
计算 $(sqrt{2} - sqrt{3})^2$
04
计算 $(3sqrt{2} + 2sqrt{3})^2$
二次根式下的数必须是非负的 。
二次根式具有非负性,即 $sqrt{a^2} = |a|$。
根式的加减法规则
合并同类二次根式
只有同类二次根式才能进行加减 运算。同类二次根式是指被开方 数相同的二次根式。
二次根式的加减法
将同类二次根式的系数相加减, 被开方数和根号符号保持不变。
根式加减法的意义
简化二次根式
函数中的根式加减

二次根式加减ppt课件

二次根式加减ppt课件

答案及解析
计算
化简
$sqrt{27} + sqrt{3} = 3sqrt{3} + sqrt{3} = 4sqrt{3}$
$2sqrt{3} - sqrt{2} = sqrt{3} - sqrt{2}$
比较大小
$sqrt{25} = 5$,因为 $5 > 3$,所以 $sqrt{25} > 3$
判断正误
01
02
03
识别同类二次根式
首先需要识别出表达式中 的同类二次根式,即具有 相同被开方数的二次根式 。
合并同类二次根式
将同类二次根式进行合并 ,即将它们的系数相加减 ,根号下的被开方数保持 不变。
举例说明
将表达式中的 $sqrt{2}$ 和 $sqrt{2}$ 合并为 $2sqrt{2}$。
$sqrt{8} + sqrt{18} = 2sqrt{2} + 3sqrt{2} = 5sqrt{2}$,不等于 $2sqrt{2}$,所以判 断为错。
THANKS
感谢观看
sqrt{2}}{sqrt{2} times sqrt{2}} = frac{sqrt{6}}{2}$。
二次根式的化简技巧
利用平方差公式
对于形如 $sqrt{a^2 - b^2}$ 的表达式,可以利 用平方差公式进行化简。
利用完全平方公式
对于形如 $sqrt{a + b}$ 或 $sqrt{a - b}$ 的表达 式,可以利用完全平方公式进行化简。
二次根式的加减法规则
总结词
掌握二次根式的加减法规则是进行运 算的关键。
详细描述
二次根式的加减法需先将各项化为最 简二次根式,然后合并同类二次根式 。

《二次根式》PPT课件 (共31张PPT)

《二次根式》PPT课件 (共31张PPT)

练习:
x取何值时,下列二次根式有意义?
(1) x 1
x 1 (2) 3x
x0
(3) 4 x
2 x为全体实数
(5) x
3
x0
1 a< 2
1 (4) x
x0
1 (7) 1 2a
1 (6) x0 2 x 3 x (8) | x | 4
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。
2 2
x=5,y=11
(2 x - y)
2011
=- 1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、( a) =a (a 0)
2
2、( a )=|a| =
2
a (a>0) 0 (a=0)
-a (a<0)
( a ) 与 a 有区别吗?
2
2
( a) 与 a
1:从运算顺序来看,
2
2
a
a
2
2
先开方,后平方
先平方,后开方
2.从取值范围来看, 2 a≥0 a

a
2
a取任何实数
3.从运算结果来看:
①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。 ③多个条件组合时,应用不等式组求解
二次根式的双重非负性
a 吵0, a 0.
二次根式的性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4) a b
a (a ≥0 , b>0) b
2020年10月2日
3
复习归纳
二次根式有下面运算的性质
a • b a b (a ≥0 , b≥0)
a
a
(a ≥0 , b>0)
b
b
2020年10月2日
4
想一想
你能用二次根式上面运算的性质来计算吗?
(1) 2 6 (2) 12 3
(3) 1000 0.1
若它的边长为
2
2
个单位,
A
求这个路标的面积。
2020年10月2日
B
C
D 8
引申与提高:
如图,架在消防车上的云梯AB长为15m, AD:BD=1 :0.6,云梯底 A 部离地面的距离BC为2m。 你能求出云梯的顶端离地 面的距离AE吗?
2020年10月2日
D B
E C
9
课内练习
课本P12页: 第2、3题
2020年10月2日
10
归纳
小结
二次根式的运算(乘除运算):
a • b a b (a ≥0 , b≥0)
a
b
a (a ≥0 , b>0) b
2020年10月2日
11
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
浙教版八年级《数学》下册
2020年10月2日
八年级数学备课组 2006.2.15
1
复习归纳
二次根式的性质:
(1) ( a ) 2 a (a≥0)
(2) a 2 |a|
当a≥0时,= a; 当a≤0时,= -a 。
2020年10月2日
2
复习归纳
二次根式的性质:
(3) a b a • b(a ≥0 , b≥0)
(4) 3 2 (5) 24 3
2020年一试:
计算:
(1) 32(2) 50(3) 7 2 10 6
2020年10月2日
6
例1 计算:
(1)
1 2 27
3
10
2
(2)
3
5.2 10 7
(3)
1.3 10 9
2020年10月2日
7
例题学习
例2: 一个正三角形路标如图。
汇报人:XXX 汇报日期:20XX年10月10日
12
相关文档
最新文档