求二叉树叶子结点数和高度

合集下载

统计二叉树各度数的结点的个数高度宽度结点最大元素的值交换结点的左孩子和右孩子删除所有叶子节点

统计二叉树各度数的结点的个数高度宽度结点最大元素的值交换结点的左孩子和右孩子删除所有叶子节点
m = num2(pointer->rchild);
sum += m;
}
return sum;
}
//求树的的高度
template <class T>
int btr<T>::btrhigh(btrnode<T>* root)
{
btrnode<T>* pointer = root;
void preorder(btrnode<T>* root);
void visit(btrnode<T>* cur);
};
//先序、中序构造二叉树递归算法
template <class T>
btrnode<T>* btr<T>::pib(string preod, string inod)// 是二 叉树结点个数
pointer->lchild = pointer->rchild;
pointer->rchild = tmp;
}
else
return;
change(pointer->lchild);
change(pointer->rchild);
}
//前序遍历
template <class T>
{
if ((pointer->lchild == NULL && pointer->rchild != NULL) || (pointer->rchild == NULL && pointer->lchild != NULL))

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度

/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。

{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。

T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){printf("%c-",T->data);preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;printf("%c-",p->data );if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。

二叉树的遍历及常用算法

二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。

二叉树结点计算公式

二叉树结点计算公式

二叉树结点计算公式二叉树结点的计算公式及解释1. 二叉树的节点个数•公式:N = 2^h - 1,其中 N 表示二叉树的节点个数,h 表示二叉树的高度。

•解释:二叉树的高度 h 可以通过树的层数来确定,根节点所在的层数为 1,依次往下递增。

每个节点都可以有两个子节点,所以二叉树的节点个数 N 可以通过计算 2 的 h 次方再减去 1 来得出。

例如:A/ \B C/ \ / \D E F G根据上面的二叉树来计算节点个数:h = 3,2^3 - 1 = 8 - 1 = 7所以,该二叉树的节点个数为 7。

2. 二叉树的叶子节点个数•公式:L = (N + 1) / 2,其中 L 表示二叉树的叶子节点个数,N 表示二叉树的节点个数。

•解释:在二叉树中,叶子节点是指没有子节点的节点。

根据二叉树的性质,每个节点最多有两个子节点,所以二叉树的叶子节点个数可以通过节点个数加 1 再除以 2 来计算。

例如:A/ \B C/ \ / \D E F G根据上面的二叉树来计算叶子节点个数:N = 7,(7 + 1) / 2 = 8 / 2 = 4所以,该二叉树的叶子节点个数为 4。

3. 二叉树的高度•公式:h = log2(N + 1),其中 h 表示二叉树的高度,N 表示二叉树的节点个数。

•解释:由于二叉树中每个节点都可以有两个子节点,所以可以通过节点个数 N 加 1 后取对数以 2 为底的对数来计算二叉树的高度。

例如:A/ \B C/ \ / \D E F G根据上面的二叉树来计算高度:N = 7,log2(7 + 1) ≈ log2(8) ≈ 3所以,该二叉树的高度为 3。

以上就是关于二叉树结点的计算公式及解释。

通过这些公式,我们可以更方便地计算二叉树的相关属性,进而优化算法或者进行更深入的研究。

《数据结构及其应用》笔记含答案 第五章_树和二叉树

《数据结构及其应用》笔记含答案 第五章_树和二叉树

第5章树和二叉树一、填空题1、指向结点前驱和后继的指针称为线索。

二、判断题1、二叉树是树的特殊形式。

()2、完全二叉树中,若一个结点没有左孩子,则它必是叶子。

()3、对于有N个结点的二叉树,其高度为。

()4、满二叉树一定是完全二叉树,反之未必。

()5、完全二叉树可采用顺序存储结构实现存储,非完全二叉树则不能。

()6、若一个结点是某二叉树子树的中序遍历序列中的第一个结点,则它必是该子树的后序遍历序列中的第一个结点。

()7、不使用递归也可实现二叉树的先序、中序和后序遍历。

()8、先序遍历二叉树的序列中,任何结点的子树的所有结点不一定跟在该结点之后。

()9、赫夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。

()110、在赫夫曼编码中,出现频率相同的字符编码长度也一定相同。

()三、单项选择题1、把一棵树转换为二叉树后,这棵二叉树的形态是(A)。

A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。

2、由3个结点可以构造出多少种不同的二叉树?(D)A.2 B.3 C.4 D.5解释:五种情况如下:3、一棵完全二叉树上有1001个结点,其中叶子结点的个数是(D)。

A.250 B. 500 C.254 D.501解释:设度为0结点(叶子结点)个数为A,度为1的结点个数为B,度为2的结点个数为C,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C为整数,所以B=0,C=500,A=501,即有501个叶子结点。

4、一个具有1025个结点的二叉树的高h为(C)。

A.11 B.10 C.11至1025之间 D.10至1024之间解释:若每层仅有一个结点,则树高h为1025;且其最小树高为⎣log21025⎦ + 1=11,即h在11至1025之间。

第6章_数据结构习题题目及答案_树和二叉树_参考答案

第6章_数据结构习题题目及答案_树和二叉树_参考答案

一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。

【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。

【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。

本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。

虽然解法也对,但步骤多且复杂,极易出错。

6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。

【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。

6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。

【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。

若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。

6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。

基本二叉树知识讲解

基本二叉树知识讲解

基本二叉树知识讲解一、有关二叉树的学习性质1:二叉树上叶子结点数等于度为2的结点数加1。

性质2:二叉树的第i层上至多有2的i次方减1个结点(i>=1)。

性质3:深度为h的二叉树至多有2的h次方减1个结点。

满二叉树:在一棵二叉树中,当第i层的结点树为2的i次方减1个时,称此层的结点数是满的。

当一棵二叉树中的每一层都满时,称此树为满二叉树。

特性:除叶子结点以外的其他的结点的度皆为2,且叶子结点在同一层上。

深度为h的满二叉树中的结点数为2的h次方减1。

性质4:设含有n个结点的完全二叉树的深度为k,则k=(int)(log2n)+1,即深度k等于log2n的整数部分再加1。

二叉树的存储结构1:顺序存储结构二叉树的顺序存储结构类型定义如下:#define TREEMINSIZE 10typedef struct{BTreeDT(数据类型) *base;int spacesize;BTreeDT nullvalue;}SeqTree;2:链式存储结构(一般的二叉树主要采用链式存储结构通常有二叉链表和三叉链表两种形式)1>二叉链表存储结构二叉链表中的每个结点由data,lchild和rchild三个域组成,定义如下:typedef struct bkbtnode{BTreeDT data;struct bkbtnode *lchild;struct bkbtnode *rchild;}BTNode,*BKBTree;在二叉链表中,查找某结点的孩子很容易实现,但查找某结点的双亲不方便。

一棵喊有n个结点的二叉树采用二叉链表存储时,将有2n-(n-1)=n+1个指针域是空的。

2>三叉链表存储结构typedef struct tkbtnode{BTreeDT data;struct tkbtnode *lchild;struct tkbtnode *rchild;struct tkbtnode *parent;}TKBTNode,*TKBTree;其中,parent域存放该结点双亲的指针。

数据结构求二叉树中叶子结点的个数及二叉树的高度

数据结构求二叉树中叶子结点的个数及二叉树的高度

数据结构求二叉树中叶子结点的个数及二叉树的高度二叉树是一种常用的数据结构,它由若干个节点组成,每个节点最多只有两个子节点:左子节点和右子节点。

二叉树常用来表示树状结构,如文件系统、家族关系等等。

本文将介绍如何求二叉树中叶子节点的个数以及二叉树的高度。

一、求二叉树中叶子节点的个数叶子节点是指没有子节点的节点。

要求二叉树中叶子节点的个数,可以使用递归的方法进行计算。

具体步骤如下:1.判断当前节点是否为空,如果为空,则返回0。

2.判断当前节点是否为叶子节点,如果是,则返回13.否则,递归计算当前节点的左子树中叶子节点的个数和右子树中叶子节点的个数,并将它们相加。

下面是一个示例代码:```pythonclass TreeNode:def __init__(self, value):self.val = valueself.left = Noneself.right = Nonedef get_leaf_nodes_count(root):if root is None:return 0if root.left is None and root.right is None:return 1return get_leaf_nodes_count(root.left) +get_leaf_nodes_count(root.right)```二叉树的高度也可以使用递归的方式进行计算。

根据二叉树的定义,二叉树的高度等于左子树的高度和右子树的高度的较大值,再加1、具体步骤如下:1.判断当前节点是否为空,如果为空,则返回0。

2.计算当前节点的左子树的高度和右子树的高度,取较大值。

3.将较大值加1,即得到当前二叉树的高度。

下面是一个示例代码:```pythondef get_tree_height(root):if root is None:return 0left_height = get_tree_height(root.left)right_height = get_tree_height(root.right)return max(left_height, right_height) + 1```综上所述,本文介绍了如何求二叉树中叶子节点的个数和二叉树的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验题目:求二叉树叶子结点数和高度
一、实验目的
•加深理解二叉树的定义和特性;
•掌握二叉树的存储结构与实现;
•掌握二叉树的遍历操作及其应用
二、实验内容:
根据键盘输入的扩展二叉树的前序遍历序列建立相应的二叉树,并计算该二叉树的叶子结点个数和高度。

三、设计与编码
1、基本思想
利用二叉树的前序遍历操作,叶子结点个数和二叉树深度,设计递归算法实现。

2、编码
#include<iostream>
using namespace std;
struct BiNode
{
char data;
BiNode *lchild, *rchild;
};
class BiTree
{
public:
BiTree()
{
root=Creat(root);
}
~BiTree()
{
Release(root);
}
BiNode * Getroot()
{
return root;
}
void PreOrder(BiNode *root)
{
if(root==NULL)
return;
else
{
cout<<root->data<<' ';
PreOrder(root->lchild);
PreOrder(root->rchild);
}
}
int LeafCount(BiNode *root)
{
if(root==NULL)
return 0;
else
{
if(root->lchild==NULL&&root->rchild==NULL)
return 1;
else
return LeafCount(root->lchild)+LeafCount(root->rchild);
}
}
int Height(BiNode *root)
{
int hl,hr,h;
if(root==NULL)
return 0;
else
{
hl=Height(root->lchild);
hr=Height(root->rchild);
h=(hl>hr?hl:hr)+1;
}
return h;
}
private:
BiNode *root;
BiNode *Creat(BiNode *bt)
{
char ch;
cin>>ch;
if(ch=='#')return 0;
else
{
bt=new BiNode;bt->data=ch;
bt->lchild=Creat(bt->lchild);
bt->rchild=Creat(bt->rchild);
}
return bt;
}
void Release(BiNode *bt)
{
if(bt==NULL)
{
Release(bt->lchild);
Release(bt->rchild);
delete bt;
}
}
};
int main()
{
cout<<"请输入创建一棵二叉树的结点数据:"<<endl;
BiTree bt;
BiNode *root = bt.Getroot( );
cout<<endl;
cout<<"------前序遍历------ "<<endl;
bt.PreOrder(root);
cout<<endl<<endl;
cout<<"该二叉树的叶子结点数为:";
cout<<bt.LeafCount(root)<<endl;
cout<<"该二叉树的高度为:";
cout<<bt.Height(root)<<endl;
return 0;
}
四、调试与运行
1、调试时遇到的主要问题及解决
主要都是一些小细节没有注意,害我找了老半天才搞定。

2、运行结果(输入及输出,可以截取运行窗体的界面)
五、实验心得
通过本次的实验,让我加深了理解了串的操作。

也认识到了我的不足,也懂得了很多。

在之前,只是一直盲目的跟着书本上的东西打,就像打字一样,不用思考,也不会实际应用。

通过这次实验,让我们有了实践的机会。

同时也复习了一些C++的知识,让我更加熟悉这些简单语句,也通过书上的很多错误来敲醒我的盲从,学习必须脚踏实地,多写程序,多实践,才是进步的法门。

从一次次实验的失败到一次次找办法解决冲突,让我更加学会如何借助帮助文件以及和同学交流来解决问题。

这次实验我受益匪浅啊!
谢谢学校给我提供了这么好的环境,也谢谢老师对我们的细心指导,老师您辛苦了!
说明:实验报告上交电子版,由学委统一发到我邮箱:yulwf@,上交时间为下次实验课之前。

实验报告一定要按时交,不能抄袭!!否则,后果自负。

每次实验一个文件夹,文件夹名称为学号+姓名;内包含两个文件:1,实验报告2,源程序。

相关文档
最新文档