平面向量数量积的几何意义
平面向量数量积的几何意义

00:58
19
练习:已知|a|=4,|b|=2,且a与b的夹角为120°.求 (1)|2a-b|; (2)(a-2b)·(a+b);(3)a与a+b的夹角; (4)若(a-b)⊥(λa+b),求λ的值.
(4)因为(a-b)⊥(λa+b),所以(a-b)·(λa+b)=0, 即λa2+(1-λ)a·b-b2=0,
(a b) c a (b c)成立吗?
(a b)c (b c)a成立吗?
注意: 4、 向量的数量积不满足于结合律。
00:58
13
例2 .已知 | a | 6,| b | 4, a与b的夹角为60,求(a 2b)( a 3b)
解:(a 2b)(a 3b)
小结:知三求一,注意公式变形
00:58
12
类比于实数乘法的运算 律,向量的数量积满足哪些 运算律呢?
平面向量数量积的运算律:
(1)交换律:a b b a
(2)数乘结合律:(a)b (a b) a (b)
(3)分配律:(a b)c ac bc
向量的数量积满足结合律吗?
(向量 b 在 a 方向上)的投影.
00:58
22
向量 b 在方向 a 上的投影是数量,不是向量,
什么时候为正,什么时候为负? b cos
B
b
O
a B1 A
b cos 0
B b
B1 O a A
b cos 0
B b
O(B1 ) a A
b cos 0
a
Ob B
A
b
a
B
O
A
b cos b
指出下列图中两向量的夹角
平面向量的数量积和向量积的几何意义

平面向量的数量积和向量积的几何意义在数学中,平面向量是一个具有大小和方向的量,通常用箭头表示。
平面向量的数量积和向量积是两个重要的运算,在几何上有着具体的意义和应用。
一、平面向量的数量积平面向量的数量积,也称为内积或点积,是两个向量的乘积与夹角余弦的乘积。
设有两个平面向量A和B,它们的数量积表示为A·B。
平面向量的数量积的几何意义是通过夹角的余弦值来衡量两个向量的相关性。
当夹角为零度时,夹角的余弦值为1,表示两个向量共线且方向相同;当夹角为90度时,夹角的余弦值为0,表示两个向量垂直;当夹角为180度时,夹角的余弦值为-1,表示两个向量共线但方向相反。
通过数量积,我们可以计算向量的模长、夹角以及判断两个向量之间的关系。
具体应用包括求解两个向量的夹角、判断两个向量是否垂直、计算向量的投影等。
二、平面向量的向量积平面向量的向量积,也称为叉积或矢积,是两个向量的乘积与夹角的正弦的乘积。
设有两个平面向量A和B,它们的向量积表示为A×B。
平面向量的向量积的几何意义是通过夹角的正弦值来衡量两个向量构成的平行四边形的面积。
向量积的大小等于该平行四边形的面积,方向垂直于该平行四边形所在的平面,并符合右手规则。
通过向量积,我们可以计算向量的模长、夹角以及求解与平面相关的问题。
具体应用包括求解三角形的面积、判断三个向量是否共面、求解平行四边形的对角线等。
三、数量积与向量积的关系数量积和向量积都是平面向量的运算,它们之间有着一定的关系。
首先,根据数量积和向量积定义的公式,可以得到以下关系:A·B = |A||B|cosθA×B = |A||B|sinθn其中,|A|和|B|分别表示向量A和向量B的模长,θ表示向量A 和向量B之间的夹角,n表示单位法向量。
其次,数量积和向量积之间还存在一个重要的关系——勾股定理。
根据向量积的定义,可以得到:|A×B| = |A||B|sinθ = ABsinθ由此可以看出,向量A和向量B的模长和夹角的正弦值决定了向量积的大小,而根据勾股定理,向量A和向量B的数量积的平方也等于向量积的平方。
平面向量的数量积及运算律

平面向量的数量积及运算律【基础知识精讲】1.平面向量的数量积的定义及几何意义(1)两平面向量和的夹角:,是两非零向量,过点O作=、=,则∠AOB=θ(0°≤θ≤180°)就称为向量和的夹角,很显然,当且仅当两非零向量、同方向时θ=0°;当且仅,反方向时,θ=180°,当θ=90°,称与垂直,记作⊥.(2)两平面向是和的数量积:、是两非零向量,它们的夹角为θ,则数量||·||cosθ叫做向量与的数量积(或内积),记作·,即·=||·||·cosθ.因此当⊥时,θ=90°,cosθ=0,这时·=0特别规定,零向量与任一向量的数量积均为0.综上所述,·=0是⊥或,中至少一个为的充要条件两向量与的数量积是一个实数,不是一个向量,其值可以为正(当≠,≠,0°≤θ<90°时,也可以为负(当≠,≠,90°<θ≤180°时,还可以为0(当=或=或θ=90°时).(3)一个向量在另一向量方向上的投影:设θ是向量与的夹角,则||cosθ,称为向量在的方向上的投影:而||cosθ,称为向量在的方向上的投影.一个向量在另一个向量方向上的投影也是一个数,不是向量,当0°≤θ<90°时,它为正值:当θ=90°时,它为0;当90°<θ≤180°时,它为负值.特别地,当θ=0°,它就等于||;而当θ=180°时,它等于-||.我们可以将向量与的数量积看成是向量的模||与||在的方向上投影||cosθ的乘积.2.向量数量积的性质:设、是两非零向量,是单位向量,θ是与的夹角,于是我们有下列数量积的性质:(1) ·=·=||cosθ(2) ⊥·=0(3) 、同向·=||·||; ,反向·=-||||;特别地·=2=||2或||=.(4)cosθ= (θ为,的夹角)(5)|·|≤||·||3.平面向量的数量积的运算律(1)交换律:·=·(2)数乘向量与数量积的结合律:λ(·)=(λ)·=·(λ);(λ∈R)(3)分配律: (+)· =·+·【重点难点解析】两向量的数量积是两向量之间的一种乘法运算,它与两数之间的乘法有本质的区别:(1)两向量的数量积是个数量,而不是向量,其值为两向量的模与两向量夹角的余弦的乘弦的乘积.(2)当≠时,不能由·=0,推出=,因可能不为,但可能与垂直.(3)非零实数a,b,c满足消去律,即ab=bc a=c,但对向量积则不成立,即·=·=).(4)对实数的积应满足结合律,即a(bc)=(ab)c,但对向量的积则不满足结合律,即·(·)≠(·)·,因·(·)表示一个与共线的向量,而(·)·表示一个与共线的向量,而两向量不一定共线.例1已知、、是三个非零向量,则下列命题中真命题的个数(1)|·|=||·||∥(2) ,反向·=-||·|| (3)⊥|+|=|-| (4)||=|||·|=|·| A.1 B.2 C.3 D.4分析:需对以上四个命题逐一判断,依据有两条,一仍是向量数量积的定义;二是向量加法与减法的平行四边形法则.解:(1)∵·=||·||cosθ∴由|·|=||·||及、为非零向量可得|cosθ|=1∴θ=0或π,∴∥且以上各步均可逆,故命题(1)是真命题.(2)若,反向,则、的夹有为π,∴·=||·||cosπ=-||·||且以上各步可逆,故命题(2)是真命题.(3)当⊥时,将向量,的起点确定在同一点,则以向量,为邻边作平行四边形,则该平行四边形必为矩形,于是它的两对角线长相等,即有|+|=|-|.反过来,若|+|=|-|,则以,为邻边的四边形为矩形,所以有⊥,因此命题(3)是真命题.(4)当||=||但与的夹角和与的夹角不等时,就有|·|≠|·|,反过来由|·||=|·|也推不出||=||.故命题(4)是假命题.综上所述,在四个命题中,前3个是真命题,而第4个是假命题,应选择(C).说明:(1)两向量同向时,夹角为0(或0°);而反向时,夹角为π(或180°);两向量垂直时,夹角为90°,因此当两向量共线时,夹角为0或π,反过来若两向量的夹角为0或π,则两向量共线.(2)对于命题(4)我们可以改进为:||=||是|·|=|·|的既不充分也不必要条件.例2已知向量+3垂直于向量7-5,向量-4垂直于向量7-2,求向量与的夹角.分析:要求与的夹角,首先要求出与的夹角的余弦值,即要求出||及||、·,而本题中很难求出||、||及·,但由公式cosθ=可知,若能把·,||及||中的两个用另一个表示出来,即可求出余弦值,从而可求得与的夹角θ.解:设与的夹角为θ.∵+3垂直于向量7-5,-4垂直于7-2,解之得 2=2·2=2·∴2=2∴||=||∴cosθ===∴θ=因此,a与b的夹角为.例3已知++=,||=3,||=1,||=4,试计算·+·+·.分析:利用||2=2,||2= 2,||2=2.解:∵++=∴(++)2=0从而||2+||2+||2+2·+2·+2·=0又||=3,||=1,||=4∴·+·+·=-(||2+||2+||2) =-(32+12+42) =-13例4已知:向量=-2-4,其中、、是两两垂直的单位向量,求与同向的单位向量.分析:与同向的单位向量为:·解:∵、、是两两垂直的单位向量∴2=2=2=1, ·=·=·=0∴2=(-2-4)(-2-4)=2+42+162-4· -8·+16·=21从而||=∴与同向的单位向量是·= (-2-4)=--例5求证:直径上的圆周角为直角.已知:如图,AC为⊙O的直径,∠ABC是直径AC上的圆周角.求证:∠ABC=90°分析:欲证∠ABC=90°,须证⊥,因此可用平面向量的数量积证·=0证明:设=,=,有=∵=+, =-且||=||∴·=(+)( -)=||2-||2=0∴⊥∴∠ABC=90°【难题巧解点拔】例1如图,设四边形P1P2P3P4是圆O的内接正方形,P是圆O上的任意点.求证:||2+||2+||+||2为定值.分析:由于要证:||2+||2+||+||2为定值,所以需将(i=1,2,3,4)代换成已知向量或长为定值的向量的和(或差),才能使问题证,而这里的半径、、、、等可供我们选择.证明:由于=+=- (i=1,2,3,4).∴有||2=(-)2=()2-2(·)+()2设⊙O的半径为r,则||2=2r2-2(·)∴||2+||2+||+||2=8r2-2(+++)·=8r2-2··=8r2(定值).例2设AC是□ABCD的长对角线,从C引AB、AD的垂线CE,CF,垂足分别为E,F,如图,试用向量方法求证:AB·AE+AD·AF=AC2分析:由向量的数量积的定义可知:两向量,的数量积·=||·||·cosθ(其中θ是,的夹角),它可以看成||与||在的方向上的投影||·cosθ之积,因此要证明的等式可转化成:·+·=,而对该等式我们采用向量方法不难得证:证明:在Rt△AEC中||=||cos∠BAC在Rt△AFC中||=||cos∠DAC∴||·||=||·||·cos∠BAC=·||·||=||·||cos∠DAC=·∴||·||+||·||=·+·=(+)·又∵在□ABCD中,+=∴原等式左边=(+)·=·=||2=右边例3在△ABC中,AD是BC边上的中线,采用向量法求证:|AD|2= (|AB|2+|AC|2-|BC|2)分析:利用|a|2=a·a及=+,=+,通过计算证明证明:依题意及三角形法则,可得:=+=-=+=+则||2=(-)(-)=||2+||2-·||2=(+)(+)=||2+||2+·所以||2+||2=2||2+||2移项得:||2= (||2+||2-||2)例4若(+)⊥(2-),( -2)⊥(2+),试求,的夹角的余弦值.分析:欲求cosθ的值,根据cosθ=,只须计算即可解:由(+)⊥(2-),( -2)⊥(2+)①×3+②得:2=2∴||2=||2③由①得:·=2-22=||2-2×||2=-||2④由③、④可得:cosθ= ==-∴,的夹角的余弦值为-.【典型热点考题】例1设、、是任意的非零平面向量,且它们相互不共线,下列命题①(·)·-(·)·)=;②||-||<|-|;③(·)·-(·)·不与垂直;④(3+2)·(3-2)=9||2-4||2.其中正确的有( )A.①②B.②③C.③④D.②④解:选D.②正确,因、不共线,在||-||≤|-|中不能取等号;④正确是明显的,①错误,因向量的数量积不满足结合律;③错误,因[(·)·-(·)·]·=(·)·(·)-(·)·(·)=0,则(·)·-(·)·与垂直.例2已知+=2-8,-=-8+16,其中,是x轴、y轴方向的单位向量,那么·= .=-3+4, =5-12∴·=(-3+4j)·(5-12)=-152+56·-482∵⊥,||=||=1,∴·=0∴·=-15||2-48||2=-63解法2:· =[(+)2-(-)2]=[4(-4)2-64(-2)2]=2-8·+16j2-16(2-4·+42) =-152+56·-482=-63解法3:在解法1中求得=-3+4,即向量的坐标是(-3,4),同理=(5,-12).∴·=-3×5+4×(-12)=63例3设、是平面直角坐标系中x轴、y轴方向上的单位向量,且=(m+1) -3,=+(m-1) ,如果(+)⊥(-),则m= .解法1:∵(+)⊥(-)∴(+)·(-)=0,即2-2=0∴[(m+1) -3]2-[+(m-1) ]2=0∴[(m+1) -3]||2-[6(m+1)+2(m-1)]·+[9-(m-1)2]·2=0∵||=||=1, ·=0,∴(m+1)2-(m-1)2+8=0,则m=-2.解法2:向量的坐标是(m+1,-3),的坐标是(1,m-1).由(+)·(-)=0,得||2=||2.解得m=-2评析:向量的运算性质与实数相近,但又有许多差异.尤其是向量的数量积的运算与实数的乘法运算,两者似是而非,极易混淆,是近年来平面向量在高考中考查的重点,应予以重视.例4在△ABC中,若=, =, =,且·=·=·,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等边三角形 D.A、B、C均不正确解:因为++=++=则有+=-,( +)2=2①同理:2+2+2·=2②①-②,有2-2+2(·-·)=2-2由于·=·所以2=2即是||=||同理||=||所以||=||=||△ABC为正三角形.∴应选C.。
平面向量数量积的概念及几何意义

平面向量数量积的概念及几何意义平面向量的数量积是指在平面上的两个向量之间进行的一种运算,也叫做点乘或内积。
数量积的结果是一个实数,表示两个向量之间的夹角的余弦值与两个向量长度的乘积。
平面向量的数量积可以通过向量的坐标表示进行计算,公式如下:将向量a的坐标表示为a=(a1,a2)将向量b的坐标表示为b=(b1,b2)则两个向量的数量积表示为a·b=a1*b1+a2*b2几何意义:1.夹角:数量积的大小与两个向量之间的夹角有关。
若两个向量夹角为锐角,则其数量积为正值;若夹角为钝角,则其数量积为负值;若夹角为直角,则其数量积为零。
这是因为余弦函数在0°~90°范围内是递增的,所以夹角越小,余弦值越大。
2.正交性:若两个向量的数量积为零,则它们相互垂直,即两个向量是正交的。
这表示两个向量的方向相互垂直,没有共线的分量。
这个性质在几何中非常重要,特别是在研究平面直角坐标系中的直线和曲线时。
3. 向量的投影:平面向量的数量积还可以用于计算向量在另一个向量上的投影。
两个非零向量a和b的数量积可以表示为a·b=,a,b,cosθ,其中,a,和,b,分别是向量a和b的长度,θ是a和b之间的夹角。
根据这个公式,可以得到向量a在向量b上的投影p的长度为p=,a,cosθ。
4.长度:向量本身的长度也可以通过数量积来计算。
一个非零向量a 的数量积a·a=,a,^2,其中,a,是向量a的长度。
这个公式也适用于负向量,只需要取绝对值即可。
所以,一个向量的长度等于它自身的数量积的平方根。
值得注意的是,数量积的结果是一个标量,而不是一个向量。
它只表示两个向量之间的关系,而不表示它们自身的性质。
数量积在解决几何问题、力学分析以及线性代数等领域中都有广泛的应用。
通过理解数量积的概念和几何意义,我们可以更好地应用向量进行问题的分析和解决。
平面向量数量积的概念及几何意义

平面向量数量积的概念及几何意义平面向量数量积是向量分析中一个重要的概念,也称为点乘或内积。
数量积是两个向量的乘积,其结果是一个标量数值。
本文将介绍平面向量数量积的概念及其几何意义。
平面向量数量积是指两个向量在共面情况下的乘积,也就是点乘运算。
若有两个向量,分别为a和b,则它们的数量积可以表示为a•b,其中a•b=|a|*|b|*cosθ,其中|a|和|b|分别为向量a和b的模长,θ为两个向量之间的夹角。
由此可以看出,数量积的结果是一个标量。
1.求夹角从数量积的定义式可以看出,两个向量的数量积是它们的模长和夹角的乘积。
由此,可以推导出两个向量之间的夹角θ=arccos(a•b/|a|*|b|)。
因此,通过数量积可以求出两个向量之间的夹角。
2.平面内向量正交当两个向量的数量积为0时,即a•b=0,此时两个向量互相垂直或正交。
这是因为cos90°=0,在这种情况下,数量积的结果是零,即两个向量之间的夹角为90°。
3.求投影设有向量a和向量b,向量a在向量b上的投影可以表示为|a|cosθ,其中θ为a和b两个向量之间的夹角。
因此,向量a在向量b上的投影可以表示为a•(b/|b|),这表明向量a在向量b上的投影等于向量a与向量b的单位向量的数量积。
4.求面积对于一个平面内的三角形ABC,如果AB和AC分别表示为向量a和向量b,则三角形ABC 的面积可以表示为S=1/2|a|*|b|sinθ,其中θ为向量a和向量b之间的夹角。
这表明,可以借助数量积来求平面内三角形的面积。
以上四种几何意义,展示了平面向量数量积在向量分析中的重要性。
数量积往往用于推导和计算向量之间的夹角、向量在平面内的正交关系、向量在平面内的投影以及平面内三角形的面积等。
并且,数量积的结果是一个标量,与向量的方向没有关系,因此常用于求解平面内的问题。
平面向量的数量积及其物理意义几何意义

平面向量的数量积及其物理意义几何意义数量积,也称为内积、点积或标量积,是平面向量的一种重要运算。
在数学上,给定两个平面向量a=(a1,a2)和b=(b1,b2),它们的数量积可以表示为a·b=a1b1+a2b2、在本文中,我将讨论平面向量数量积的物理意义和几何意义。
物理意义:数量积在物理学中扮演着重要的角色,它有许多实际的物理意义和应用。
以下是其中一些常见的物理意义:1. 力和位移之间的关系:数量积可以用于计算两个力之间的关系。
当一个物体受到力F作用时,它在位移s方向上的分量可以表示为向量F和向量s之间的数量积。
根据数量积的定义,F·s = Fscosθ,其中θ是F和s之间的夹角。
因此,数量积可以帮助我们计算出物体在特定方向上受到的力的大小。
2.功的计算:在物理学中,功是通过应用力在物体上产生的能量变化。
当一个力F作用于物体上时,物体在位移s方向上的功可以表示为F·s。
这是因为功是力与位移的数量积,能够给出在应用力的方向上所做的工作的大小。
3. 速度和加速度之间的关系:当一个物体被施加一个恒定的力F时,它的加速度a可以表示为F和物体质量m之间的比值,即a = F/m。
然而,我们也可以从另一个角度理解这个关系。
我们知道,加速度a等于速度v的变化率。
因此,v = at。
将F = ma和v = at相结合,我们可以得到v = (F/m)t = (F·t)/m,其中t是时间。
这表明速度v可以用力F和时间t的数量积来计算。
几何意义:数量积不仅在物理学中有实际应用,而且在几何学中也有重要的几何意义。
以下是其中一些常见的几何意义:1. 夹角的计算:由数量积的定义可知,a·b = ,a,b,cosθ,其中θ是a和b之间的夹角,a,和,b,分别是向量a和b的长度。
通过这个公式,我们可以得到夹角θ的值,从而计算向量之间的夹角。
2.正交性:如果两个向量的数量积为零,即a·b=0,那么这两个向量是相互正交的。
向量的数量积几何意义与应用

向量的数量积几何意义与应用向量在数学中是一个重要的概念,它不仅在几何学中有着重要的意义,而且在物理学、工程学等领域也有着广泛的应用。
其中,向量的数量积是一种重要的运算,它不仅具有几何意义,还有许多实际应用。
一、向量的数量积几何意义向量的数量积,也称为内积或点积,是一种向量运算,表示两个向量之间的相似程度。
几何意义上,向量的数量积有以下两个重要特点:1. 向量的数量积的值等于向量的模长与两个向量之间夹角的余弦的乘积。
具体地,设有两个向量A和B,它们的数量积为A·B,则有A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示A和B之间的夹角。
2. 向量的数量积还可以用来判断两个向量之间的关系。
当两个向量的数量积为正数时,说明它们之间的夹角为锐角;当数量积为负数时,说明夹角为钝角;当数量积为零时,说明夹角为直角或者它们之间存在垂直关系。
通过向量的数量积,我们可以量化向量之间的相似程度,并通过夹角的大小来描述向量之间的关系,从而方便我们进行具体的几何分析和计算。
二、向量的数量积的应用向量的数量积在几何学和实际应用中有着重要的应用,以下是其中的几个典型例子。
1. 向量的数量积与平面几何:在平面几何中,两个向量的数量积可以用来判断两个向量是否垂直。
具体地,若两个非零向量A和B的数量积A·B等于0,则A和B垂直;若A·B不等于0,则A和B不垂直。
根据这一性质,我们可以在解决平面几何问题中应用向量的数量积,例如求两个直线的关系、判断线段是否相交以及计算面积等。
2. 向量的数量积与力学:在力学中,向量的数量积可以用来计算力的分解与合成。
具体地,假设有一个力F和一个方向已知的向量A,通过计算F·A/|A|,我们可以得到力F在向量A方向上的投影分量。
同时,力F在与向量A垂直的方向上的分量可以通过F - (F·A/|A|)A来计算。
平面向量的数量积

三、平面向量数量积的几何意义:
B
b
O | b | cos
a • b a b cos
a
A
rr r
r rr
数量积a b等于a的长度 a 与b在a的
r
方向上的投影数量 b cos的乘积.
7
四、平面向量数量积的运算律:
(1)交换律:a • b b • a
(2)数乘结合律:(a) •b (a •b) a •(b) (3)分配律:(a b) •c a •c b•c
求向量模的依据
5cos a • b 00,180 0 a b 求向量夹角的依据
11
例1 已知 a 5, b 4,a与b的夹角 120o,求a b.
解:a b a b cos
5 4cos120o 510 ( 1)
2 10.
12
பைடு நூலகம்2:求证:
(1)(a b)2 a2 2a b b2; (2)(a b)(a b) a2 b2.
r r 2 r 2 r r r 2
4. a b a 2a • b b
9
五、平面向量数量积的重要性质:
设
是非零向量,
方向相同的
单位向量,
的夹角,则:
1a • e e • a a cos
2a b a •b 0 判断两个向量垂直的依据
a
•
b
10
五、平面向量数量积的重要性质:
4a• a a2 a2
1
一、平面向量的夹角:
2
二、平面向量数量积的定义:
已知两个非零向量
r a
和
r b
,它们的夹角为
rr
,
我们把数量 a b cos 叫做 a 与 b 的数量积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设向(1)a量、a0b是数b, c非量c aoso零0积 bs向 的1量,0性则_ a,0_则 ,质a__b|_ a b_9||;|a0则 b||,a|ab 1ac8b|ao00s,|c, baco| o.as||s|a|0b|,||11a,, |2
7
问题2:在平面向量的数量积定义中,它与两个向量 的加减法有什么本质区别?与数乘呢?怎么理解?
向量的加减的结果还是向量,但向量的数量积结果 是一个数量(实数)。数乘的结果仍然是向量。
问题3:平面向量的数量积可以比较大小吗? 数量可以比较大小
注意: 3、 向量的数量积是数量, 不是向量。
00:58
8
┓
s
00:58
1
F θ
F
θ S
O
位移S
A
一个物体在力 F 的作用下产生位移 S ,
那么力 F 所做的功 W= F S F S cos
θ表示力 F 的方向与位移S 的方向的夹角。
00:58
2
我们将功的运算类比到两个向量的一种运
ቤተ መጻሕፍቲ ባይዱ
算,得到向量“数量积”的概念。
这就是本节课所
W F S cos
规定:零向量与任意向量的数量积为0.
a0 0
注意:1、 “ · ”不能省略不写,也不能写成
“×”
00:58
5
问题1、向量的夹角是如何定义的?
已知两个非零向量 a和b,在平面上任取一点 O, 作OA a,
OB b,则AOB (0 )叫做a与b的夹角。
指出下列图中两向量的夹角
(2)当a 与b同向时,a b _|_a_|_|_b_|;
特别地
a
a
2
a
_| _a_|_2 或
|
a
|
2
__a___.
(3)当a 与b 反向时,a b __|_a_|_| b__| .
(4)| a b | ___ | a || b |
.
A.
OA B
OB
A
O
B O B
(1)
(2)
(3)
A (4)
(1)中 OA与OB 的夹角为 0 (2)中OA与OB 的夹角为 180
(3)中 OA与OB 的夹角为AOB(4)中 OA与OB的夹角为
(当 0 时,a与b _同_向;当 180时,a与b 反_向_;
当 90 时,a与b _垂_直,记作a b )
(a b) c a (b c)成立吗?
(a b)c (b c)a成立吗?
注意: 4、 向量的数量积不满足于结合律。
00:58
13
例2 .已知 | a | 6,| b | 4, a与b的夹角为60,求(a 2b)( a 3b)
解:(a 2b)(a 3b)
当且仅当两向量 共线时等号成立
00:58
9
例1、如图,在平行四边形ABCD中,已知 AB 4, AD 3, DAB 60,
求 : 1.AD BC 2.ABCD 3.AB DA
D
C
解: 1因为AD与BC平行且方向相同,
60
AD与BC的夹角为0.
AD BC AD BC cos 0 3 31 9A
问题情境:
情境1:前面我们学习了平面向量的加法、减法和数乘 三种运算时,是以物理中的位移为模型,再抽象概括 出来的。 问题:除了以上几种运算外,有没有其它运算呢? 如向量与向量能否“相乘”呢?能否从物理中找 到模型呢?
情境2:一个物体在力F的作用下发生了位移s, 那么该力对此物体所做的功为多少?
F
B
2
或AD BC AD 9
2. AB与CD平行,且方向相反
120
AB与CD的夹角是180
AB CD AB CD cos180 4 4 1 16
2
或AB CD AB 16
进行向量数量积 计算时,既要考 虑向量的模,又 要根据两个向量
3. AB与AD的夹角是60, AB与DA的夹角是120 方向确定其夹角。
00:5A8 B DA
AB
DA
cos120
4 3 1 6 2
10
方法:(1)求平面向量数量积的步骤是: ①求a与b的夹角θ,θ∈[0°,180°]; ②分别求|a|和|b|; ③求数量积,即a·b=|a||b|cosθ. 温馨提示:a∥b时,易漏掉θ=0°和θ=180°中 的一种情况.
小结:向量的夹角应当让向量平移到同一起点时去观察
注意 : 2、 向量夹角共起点 , 且 [0, ]
00:58
6
如图,等边三角形ABC中,求:
(1)AB与AC的夹角__60_ _;
(2)AB与BC的夹角__1_2_0____.
C'
C
120 60
A
通过平移 变成共起点!
1200
B
D
00:58
要学习的平面向 量的数量积
a b | a | | b | cos
00:58
3
2.4.1平面向量的数量积
高一数学组 王海军
平面向量数量积的定义:
已知两个非零向量 a 和 b ,它们的夹角为 ,
我们把数量 a b cos 叫做 a 与 b 的数量积
(或内积),记作 a b .
a b a b cos
小结:知三求一,注意公式变形
00:58
12
类比于实数乘法的运算 律,向量的数量积满足哪些 运算律呢?
平面向量数量积的运算律:
(1)交换律:a b b a
(2)数乘结合律:(a)b (a b) a (b)
(3)分配律:(a b)c ac bc
向量的数量积满足结合律吗?
00:58
11
练习1:已知 a 5,b 4,a与b的夹角为120 o,求a b
解:a b a b cos120 o
5 4 ( 1) 10 2
练习2 :已知 a 5, b 2, a b 5,求a,b的夹角.
练习3 :已知 a 2, a b 1, a,b的夹角为60, 求 b .
2
a 3ab 2ab 6bb