建筑物变形监测内容
变形监测有哪些内容

变形监测有哪些内容变形监测是指对物体的形状、尺寸、位置等进行实时监测和检测的技术手段。
在工程领域中,变形监测被广泛应用于建筑结构、桥梁、隧道、地铁、水利工程等领域,以及航空航天、汽车制造等行业。
变形监测的内容包括但不限于以下几个方面:1. 变形监测原理。
变形监测的原理是利用各种传感器或测量仪器对目标物体的形状、尺寸、位置等进行实时监测和检测。
常用的传感器包括全站仪、GPS、倾角传感器、位移传感器、应变片等。
这些传感器可以实时采集目标物体的各项参数,并将数据传输给监测系统进行分析和处理,从而实现对目标物体变形情况的监测。
2. 变形监测方法。
变形监测方法包括静态监测和动态监测两种。
静态监测是指在目标物体处于静止状态下进行监测,通常用于建筑结构、桥梁等工程领域;动态监测是指在目标物体处于运动状态下进行监测,通常用于航空航天、汽车制造等行业。
根据监测的具体要求和目标物体的特点,可以选择合适的监测方法进行变形监测。
3. 变形监测技术。
变形监测技术包括传感器技术、数据采集技术、数据处理技术等。
传感器技术是变形监测的核心技术,传感器的选择和布设对监测结果具有重要影响;数据采集技术是指对传感器采集的数据进行有效获取和传输;数据处理技术是指对采集的数据进行分析、处理和展示,从而实现对目标物体变形情况的准确监测。
4. 变形监测应用。
变形监测在工程领域中有着广泛的应用,可以用于建筑结构的变形监测、桥梁的变形监测、隧道的变形监测、地铁的变形监测等。
在航空航天、汽车制造等行业,也可以利用变形监测技术对飞行器、汽车等进行变形监测,确保其安全运行。
变形监测还可以应用于地质灾害监测、海洋工程监测等领域,为工程建设和生产运营提供可靠的监测数据和技术支持。
5. 变形监测发展趋势。
随着科学技术的不断发展和进步,变形监测技术也在不断创新和完善。
未来,变形监测技术将更加智能化、精准化和自动化,传感器技术、数据采集技术、数据处理技术等将得到进一步提升和应用,从而更好地满足工程建设和生产运营对变形监测的需求。
建筑物变形监测报告内容

建筑物变形监测报告内容当撰写一份建筑物变形监测报告时,可以按照以下格式进行:一、引言在引言部分,可以简要介绍建筑物变形监测的背景信息、目的和意义,并说明本报告将对哪些内容进行具体分析和描述。
1. 背景在这一部分,可以介绍建筑物的基本情况,包括建筑物的类型、结构形式、使用年限等相关信息,还可以提及建筑物所在的环境特点,如地理位置、自然条件等。
2. 目的明确本次建筑物变形监测的目的,比如是为了评估建筑物的结构稳定性、监测建筑物在使用过程中的变形情况,或者是为了得出建筑物结构的破坏性变形情况等方面。
3. 意义说明进行建筑物变形监测的意义和价值,如保障建筑物的安全和稳定性、提供科学依据进行维护和保养,以及在使用过程中发现问题及时处理等。
二、监测方法与装置在这一部分,可以详细介绍进行建筑物变形监测所采用的方法和装置,包括测量仪器、传感器的选择和配置,监测参数的设定等。
同时,也可以介绍监测的频率和监测方案的制定。
1. 方法选择具体说明为了达到监测目的所采用的监测方法,如全站仪测量、GNSS监测、摄影测量、激光测距仪等。
2. 监测装置详细介绍所采用的监测装置,包括测量仪器、数据采集系统、传感器等,同时也可以说明其特点和优势。
3. 监测参数定义和确定需要监测的参数,如水平位移、垂直位移、倾斜角度、沉降量等,以及监测精度要求。
三、监测结果分析在这一部分,对监测所得到的数据进行分析和解释,具体描述建筑物的变形情况,并结合之前设定的监测参数进行评估和判断。
1. 变形情况描述对于每个关键的监测参数,按照时间顺序详细描述建筑物的变形情况,包括大小、趋势以及存在的问题。
2. 变形评估根据所设定的监测精度要求,对建筑物的变形情况进行评估,分析是否超出安全范围,以及对结构稳定性的影响。
3. 问题分析与处理建议根据变形情况的评估结果,分析存在的问题原因,并提出相应的处理建议,包括修复措施、维护方案等。
四、总结与建议在这一部分,对整个建筑物变形监测报告进行总结,概括性地说明本次监测的结果和意义,并提出进一步的建议。
变形监测有哪些内容

变形监测有哪些内容变形监测是指对物体形态、结构、位置等进行实时监测和分析的技术手段。
在工程领域中,变形监测被广泛应用于建筑物、桥梁、隧道、坝体、地铁、高架线路等工程结构的安全监测和评估。
通过对结构变形的监测,可以及时发现结构变形的情况,为结构的安全运行提供重要的依据。
变形监测的内容主要包括以下几个方面:1. 变形监测的基本原理。
变形监测的基本原理是利用各种传感器对结构进行实时监测,通过采集的数据进行分析和处理,得出结构的变形情况。
常用的监测手段包括全站仪、GPS、倾角仪、位移传感器等。
这些传感器可以实时监测结构的位移、倾斜、变形等情况,为结构的安全运行提供重要的数据支持。
2. 变形监测的应用范围。
变形监测广泛应用于建筑物、桥梁、隧道、坝体等工程结构的安全监测和评估。
在建筑物中,可以通过变形监测技术对建筑物的沉降、裂缝、变形等情况进行实时监测,及时发现结构的变形情况,为建筑物的安全运行提供重要的依据。
在桥梁、隧道、坝体等工程结构中,变形监测可以对结构的位移、倾斜、裂缝等情况进行实时监测,为工程结构的安全运行提供重要的数据支持。
3. 变形监测的优势。
变形监测具有实时性强、监测范围广、监测精度高等优势。
通过变形监测技术,可以实时监测结构的变形情况,及时发现结构的安全隐患,为结构的安全运行提供重要的数据支持。
同时,变形监测技术可以对结构的变形情况进行全面、精准的监测,提高了监测的准确性和可靠性。
4. 变形监测的发展趋势。
随着科学技术的不断发展,变形监测技术也在不断创新和完善。
未来,变形监测技术将更加注重监测数据的实时性和准确性,提高监测手段的灵活性和多样性,为工程结构的安全运行提供更加可靠的数据支持。
同时,变形监测技术将更加注重监测数据的分析和处理,提高数据的利用价值,为工程结构的安全评估提供更加科学、可靠的依据。
5. 结语。
变形监测作为一种重要的工程监测手段,对工程结构的安全运行具有重要的意义。
通过对结构变形的实时监测和分析,可以及时发现结构的变形情况,为工程结构的安全运行提供重要的数据支持。
建设工程建筑变形测量监测方案

建设工程建筑变形测量监测方案早上九点,阳光透过窗帘的缝隙洒在办公桌上,我开始构思这份“建设工程建筑变形测量监测方案”。
这样的方案我已经写了十年,每一次都是全新的挑战,但也充满了熟悉的节奏感。
一、项目背景及目标这个项目位于繁华的市区,一栋高达50层的大厦,它的建设牵动着无数人的心。
我们的目标很简单,确保在整个建设过程中,建筑物的变形在可控范围内,避免因变形过大导致的安全问题。
二、监测内容1.建筑物的垂直度:这是最基础的监测内容,我们要确保大厦垂直于地面,不倾斜。
2.结构位移:随着施工的进行,建筑物的结构可能会发生微小的位移,我们需要实时掌握这些数据。
3.基础沉降:这是关键中的关键,基础沉降过大,整个建筑物的安全性都会受到影响。
4.地面裂缝:地面裂缝的出现往往预示着更大的安全隐患,我们要密切关注。
三、监测方法1.采用全站仪进行垂直度和结构位移的测量,这是一种高效、精确的测量方法。
2.使用水准仪和测量进行基础沉降和地面裂缝的监测,它们能提供连续、实时的数据。
3.搭建一个数据采集和处理系统,将所有监测数据实时传输到电脑,方便我们分析和处理。
四、监测频率1.在施工初期,每周进行一次全面监测,确保建筑物的变形在可控范围内。
2.在施工中期,每两周进行一次全面监测,此时建筑物的变形趋势已经比较明显。
3.在施工后期,每月进行一次全面监测,直至工程结束。
五、数据处理与分析1.收集到的数据会先经过初步的筛选和清洗,去除无效和异常数据。
2.对有效数据进行统计分析,绘制出变形曲线图,直观地展示建筑物的变形情况。
3.根据变形曲线图,预测建筑物的变形趋势,为后续的施工提供参考。
六、预警与应对措施1.当监测数据超过预警阈值时,立即启动预警机制,通知相关部门和人员。
2.针对不同类型的变形,采取相应的应对措施。
如垂直度偏差过大,及时调整施工方案;基础沉降过大,加强地基处理等。
3.定期对监测系统进行检查和维护,确保其正常运行。
七、成果提交1.在工程结束后,整理所有监测数据和分析报告,形成一份完整的“建设工程建筑变形测量监测报告”。
如何进行建筑物变形监测

如何进行建筑物变形监测近年来,由于城市化进程的快速推进,建筑物的数量和规模不断增长,同时也出现了各种各样的建筑物变形问题。
建筑变形可能会对安全性、稳定性和使用性产生负面影响,因此建筑物变形监测成为了现代建筑中不可或缺的一环。
本文将探讨如何进行建筑物变形监测的相关方法和技术。
建筑物变形监测主要通过测量和分析建筑物的形变来获取数据,并据此评估建筑物的变形程度和趋势。
在实际应用中,建筑物变形监测主要关注以下几个方面:建筑物整体变形、结构部件的变形、地基沉降以及周边环境的变化等。
首先,要进行建筑物整体变形监测,首要任务是选择合适的监测仪器和技术。
常用的监测仪器包括全站仪、测量雷达、激光测距仪等,这些仪器能够高精度地测量建筑物的位置、方位和形状等参数。
同时,还可以利用空间三角测量技术来评估建筑物的整体变形情况。
通过不同时间段的监测数据对比分析,可以掌握建筑物整体的变形趋势,并及时发现潜在的安全隐患。
其次,对于建筑物结构部件的变形监测,可以采用传感器技术。
例如,可以在关键部位安装应变计、位移传感器等,实时测量结构部件的应变和位移等参数。
这些传感器可以将测量数据传输到监测系统中,通过数据分析和处理,就可以得到结构部件变形的信息。
结构部件的变形监测对于保证建筑物的结构安全和使用性能非常重要,可以提前预警并采取相应的维护和加固措施,避免潜在的事故风险。
此外,地基沉降也是建筑物变形监测中的一个重要问题。
地基沉降可能导致建筑物的不均匀沉降,进而引起建筑物的变形。
监测地基沉降可以采用测量雷达等无损检测技术,实时监测地基的变化情况。
同时,还可以利用卫星遥感技术获取地表变形的数据,对地基沉降进行全面分析和评估。
通过及时发现地基沉降情况,可以制定有效的地基处理方案,保证建筑物的稳定性和安全性。
最后,建筑物变形监测还需要考虑周边环境的变化。
建筑物所处的环境可能会受到自然因素、人为活动等的影响,从而引起建筑物的变形。
监测周边环境的变化可以借助气象站、视频监控等设备来实现,获取相关数据。
建筑物变形监测内容

建筑物变形监测内容监测工程1施工对邻近建(构)筑物影响的观测打桩和采纳井点降低水位等,均会使邻近建(构)筑物产生不均匀的沉降、裂缝和位移等变形。
为此,应在打桩、井点降水影响范围以外设基准点,对距基坑肯定范围的建(构)筑物上设置沉降观测点,并进行沉降观测。
并针对其变形情况,采取平安防护措施。
2施工塔吊基座的沉降观测高层建筑施工使用的塔吊,吨位和臂长均较大。
随着施工的进展,塔吊可能会因塔基下沉、倾斜而发生事故。
因此,要依据情况及时对塔基四角进行沉降观测,检查塔基下沉和倾斜状况,以确保塔吊运转平安。
3地基回弹观测一般基坑越深,挖土后基坑底面的原土向上回弹的越多,建筑物施工后其下沉也越大。
为了测定地基的回弹值,基坑开挖前,在拟建高层建筑的纵、横主轴线上,用钻机打直径100mm的钻孔至根底底面以下300~500mm处,在钻孔套管内压设特制的测量标志,测定其标高。
当套管提出后,测量标志即留在原处。
待基坑挖至底面时,测出其标高,然后,在浇筑混凝土根底前,再测一次标高,从而得到各点的地基回弹值。
地基回弹值是研究地基土体结构和高层建筑物地基下沉的重要资料。
4地基分层和邻近地面的沉降观测这项观测是了解地基下不同深度、不同土层受力的变形情况与受压层的深度,以及了解建筑物沉降对邻近地面由近及远的不同影响。
这项观测的目的和方法根本与地基回弹观测相同。
5建筑物自身的沉降观测这是高层建筑沉降观测的主要内容。
当浇筑根底垫层时,就在垫层上设计指定的位置埋设好临时观测点。
一般每施工一层观测一次,直至竣工。
工程竣工后的第—年内要测四次,第二年测二次,第三年后每年一次,直至下沉稳定为止。
一般砂土地基测二年,粘性土地基测五年,软土地基测十年。
监测内容位移观测1护坡桩的位移观测无论是钢板护坡桩还是混凝土护坡桩,在基坑开挖后,由于受侧压力的影响,桩身均会向基坑方向产生位移。
为监测其位移情况,一般要在护坡桩基坑一侧500mm左右设置平行操纵线,用经纬仪视准线法,定期进行观测,以确爱护坡桩的平安。
第16章 建筑物变形监测
第十六章建筑物变形监测16.1建筑变形监测的基础知识16.1.1变形、变形体与变形监测变形是自然界中普遍存在的现象,它是指变形体在各种荷载作用下,其形状、大小及位置在时间和空间域中的变化。
变形体的变形在一定范围内被认为是允许的,如果超出允许值,则可能引发灾害。
自然界的变形灾害现象很普遍,比如地震、滑坡、岩崩、地表沉陷、溃坝、桥梁与建筑物的倒塌等。
变形体一般包括工程建筑物、机器设备以及其他与工程有关的自然或人工对象。
变形体一般用一定数量的有代表性的位于变形体上的离散点(又称为监测点或目标点)来代表,监测点的空间位置变化可以用来描述变形体的变形。
在工程变形监测中,最具代表性的变形体主要为大坝、桥梁、矿区、高层建筑物、边坡、滑坡、公路、铁路、隧道、地表沉降和基坑等。
所谓变形监测,就是利用测量或专用仪器和方法,对变形体的变形现象进行监视观测的工作。
其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间和时间特征。
变形监测工作是人们通过变形现象获得科学认识、检验理论和假设的必要手段。
16.1.2变形监测的研究对象根据变形体的分布范围,变形监测的研究对象划分为以下三类:(1)全球性变形监测:如监测全球板块运动、地极移动、地潮、地球自转速率变化等;(2)区域性变形监测:如地壳形变监测、城市地表沉降监测等;(3)工程和局部性变形监测:如监测工程建筑物的三维变形、滑坡体的滑动、基坑边缘的水平位移与沉降、隧道围岩的收敛变形等。
16.1.3建筑物变形的表现形式建筑物变形的表现形式,主要为水平位移、垂直位移、倾斜、扭转、挠度和裂缝等。
水平位移指的是建筑物在平面上的位置变化,它可分解到某一特定的方向;垂直位移指的是建筑物在铅垂面或大地水准面法线方向上的位置变化;倾斜可以认为是高大建筑物顶部相对于底部的水平位移,它可以通过建筑物顶部的水平位移和建筑物高度的测量再通过计算得到,倾斜变形一般是非弹性变形;扭转可以认为是高大建筑物顶部相对于底部的旋转变形,它可以通过建筑物顶部的水平位移的测量而得到,扭转变形一般是弹性变形;挠度指的是建筑物在水平方向或竖直方向上的弯度值,例如桥的梁部在中间会产生向下的弯曲,高大建筑物会产生侧向弯曲,挠度变形可以通过垂直位移测量或水平位移测量而获得;当建筑物的变形足够大而其整体性受到破坏时,就产生了裂缝变形。
建筑物变形监测技术介绍
建筑物变形监测技术介绍随着城市化进程的加快,高楼大厦、桥梁隧道等建筑物的建设日益增长,人们对建筑物的安全性和稳定性提出了更高的要求。
为了及时发现和解决建筑物在使用中出现的变形问题,建筑物变形监测技术逐渐得到了广泛应用。
本文将介绍几种常见的建筑物变形监测技术。
一、全站仪监测技术全站仪监测技术是一种高精度的建筑物变形监测技术。
它利用全站仪的测量原理,通过对建筑物上不同位置的点进行定位和测量,从而得到建筑物的变形情况。
全站仪可以测量建筑物的倾斜、沉降、挠度等变形情况,可以实时监测建筑物的变化趋势,及时预警和采取相应措施。
二、应变测量技术应变测量技术是一种常见的建筑物变形监测技术。
在建筑物的结构表面安装应变计,通过测量应变计所受到的拉伸变形和压缩变形,来判断建筑物的结构是否发生变形。
应变测量技术可以实时监测建筑物的形变,其精度较高,但在安装过程中需要对建筑物进行一定程度的改造。
三、激光测距仪监测技术激光测距仪监测技术是一种非接触式的建筑物变形监测技术。
它利用激光测量原理,通过测量激光在建筑物上反射的时间和距离,从而得到建筑物的变形情况。
激光测距仪可以对建筑物的形变进行实时监测,具有监测范围广、测量精度高等优点。
四、振动监测技术振动监测技术是一种通过测量建筑物的振动来判断其变形情况的技术。
振动监测技术可以采用加速度计、振动传感器等设备进行测量,并通过分析建筑物的振动频率、振幅等参数,来判断建筑物是否存在结构变形。
振动监测技术可以实时监测建筑物的变形情况,对于一些高层建筑和桥梁等结构体非常有效。
五、温度监测技术温度监测技术是一种通过监测建筑物的温度变化来判断其变形情况的技术。
温度变化会引起建筑物材料的热胀冷缩,从而导致建筑物的形变。
通过安装温度传感器,可以对建筑物的温度进行实时监测,并通过分析温度变化曲线来判断建筑物是否存在变形问题。
综上所述,建筑物变形监测技术在建筑工程中起到了重要的作用。
通过实时监测建筑物的变化情况,可以及时发现和解决建筑物的变形问题,保证建筑物的安全性和稳定性。
变形监测有哪些内容
变形监测有哪些内容变形监测是指对工程结构或地质体进行形变的监测和分析,以及对变形进行预测和预警的一种技术手段。
变形监测通常应用于地质灾害预警、工程结构安全监测、地下水开采引起的地面沉降等领域。
在实际工程和地质勘察中,变形监测具有重要的意义,可以及时发现和预警可能出现的问题,保障工程安全和地质环境稳定。
下面将介绍一下变形监测的相关内容。
一、监测对象。
变形监测的对象包括但不限于以下几个方面:1. 工程结构,如建筑物、桥梁、隧道、坝体等工程结构的变形监测,可以通过监测结构的位移、变形、裂缝等情况,及时了解工程结构的变形情况,确保结构的安全性。
2. 地质体,如山体、边坡、岩体等地质体的变形监测,可以通过监测地表位移、地下水位变化、地下裂缝等情况,及时了解地质体的变形情况,预防地质灾害的发生。
3. 地下水位,地下水开采引起的地面沉降是一种常见的地质灾害,通过监测地下水位的变化,可以及时预警地面沉降的可能性,采取相应的措施进行治理。
二、监测方法。
1. GNSS监测,GNSS(全球导航卫星系统)是一种常用的变形监测技术,通过布设在监测对象周围的GNSS接收机,实时监测接收机的位置坐标,从而得到监测对象的位移和变形情况。
2. 雷达干涉监测,雷达干涉监测是一种利用合成孔径雷达(SAR)技术进行地表形变监测的方法,可以实现对大范围地表的高精度监测,对地质灾害的监测具有重要意义。
3. 激光测距监测,激光测距监测是一种利用激光测距仪进行变形监测的方法,可以实现对监测对象的高精度三维形变监测,适用于对工程结构的变形监测。
三、监测数据分析。
监测数据的分析是变形监测的重要环节,通过对监测数据的分析,可以及时发现变形情况,并进行预测和预警。
监测数据分析通常包括以下几个方面:1. 变形趋势分析,对监测数据进行时间序列分析,得出监测对象的变形趋势,判断变形是否存在加剧或减缓的趋势。
2. 变形速率分析,对监测数据进行速率分析,得出监测对象的变形速率,判断变形的快慢程度,为预测变形提供依据。
建筑物变形监测内容
建筑物变形监测内容
建筑物变形监测内容概述如下:
①沉降监测:测量建筑物基础、主体结构及各层楼面的垂直沉降量;
②倾斜监测:测定建筑物整体或局部的水平位移、倾斜角度;
③裂缝监测:记录、测量建筑物表面及内部裂缝的位置、长度、宽度变化;
④挠度监测:测量梁、柱、桥梁等构件在荷载作用下的弯曲变形;
⑤位移监测:监测建筑物在风荷载、地震、施工等因素影响下的整体平移;
⑥应力应变监测:通过埋设传感器,实时监测关键部位的应力、应变变化;
⑦振动监测:记录建筑物在外界激励(如地铁、施工振动)下的振动响应;
⑧地下水位监测:关注建筑物周边地下水位变化对地基稳定性的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑物变形监测内容
监测项目
1施工对邻近建(构)筑物影响的观测
打桩和采用井点降低水位等,均会使邻近建(构)筑物产生不均匀的沉降、裂缝和位移等变形。
为此,应在打桩、井点降水影响范围以外设基准点,对距基坑一定范围的建(构)筑物上设置沉降观测点,并进行沉降观测。
并针对其变形情况,采取安全防护措施。
2施工塔吊基座的沉降观测
高层建筑施工使用的塔吊,吨位和臂长均较大。
随着施工的进展,塔吊可能会因塔基下沉、倾斜而发生事故。
因此,要根据情况及时对塔基四角进行沉降观测,检查塔基下沉和倾斜状况,以确保塔吊运转安全。
3地基回弹观测
一般基坑越深,挖土后基坑底面的原土向上回弹的越多,建筑物施工后其下沉也越大。
为了测定地基的回弹值,基坑开挖前,在拟建高层建筑的纵、横主轴线上,用钻机打直径100mm的钻孔至基础底面以下300~
500mm处,在钻孔套管内压设特制的测量标志,测定其标高。
当套管提出后,测量标志即留在原处。
待基坑挖至底面时,测出其标高,然后,在浇筑混凝土基础前,再测一次标高,从而得到各点的地基回
弹值。
地基回弹值是研究地基土体结构和高层建筑物地基下沉的重要资料。
4地基分层和邻近地面的沉降观测
这项观测是了解地基下不同深度、不同土层受力的变形情况与受压层的深度,以及了解建筑物沉降对邻近地面由近及远的不同影响。
这项观测的目的和方法基本与地基回弹观测相同。
5建筑物自身的沉降观测
这是高层建筑沉降观测的主要内容。
当浇筑基础垫层时,就在垫层上设
计指定的位置埋设好临时观测点。
一般每施工一层观测一次,直至竣工。
工程竣工后的第一年内要测四次,第二年测二次,第三年后每年一次,直至下沉稳定为止。
一般砂土地基测二年,粘性土地基测五年,软土地基测十年。
监测内容
位移观测
1护坡桩的位移观测
无论是钢板护坡桩还是混凝土护坡桩,在基坑开挖后,由于受侧压力的
影响,桩身均会向基坑方向产生位移。
为监测其位移情况,一般要在护坡桩基坑一侧500mm左右设置平行控制线,用经纬仪视准线法,定期进行观测,以确保护坡桩的安全。
2日照对高层建筑物上部位移变形的观测
这项观测对施工中如何正确控制高层建(构)筑物的竖向偏差具有重要作
用。
观测随建(构)筑物施工高度的增加,一般每30m左右实测一次。
实测时应选在日照有明显变化的晴天天气进行,从清晨起每一小时观测一次,至次日清晨,以测得其位移变化数值与方向,并记录向阳面与背阳面的温度。
竖向位置以使用天顶法为宜。
3建筑物本身的位移观测
由于地质或其它原因,当建筑物在平面位置上发生位移时,应根据位移的可能情况,在其纵向和横向上分别设置观测点和控制线,用经纬仪视准线或小角度法进行观测。
沉降观测
倾斜观测
1建(构)筑物竖向倾斜观测一般要在进行倾斜监测的建(构)筑物上设置上、下二点或上、中、下多
点观测标志,各标志应在同一竖直面内。
用经纬仪正倒镜法,由上而下投测各观测点的位置,然后根据高差计算倾斜量。
或以某一固定方向为后视,用测回法观测各点的水平角及高差,再进行倾斜量的计算。
2建(构)筑物不均匀下沉对竖向倾斜影响的观测这是高层建筑中最常见的倾斜变形观测,利用沉降观测的数据和观测点的间距,即可计算由于不均匀下沉对倾斜的影响。