高中数学解三角形的实际应用举例综合测试题(含答案)
2025 届高考数学复习:历年高考真题、模拟题专项(解三角形的实际应用)阶梯练习 (附答案)

2025 届高考数学复习:历年高考真题、模拟题专项(解三角形的实际应用)阶梯练习基础巩固练1.(2024ꞏ河北高三学业考试)如图,一艘船沿正北方向航行,航行速度为每小时30海里,在A处看灯塔S 在船的北偏东30°的方向上.1小时后,船航行到B处,在B处看灯塔S在船的北偏东75°的方向上,则船航行到B处时与灯塔S的距离为()A.15√2海里B.15√6海里C.30√2海里D.10√6海里2.(2024ꞏ河南驻马店模拟)如图,某景区为方便游客,计划在两个山头M,N间架设一条索道.为测量M,N 间的距离,施工单位测得以下数据:两个山头的海拔高度MC=100√3 m,NB=50√2 m,在BC同一水平面上选一点A,测得M点的仰角为60°,N点的仰角为30°,以及∠MAN=45°,则M,N间的距离为()A.100√2 mB.120 mC.100√3 mD.200 m3.(2024ꞏ宁夏银川模拟)某社区为了美化社区环境,欲建一块休闲草坪,其形状如图所示为四边形ABCD,AB=2√3,BC=4(单位:百米),CD=AD,∠ADC=π,且拟在A,C两点间修建一条笔直的小路(路的宽3度忽略不计),则当草坪ABCD的面积最大时,AC=()A.2√7百米B.2√10百米C.2√13百米D.2√19百米4.(2024ꞏ安徽合肥模拟)如图,某地需要经过一座山两侧的D,E两点修建一条穿山隧道.工程人员先选取直线DE上的三点A,B,C,设在隧道DE正上方的山顶P处测得A处的俯角为15°,B处的俯角为45°,C处的俯角为30°,且测得AB=1.4 km,BD=0.2 km,CE=0.5 km,则拟修建的隧道DE的长为km.5.(2024ꞏ河北沧州模拟)汾阳文峰塔建于明末清初,位于山西省汾阳市建昌村,该塔共十三层,雄伟挺拔,高度位于中国砖结构古塔之首.如图,某测绘小组为了测量汾阳文峰塔的实际高度AB,选取了与塔底B在同一水平面内的三个测量基点C,D,E,现测得∠BCD=30°,∠BDC=70°,∠BED=120°,BE=17.2 m,DE=10.32 m,在点C测得塔顶A的仰角为62°.参考数据:tan 62°≈1.88,sin70°≈0.94,√144.9616=12.04.(1)求BD;(2)估算塔高AB(结果精确到1 m).综合提升练6.(2024ꞏ江西南昌模拟)八一广场是南昌市的心脏地带,八一南昌起义纪念塔是八一广场的标志性建筑,塔座正面镌刻“八一南昌起义简介”碑文,东、西、南三门各有一幅反映武装起义的人物浮雕,塔身正面为“八一起义纪念塔”铜胎鎏金大字,塔顶由一支直立的巨型“汉阳造”步枪和一面八一军旗组成.现某兴趣小组准备在八一广场上对八一南昌起义纪念塔的高度进行测量,并绘制出测量方案示意图,A为纪念塔最顶端,B为纪念塔的基座(B在A的正下方),在广场内(与B在同一水平面内)选取C,D 两点,测得CD的长为m.已知兴趣小组利用测角仪可测得的角有∠ACB,∠ACD,∠BCD,∠ADC,∠BDC,则根据下列各组中的测量数据,不能计算出纪念塔高度AB的是()A.m,∠ACB,∠BCD,∠BDCB.m,∠ACB,∠BCD,∠ACDC.m,∠ACB,∠ACD,∠ADCD.m,∠ACB,∠BCD,∠ADC7.(2024ꞏ河北衡水中学校考)据气象部门报道某台风影响我国东南沿海一带,测定台风中心位于某市南偏东60°,距离该市400千米的位置,台风中心以40千米/时的速度向正北方向移动,在距离台风中心350千米的范围内都会受到台风影响,则该市从受到台风影响到影响结束,持续的时间为小时.8.(2024ꞏ湖南邵阳模拟)人类从未停止对自然界探索的脚步,位于美洲大草原点C处正上空100√3 m 的点P处,一架无人机正在对猎豹捕食羚羊的自然现象进行航拍.已知位于点C西南方向的草丛A处潜伏着一只饥饿的猎豹,猎豹正盯着其东偏北15°方向上点B处的一只羚羊,且无人机拍摄猎豹的俯角为45°,拍摄羚羊的俯角为60°,假设A,B,C三点在同一水平面上.(1)求此时猎豹与羚羊之间的距离AB的长度;(2)若此时猎豹到点C处比到点B处的距离更近,且开始以25 m/s的速度出击,与此同时机警的羚羊以20 m/s的速度沿北偏东15°方向逃跑,已知猎豹受耐力限制,最多能持续奔跑600 m,试问猎豹这次捕猎是否有成功的可能?请说明原因.创新应用练9.某市民活动中心内有一块以O为圆心,半径为20米的半圆形区域,为丰富市民的业余文化生活,现提出如下设计方案:如图,在半圆形区域内搭建露天舞台,舞台为扇形OAB区域,其中两个端点A,B分,别在圆周上,观众席为等腰梯形ABQP内且在半圆O外的区域,其中AP=AB=BQ,∠PAB=∠QBA=2π3且AB,PQ在点O的同侧,为保证视听效果,要求观众席内每一个观众到舞台中心O处的距离都不超).过60米(即要求PO≤60),设∠OAB=α,α∈(0,π3(1)当α=π时,求舞台表演区域的面积及AB的长;6(2)对于任意α,上述设计方案是否均能符合要求?请说明理由.参考答案1.A 答案解析 由题意得,在△ABS 中,∠BAS=30°,AB=30,∠BSA=75°-30°=45°,由正弦定理得AB sin∠BSABS sin∠BAS ,即30sin45°BSsin30°,解得BS=15√2(海里).2.A 答案解析 由题意,可得∠MAC=60°,∠NAB=30°,MC=100√3 m,NB=50√2 m,∠MAN=45°,且∠MCA=∠NBA=90°,在Rt △ACM 中,可得AM=MCsin60°=200 m,在Rt △ABN 中,可得AN=NBsin30°=100√2 m,在△AMN 中,由余弦定理得MN 2=AM 2+AN 2-2AM ꞏAN cos ∠MAN=20 000,所以MN=100√2 m .3.C 答案解析 设∠ABC=θ,0<θ<π,在△ABC 中,AC 2=42+(2√3)2-2×4×2√3cos θ=28-16√3cos θ.由CD=AD ,∠ADC=π3,所以△ABC 为等边三角形.所以S 四边形ABCD =S 三角形ABC +S 三角形DAC =124×2√3sin θ+√34AC 2=4√3sin θ+√34(28-16√3cos θ)=7√3+8√3sin(θ-π3),当θ-π3 π2,即θ=5π6时,草坪ABCD 的面积最大,此时AC=√28 24=2√13.4.0.7 答案解析 由题意知,∠PAD=15°,∠PBD=45°,∠PCE=30°,∠APB=30°.在△PAB 中,由正弦定理得AB sin∠APBPB sin∠PAB ,即1.4sin30°PBsin15°,所以PB=2.8sin 15°.在△PBC 中,因为∠BPC=180°-∠PBD-∠PCE=180°-45°-30°=105°,由正弦定理得PB sinCBC sin∠BPC ,即PBsin30°BCsin105°,所以BC=PBsin30°sin 105°=2PB×sin 105°=5.6×sin 15°×sin 105°=5.6×sin 15°×cos 15°=2.8sin 30°=1.4(km),所以DE=BC-BD-EC=1.4-0.2-0.5=0.7(km),即拟修建的隧道DE 的长为0.7 km . 5.解 (1)在△BDE 中,由余弦定理得BD 2=BE 2+DE 2-2BE ꞏDE ꞏcos ∠BED , 则BD= 17.2 10.32 -2 17.2 10.32 cos120° √579.846 4=2√144.961 6=2×12.04=24.08 m .(2)在△BCD 中,由正弦定理得BD sin∠BCDBCsin∠BDC, 则BC=BD ꞏsin∠BDC sin∠BCD24.08 0.941245.27 m,在Rt △ABC 中,∠ACB=62°,所以AB=BC ꞏtan ∠ACB ≈45.27×1.88≈85.11≈85 m,故塔高AB 约为85 m .6.B 答案解析 对于A,由m ,∠BCD ,∠BDC 可以解△BCD ,又AB=BC ꞏtan ∠ACB ,可求塔高度AB ,故选项A 能计算出纪念塔高度AB ;对于B,在△BCD 中,由CD=m ,∠BCD 无法解三角形,在△ACD 中,由CD=m ,∠ACD 无法解三角形,在△BCA 中,已知两角∠ACB ,∠ABC 无法解三角形,所以无法解出任意三角形,故选项B 不能计算出纪念塔高度AB ;对于C,由CD=m ,∠ACD ,∠ADC 可以解△ACD ,可求AC ,又AB=AC ꞏsin ∠ACB ,即可求塔高度AB ,故选项C 能计算出纪念塔高度AB ;对于D,如图,过点B 作BE ⊥CD 于点E ,连接AE ,由题意知,AB ⊥平面BCD ,CD ⊂平面BCD ,所以AB ⊥CD ,因为BE ∩AB=B ,BE ,AB ⊂平面ABE ,所以CD ⊥平面ABE ,AE ⊂平面ABE ,所以CD ⊥AE ,则cos ∠ACE=EC AC,由cos ∠ACB=BC AC,cos ∠BCD=EC BC,cos ∠ACE=EC AC,知cos ∠ACE=cos ∠ACB ꞏcos ∠BCD ,故可知∠ACD 的大小,由∠ACD ,∠ADC ,m 可解△ACD ,故可求出AC ,又AB=AC ꞏsin ∠ACB ,即可求塔高度AB ,故选项D 能计算出纪念塔高度AB.7. 52答案解析 如图,假设A 点为某市的位置,B 点是台风中心在向正北方向移动前的位置.设台风移动t 小时后的位置为C ,则BC=40t.又∠ABC=60°,AB=400,在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ꞏBC cos 60°=4002+(40t )2-2×400×40t 12=1 600t 2-16 000t+160 000,令AC ≤350,则1 600t 2-16 000t+160 000≤3502,整理可得16t 2-160t+375≤0,解得154t254,又254 15452,所以该市从受到台风影响到影响结束,持续的时间为52小时.8. 解 (1)由题意作图如右,则∠PAC=45°,∠CBP=60°,∠BAC=45°-15°=30°,AC=PCtan∠PAC=100√3m,BC=PCtan∠CBP=100 m .由正弦定理得AC sin∠ABCBCsin∠BAC, 即sin ∠ABC=AC ꞏsin∠BACBC√32.因此∠ABC=60°或120°,当∠ABC=60°时,∠ACB=90°,猎豹与羚羊之间的距离AB=√AC BC =200 m,当∠ABC=120°时,∠ACB=∠BAC=30°,猎豹与羚羊之间的距离AB=BC=100 m .(2)猎豹这次捕猎不成功.理由如下,由题意知AC<AB ,所以结合(1)知AB=200 m .由题意作图如右,设捕猎成功所需的最短时间为t ,在△ABQ 中,BQ=20t ,AQ=25t ,AB=200,∠ABQ=120°.由余弦定理得AQ 2=BQ 2+AB 2-2BQ ꞏAB cos ∠ABQ , 即625t 2=400t 2+2002-2×20t×200×(-12). 整理得9t 2-160t-1 600=0.设f (t )=9t 2-160t-1 600,显然f (0)<0,f (809)<0,因为猎豹能坚持奔跑最长时间为60025=24 s,且f (24)=-256<0,所以猎豹不能捕猎成功.9.解 (1)由题意知OA=OB=20,又α=π6,∴∠AOB=π-2 π62π3, ∴S 扇形AOB =122π3 202=400π3, AB= OA OB -2OA ꞏOBcos 2π3=20√3, 即舞台表演区域的面积为400π3平方米;AB 的长为20√3米.(2)均能符合要求.理由如下, ∵α∈(0,π3),∴cos α>0.在△AOB 中,由余弦定理得AB= OA OB -2OA ꞏOBcos (π-2α)=40cos α,即PA=40cos α, 又∠OAP=2π3+α,∴PO 2=OA 2+PA 2-2OA ꞏPa cos(2π3+α)=400+1 600cos 2α-1 600cosαcos(2π3+α)=400(6cos 2α+2√3sin αcos α+1)=400(3cos 2α+√3sin 2α+4)=800√3sin(2α+π3)+1 600. ∵0<α<π3,∴π3<2α+π3<π, ∴0<sin(2α+π3)≤1,∴P O=1 600+800√3, ∴PO max =20√3+20<60,即观众席内每一个观众到舞台中心O 处的距离都不超过60米, ∴对于任意α,上述设计方案均能符合要求。
【高二】高二数学解三角形的实际应用举例综合测试题(含答案)

【高二】高二数学解三角形的实际应用举例综合测试题(含答案)解三角形的实际应用举例同步练习1.在△ ABC,下面的公式是正确的()a.ab=sinbsinab.asinc=csinbc、 asin(a+b)=csinad。
c2=a2+b2-2abcos(a+b)2.已知三角形的三边长分别为a、b、a2+ab+b2,则这个三角形的最大角是()a、135°b.120°c.60°d.90°3.海上有a、b两个小岛相距10nmile,从a岛望b岛和c岛成60°的视角,从b岛望a岛和c岛成75°角的视角,则b、c间的距离是()a、 52nmileb。
103nmilec。
1036nmiled。
56N英里4.如下图,为了测量隧道ab的长度,给定下列四组数据,测量应当用数据a、α、a、bb。
α、β、ac.a、b、γd.α、β、γ5.有人以每小时AKM的速度向东走,而南风以每小时AKM的速度吹,那么此人感到的风向为,风速为.6.在△ ABC,tanb=1,Tanc=2,B=100,然后是C=7.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°然后朝着灯塔的方向航行塔的距离是.8.a层和B层之间的距离为20m。
B栋底部至a栋顶部的仰角为60°,a栋顶部至B栋顶部的俯角为300。
那么a层和B层的高度分别为9.在塔底的水平面上某点测得塔顶的仰角为θ,由此点向塔沿直线行走30米,测得塔顶的仰角为2θ,再向塔前进103米,又测得塔顶的仰角为4θ,则塔高是米.10.在△ ABC,确认cos2aa2-cos2bb2=1a2-1b211.欲测河的宽度,在一岸边选定a、b两点,望对岸的标记物c,测得∠cab=45°,∠cba=75°,ab=120m,求河宽.(精确到0.01m)12.a船在a,B船在a船以东偏南45°,距离a船9海里,以20海里/小时的速度向西偏南15度行驶。
三角计算及应用测试题(含答案)范本

三角计算及应用测试题(含答案)范本一、直角三角形的计算(10题)1. 已知直角三角形的斜边长为5cm,一条直角边长为3cm,求另一条直角边的长度。
解:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
设另一直角边长为x,则5² = 3² + x²25 = 9 + x²x² = 16x = 4答:另一条直角边的长度为4cm。
2. 已知直角三角形的斜边长为13cm,一条直角边长为5cm,求另一条直角边的长度。
解:同样利用勾股定理,设另一直角边长为x,则13² = 5² + x²169 = 25 + x²x² = 144x = 12答:另一条直角边的长度为12cm。
3. 直角三角形的两条直角边分别为7cm和24cm,求斜边的长度。
解:设斜边的长度为x,则x² = 7² + 24²x² = 49 + 576x² = 625x = 25答:斜边的长度为25cm。
4. 直角三角形的斜边长为10cm,一条直角边长为6cm,求另一条直角边的长度。
解:同样利用勾股定理,设另一直角边长为x,则10² = 6² + x²100 = 36 + x²x² = 64x = 8答:另一条直角边的长度为8cm。
5. 已知直角三角形的斜边长为17cm,一条直角边长为8cm,求另一条直角边的长度。
解:设另一直角边长为x,则17² = 8² + x²289 = 64 + x²x² = 225x = 15答:另一条直角边的长度为15cm。
6. 直角三角形的两条直角边分别为10cm和24cm,求斜边的长度。
解:设斜边的长度为x,则x² = 10² + 24²x² = 100 + 576x² = 676x = 26答:斜边的长度为26cm。
高中数学 第二章 解三角形 3 解三角形的实际应用举例 第1课时 距离和高度问题练习(含解析)北师大

距离和高度问题A 级 基础巩固一、选择题1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是(D )A .103海里B .106海里C .52海里D .56海里[解析]如图,由正弦定理得 BCsin60°=10sin45°,∴BC =5 6.2.学校体育馆的人字形屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( D )A .12 mB .8 mC .3 3 mD .4 3 m[解析] 在△ABC 中,已知可得BC =AC =4,∠C =180°-30°×2=120°,所以由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=42+42-2×4×4×⎝ ⎛⎭⎪⎫-12=48,∴AB =43(m).3.如图所示,为测一树的高度,在地面上选取A ,B 两点,从A 、B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点之间的距离为60 m ,则树的高度为( A )A .(30+303)mB .(30+153)mC .(15+303)mD .(15+153)m[解析] 由正弦定理可得60sin45°-30°=PBsin30°,PB =60×12sin15°=30sin15°.h =PB ·sin45°=30sin15°·sin45°=(30+303)(m).4.甲船在湖中B 岛的正南A 处,AB =3 km ,甲船以8 km/h 的速度向正北方向航行,同时乙船从B 岛出发,以12 km/h 的速度向北偏东60°方向驶去,则行驶15分钟时,两船的距离是( B )A .7 kmB .13 kmC .19 kmD .10-3 3 km[解析] 由题意知AM =8×1560=2,BN =12×1560=3,MB =AB -AM =3-2=1,所以由余弦定理得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-12)=13,所以MN =13km.5.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a (km),灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( B )A .a (km)B .3a (km)C .2a (km)D .2a (km)[解析]在△ABC 中,∠ACB =180°-(20°+40°)=120°. ∵AB 2=AC 2+BC 2-2AC ·BC cos120°=a 2+a 2-2a 2×(-12)=3a 2,∴AB =3a (km).6.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A )A .4003米B .40033米C .20033米D .2003米[解析] 解法一:如图,设AB 为山高,CD 为塔高,则AB =200,∠ADM =30°,∠ACB =60°,∴BC =200tan30°=20033,AM =DM tan30°=BC tan30°=2003.∴CD =AB -AM =4003.解法二:如图AB 为山高,CD 为塔高. 在△ABC 中,AC =ABsin60°=40033, 在△ACD 中,∠CAD =30°,∠ADC =120°. 由正弦定理CD sin ∠CAD =ACsin ∠ADC .∴CD =40033×1232=4003(米).二、填空题7.一只蜘蛛沿正北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x =1063cm.[解析] 如图,由题意知,∠BAC =75°,∠ACB =45°.∠B =60°,由正弦定理,得x sin ∠ACB =10sin B,∴x =10sin ∠ACB sin B =10×sin45°sin60°=1063.8.如图所示,设A 、B 两点在河的两岸,一测量者在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为50 2 m.[解析] 因为∠ACB =45°,∠CAB =105°, 所以∠ABC =30°, 根据正弦定理可知:AC sin ∠ABC =ABsin ∠ACB,即50sin30°=ABsin45°,解得AB =50 2 m.三、解答题9.海面上相距10海里的A 、B 两船,B 船在A 船的北偏东45°方向上,两船同时接到指令同时驶向C 岛,C 岛在B 船的南偏东75°方向上,行驶了80分钟后两船同时到达C 岛,经测算,A 船行驶了107海里,求B 船的速度.[解析] 如图所示,在△ABC 中,AB =10,AC =107,∠ABC =120°由余弦定理,得AC 2=BA 2+BC 2-2BA ·BC ·cos120°即700=100+BC 2+10BC ,∴BC =20,设B 船速度为v ,则有v =2043=15(海里/小时).即B 船的速度为15海里/小时.10.在某某世博会期间,小明在中国馆门口A 处看到正前方上空一红灯笼,测得此时的仰角为45°,前进200米到达B 处,测得此时的仰角为60°,小明身高1.8米,试计算红灯笼的高度(精确到1 m).[解析] 由题意画出示意图(AA ′表示小明的身高).∵AB =200,∠CA ′B ′=45°,∠CB ′D ′=60°, ∴在△A ′B ′C 中,A ′B ′sin ∠A ′CB ′=B ′Csin45°,∴B ′C =A ′B ′sin45°sin15°=200×226-24=200(3+1).在Rt △CD ′B ′中,CD ′=B ′C ·sin60°=100(3+3),∴CD =1.8+100(3+3)≈475(米). 答:红灯笼高约475米.B 级 素养提升一、选择题1.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为( B )A .20(2+6)海里/时B .20(6-2)海里/时C .20(6+3)海里/时D .20(6-3)海里/时[解析] 设货轮航行30分钟后到达N 处,由题意可知∠NMS =45°,∠MNS =105°, 则∠MSN =180°-105°-45°=30°.而MS =20, 在△MNS 中,由正弦定理得MN sin30°=MSsin105°,∴MN =20sin30°sin105°=10sin 60°+45°=10sin60°cos45°+cos45°sin45°=106+24=10(6-2).∴货轮的速度为10(6-2)÷12=20(6-2)(海里/时).2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000米到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为( D )A .500 2 mB .200 mC .1 000 2 mD .1 000 m[解析] ∵∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 在△ABS 中,AB =AS ·sin135°sin30°=1 000×2212=1 0002,∴BC =AB ·sin45°=1 0002×22=1 000(m). 3.一船向正北航行,看见正西方向有相距10 n mlie 的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( C )A .5 n mlieB .5 3 n mlieC .10 n mlieD .10 3 n mlie[解析] 如图,依题意有∠BAC =60°,∠BAD =75°,∴∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt △ABC 中,求得AB =5,∴这艘船的速度是50.5=10(n mlie/h).4.要测量底部不能到达的东方明珠电视塔的高度,在黄浦某某岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔在这次测量中的高度是( D )A .1002米B .400米C .2003米D .500米[解析] 由题意画出示意图,设高AB =h , 在Rt △ABC 中,由已知BC =h ,在Rt △ABD 中,由已知BD =3h ,在△BCD 中,由余弦定理BD 2=BC 2+CD 2-2BC ·CD ·cos∠BCD 得3h 2=h 2+5002+h ·500,解之得h =500(米).二、填空题5.某地电信局信号转播塔建在一山坡上,如图所示,施工人员欲在山坡上A 、B 两点处测量与地面垂直的塔CD 的高,由A 、B 两地测得塔顶C 的仰角分别为60°和45°,又知AB 的长为40米,斜坡与水平面成30°角,则该转播塔的高度是4033米.[解析] 如图所示,由题意,得∠ABC =45°-30°=15°,∠DAC =60°-30°=30°. ∴∠BAC =150°,∠ACB =15°,∴AC =AB =40米,∠ADC =120°,∠ACD =30°, 在△ACD 中,由正弦定理,得CD =sin ∠CAD sin ∠ADC ·AC =sin30°sin120°·40=4033.6.如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时,测量公路南侧远处一山顶D 在东偏南15°的方向上,行驶5 km 后到达B 处,测得此山顶在东偏南30°的方向上,仰角为15°,则此山的高度CD 等于5(2-3)km.[解析] 在△ABC 中,∠A =15°,∠ACB =30°-15°=15°, 所以BC =AB =5.又CD =BC ·tan∠DBC =5×tan15°=5×tan(45°-30°)=5(2-3).三、解答题7.(2018·全国卷Ⅰ理,17)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .[解析] (1)在△ABD 中,由正弦定理得BD sin ∠A =ABsin ∠ADB ,即5sin 45°=2sin ∠ADB ,所以sin ∠ADB =25.由题设知,∠ADB <90°, 所以cos ∠ADB =1-225=235. (2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25. 在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2BD ·DC ·cos∠BDC =25+8-2×5×22×25=25, 所以BC =5.8.某人在M 汽车站的北偏西20°的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶.公路的走向是M 站的北偏东40°.开始时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米.问汽车还需行驶多远,才能到达M 汽车站?[解析] 由题画出示意图如图所示,设汽车前进20千米后到达B 处,在△ABC 中,AC =31,BC =20,AB =21.由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =2331,则sin C =12331,所以sin ∠MAC =sin(120°-C )=sin120°cos C -cos120°sin C =35362.在△MAC 中,由正弦定理得MC =AC ·sin∠MAC sin ∠AMC =3132×35362=35,从而MB =MC -BC =15.即汽车还需行驶15千米才能到达M汽车站.。
高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析1.已知的内角,面积满足所对的边,则下列不等式一定成立的是A.B.C.D.【答案】A【解析】由题设得:(1)由三角形面积公式及正弦定理得:所以又因为,所以所以恒成立,所以故选A.【考点】1、两角和与差的三角函数;2、正弦定理;3、三角形的面积公式.2.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶,假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.=10,此时v==30【答案】(1)当t=时,Smin(2)航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.【解析】解:(1)设相遇时小艇航行的距离为S海里,则S===.=10,此时v==30.故当t=时,Smin答:小艇以30海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B处相遇,如图,则v2t2=400+900t2-2·20·30t·cos(90°-30°),故v2=900-+.∵0<v≤30,∴900-+≤900,即-≤0,解得t≥.又t=时,v=30.故v=30时,t取最小值,且最小值等于.此时,在△OAB中,有OA=OB=AB=20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.3.(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB (p∈R).且ac=b2.(1)当p=,b=1时,求a,c的值;(2)若角B为锐角,求p的取值范围.【答案】(1)a=1,c=或a=,c=1 (2)<p<【解析】(1)解:由题设并利用正弦定理得故可知a,c为方程x2﹣x+=0的两根,进而求得a=1,c=或a=,c=1(2)解:由余弦定理得b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2accosB=p2b2﹣b2cosB﹣,即p2=+cosB,因为0<cosB<1,所以p2∈(,2),由题设知p∈R,所以<p<或﹣<p<﹣又由sinA+sinC=psinB知,p是正数故<p<即为所求4.E,F是等腰直角斜边AB上的三等分点,则tan ECF=( )A.B.C.D.【答案】D【解析】作CD⊥AB于D,则D为EF的中点.令CB=CA=3,则AB=6,CD=3,∴ED=FD=1∴tan ECF=∴tan ECF==5.已知点是的重心,且,则实数的值为( )A.B.C.D.【答案】B【解析】由已知得,,延长分别交于点,由重心的性质,设,,则,,,代入得,【考点】1、重心的性质;2、勾股定理;3、正弦定理和余弦定理.6.在△ABC中,若0<tan A·tan B<1,那么△ABC一定是( )A.锐角三角形B.钝角三角形C.直角三角形D.形状不确定【答案】B【解析】由0<tan A·tan B<1,可知tan A>0,tan B>0,即A,B为锐角,tan(A+B)=>0,即tan(π-C)=-tan C>0,所以tan C<0,所以C为钝角,所以△ABC为钝角三角形.故选B7.线段AB外有一点C,∠ABC=60°,AB=200km,汽车以80km/h的速度由A向B行驶,同时摩托车以50km/h的速度由B向C行驶,则运动开始几小时后,两车的距离最小()A.B.1C.D.2【答案】C【解析】如图所示,设过xh后两车距离为ykm,则BD=200-80x,BE=50x,∴y2=(200-80x)2+(50x)2-2×(200-80x)·50x·cos 60°,整理得y2=12900x2-42000x+40000(0≤x≤2.5),∴当x=时y2最小,即y最小.8.若△ABC的三个内角满足sin A∶sin B∶sin C=4∶5∶7,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形【答案】C【解析】由正弦定理可设a=4k,b=5k,c=7k,则cos C=<0,因此三角形为钝角三角形.9.某旅游景点有一处山峰,游客需从景点入口A处向下沿坡角为α的一条小路行进a百米后到达山脚B处,然后沿坡角为β的山路向上行进b百米后到达山腰C处,这时回头望向景点入口A处俯角为θ,由于山势变陡到达山峰D坡角为γ,然后继续向上行进c百米终于到达山峰D处,游览风景后,此游客打算乘坐由山峰D直达入口A的缆车下山结束行程,如图所示,假设A,B,C,D四个点在同一竖直平面.(1)求B,D两点的海拔落差h;(2)求AD的长【答案】(1)b sin β+c sin γ(2)【解析】(1)h=b sin β+c sin γ.(2)方法一:联结AC.在△ABC中,由余弦定理得AC2=a2+b2+2ab cos(α+β),在△ACD中,由余弦定理得AD2=AC2+c2-2cAC cos(π-γ+θ),所以AD=.方法二:联结AC.在△ABC中,由正弦定理得,所以AC=,以下同方法一.10.在△中,所对边分别为、、.若,则.【答案】【解析】三角形中问题在解决时要注意边角的互化,本题求角,可能把边化为角比较方便,同时把正切化为正弦余弦,由正弦定理可得,,所以有,即,在三角形中,于是有,,.【考点】解三角形.11.在△ABC中,边角,过作,且,则.【答案】【解析】依题意,,由余弦定理得,,由三角形的面积公式得,即,,又,,,即,又点、、三点共线,则,解方程组,解得,.【考点】余弦定理,三角形的面积公式,向量的数量积.12.设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.(Ⅰ)求B;(Ⅱ)若sinAsinC=,求C.【答案】(I);(II)或.【解析】(I)已知等式右边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出,将关系式代入求出的值,由为三角形的内角,利用特殊角的三角函数值即可求出的度数;(II)由(I)得的度数,;利用利用两角和与差的余弦函数公式化简,变形后将及的值代入求出的值,利用特殊三角函数的值求出的值,与的值联立即可求出的度数.试题解析:(I)为三角形的内角(II)由(I)得:或或【考点】1.余弦定理;2.两角的和差公式.13.在中,,.(Ⅰ)求的值;(Ⅱ)求的值.【答案】(Ⅰ).(Ⅱ).【解析】(Ⅰ)根据已知条件,建立的方程组即可得解.(Ⅱ)应用余弦定理可首先.进一步应用正弦定理即得.试题解析:(Ⅰ)由和可得, 2分所以, 3分又所以. 5分(Ⅱ)因为,,由余弦定理可得 7分,即. 9分由正弦定理可得 11分, 12分所以. 13分【考点】正弦定理、余弦定理的应用,三角形面积.14.在中,已知(1)求;(2)若,的面积是,求.【答案】(1);(2)2.【解析】(1)用三角形三内角和定理及特殊角的三角函数值求解;(2)利用余弦定理与三角形的面积公式,得到关于、的方程组,解出即得.(1)在中,,,,.(2)由余弦定理,则,又的面积是,则,即,,即,.【考点】三角形三内角和定理,余弦定理,三角形的面积.15.在中,角的对边分别为,且满足(1)求证:;(2)若的面积,,的值.【答案】(1)详见解析,(2)【解析】(1)转化三角形问题中的边角关系式,首先要选择定理.由正弦定理,将等式中的边化为对应角的正弦,由内角和定理,得,再利用诱导公式、两角和差的正弦公式得,在三角形中即证;(2)解三角形问题应灵活应用边角的计算公式.在(1)的条件下,;由三角形的面积公式及余弦定理可求.试题解析:(1)由,根据正弦定理,得: 2分又在△ABC中,,则,所以即 4分所以,即又为三角形内角,所以。
数学高三复习解三角形的实际应用举例专项训练(带答案)

数学高三复习解三角形的实际应用举例专项训练(带答案)由不在同不时线上的三条线段首尾依次衔接所组成的封锁图形叫做三角形,下面是查字典数学网整理的解三角形的实践运用举例专项训练,希望对考生温习有协助。
一、测量中的距离效果1.有一长为10 m的斜坡,倾斜角为60,在不改动坡高和坡顶的前提下,经过加长坡面的方法将它的倾斜角改为30,那么坡底要延伸的长度(单位:m)是()A.5B.5C.10D.10答案:D解析:如图,在Rt△ABC中,AC=10,ACB=60.AB=5,BC=5,在Rt△A BD中,ADB=30,BD=15.CD=BD-BC=10.2.(2021福建宁德五校联考,14)一艘船以15 km/h的速度向东飞行,船在A处看到灯塔B在北偏东60行驶4 h后,船抵达C处,看到灯塔B在北偏东15处,这时船与灯塔的距离为km.答案:30解析:依据题意画出图形,如下图,可得B=75-30=45,在△ABC中,依据正弦定理得,,即,BC=30 km,即此时船与灯塔的距离为30 km.3.(2021福建厦门高二期末,15)如图,某观测站C在A城的南偏西20,一条蜿蜒公路AB,其中B在A城南偏东40,B与C相距31千米.有一人从B动身沿公路向A城走去,走了20千米后抵达D处,此时C,D之间的距离为21千米,那么A,C之间的距离是千米.答案:24解析:由得CD=21,BC=31,BD=20,在△BCD中,由余弦定理得cosBDC==-.设ADC=,那么cos =,sin =.在△ACD中,由正弦定理,得AC==24.二、测量中的高度与角度效果4.如图,D,C,B三点在空中同不时线上,DC=a,从C,D两点测得A点的仰角区分是,(),那么A点距离空中的高度AB等于() A. B.C. D.答案:A解析:在△ACD中,DAC=-,DC=a,ADC=,由正弦定理得AC=,在Rt△ACB中,AB=ACsin =.5.运动会开幕式上举行升旗仪式,在坡度15的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角区分为60和30,第一排和最后一排的距离为10 m(如下图),那么旗杆的高A.10 mB.30 mC.10 mD.10 m答案:B解析:如下图,由题意知AEC=45ACE=180-60-15=105,EAC=180-45-105=30,由正弦定理知,AC==20(m),在Rt△ABC中,AB=ACsinACB=30(m).旗杆的高度为30 m.6.当甲船位于A处时得知,在其正西方向相距20 n mile的B 处有一艘渔船遇险等候营救,甲船立刻前往营救,同时把音讯告知在甲船的南偏西30,相距10 n mile C处的乙船,乙船立刻朝北偏东角的方向沿直线前往B处救援,那么sin 的值等于()A. B. C. D.答案:D解析:依据标题条件可作图如图:在△ABC中,AB=20,AC=10,CAB=120,由余弦定理有BC2=AB2+AC2-2ABACcosCAB=202+102-22021cos 120=700, BC=10.再由正弦定理得,sinACB=无触礁的风险.8.如图,在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时辰测得一艘匀速直线行驶的船只位于点A北偏东45且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45+且与点A相距10海里的位置C.(1)求该船的行驶速度(单位:海里/小时);(2)假定该船不改动飞行方向继续行驶,判别它能否会进入警戒水域,并说明理由.解:(1)由于AB=40,AC=10,BAC=,sin =,090,所以cos =.由余弦定理得BC==10,所以该船的行驶速度为v==15(海里/小时).(2)设直线AE与BC的延伸线相交于点Q.在△ABC中,由余弦定理得cosABC=所以sinABC=.在△ABQ中,由正弦定理得AQ==40.由于AE=5540=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.过点E作EPBC于点P,那么EP为点E到直线BC的距离.在Rt△QPE中,PE=QEsinPQE=QEsinAQC=QEsin(45ABC)=15=37.故该船会进入警戒水域.(建议用时:30分钟)1.如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A 在观察站C的北偏东40,灯塔B在观察站C的南偏东60,那么灯塔A在灯塔B的()的位置.A.北偏东10B.北偏西10C.南偏东10D.南偏西10答案:B解析:由图可知,ACB=180-(40+60)=80.又AC=BC,CBA=(180-80)=50.∵CE∥BD,CBD=BCE=60,ABD=60-50=10.灯塔A在灯塔B的北偏西10的位置.2.如下图,为测一树的高度,在空中上选取A,B两点(点A,B 与树根部在同不时线上),从A,B两点区分测得树尖的仰角为30,45,且A,B两点之间的距离为60 m,那么树的高度为()A.(30+30) mB.(30+15) mC.(15+30) mD.(15+3) m答案:A解析:设树高为h,那么由题意得h-h=60,h==30(+1)=(30+30)(m).3.一艘客船上午9:30在A处,测得灯塔S在它的北偏东30,之后它以32 n mile/h的速度继续沿正南方向匀速飞行,上午10:00抵达B处,此时测得船与灯塔S相距8 n mile,那么灯塔S在B处的()A.北偏东75B.东偏南75C.北偏东75或东偏南75D.以上方位都不对答案:C解析:依据题意画出表示图,如图,由题意可知AB=32=16,BS=8,A=30.在△ABS中,由正弦定理得,sin S=,S=45或135,B=105或15,即灯塔S在B处的北偏东75或东偏南75.4.一货轮飞行到M处,测得灯塔S在货轮的北偏东15方向,与灯塔S相距20 n mile,随后货轮按北偏西30的方向飞行3 h后,又测得灯塔在货轮的西南方向,那么货轮的速度为()A.) n mile/hB.) n mile/hC.) n mile/hD.) n mile/h答案:B解析:如图,设货轮的时速为v,那么在△AMS中,AMS=45SAM=105ASM=30,SM=20,AM=3v.由正弦定理得,即v==)(n mile/h).解三角形的实践运用举例专项训练分享到这里,更多内容请关注高考数学试题栏目。
高二数学解三角形测试题(附答案)

解三角形测试题一、选择题:1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于〔〕A.60°B.60°或120°C.30°或150°D.120°2、符合以下条件的三角形有且只有一个的是〔〕A.a=1,b=2 ,c=3 B.a=1,b=2,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1, ∠B=45°3、在锐角三角形ABC中,有〔〕A.cosA>sinB且cosB>sinA B.cosA<sinB且cosB<sinAC.cosA>sinB且cosB<sinA D.cosA<sinB且cosB>sinA4、假设(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC是〔〕A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5、设A、B、C为三角形的三内角,且方程(sinB-sinA)x2+(sinA-sinC)x +(sinC-sinB)=0有等根,那么角B 〔〕A.B>60°B.B≥60°C.B<60°D.B ≤60°6、满足A=45,c=6,a=2的△ABC的个数记为m,则a m的值为〔〕A.4 B.2 C.1 D.不定7、如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β,ABα(α<β),则A 点离地面的高度AB 等于 〔 〕A .)sin(sin sin αββα-a B .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-a D .)cos(sin cos βαβα-a8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南 偏东60°,则A,B 之间的相距 〔 〕A .a (km)B .3a(km)C .2a(km)D .2a (km)二、填空题:9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形. 10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____.11、在ΔABC 中,假设S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______. 12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.三、解答题:13、在ΔABC 中,求分别满足以下条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC=BA BA cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).D Cα β14、已知ΔABC 三个内角A 、B 、C 满足A+C=2B,A cos 1+ C cos 1 =-B cos 2 , 求2cosCA 的值.15、二次方程ax 2-2bx+c=0,其中a 、b 、c 是一钝角三角形的三边,且以b 为最长.①证明方程有两个不等实根; ②证明两个实根α,β都是正数; ③假设a=c,试求|α-β|的变化范围.16、海岛O 上有一座海拨1000米的山,山顶上设有一个观察站A,上午11时,测得一轮船在岛北60°东C 处,俯角30°,11时10分,又测得该船在岛的北60°西B 处,俯角60°.①这船的速度每小时多少千米?②如果船的航速不变,它何时到达岛的正西方向?此时所在点E离岛多少千米?一、BDBBD AAC 二、〔9〕钝角 〔10〕3314 〔11〕4π 〔12〕81三、〔13〕分析:化简已知条件,找到边角之间的关系,就可判断三角形的形状. ①由余弦定理ac ac c a ac b c a ac b c a =-+⇒=-+⇒-+=︒22222222212260cos 0)(2=-∴c a ,c a =∴. 由a=c 及B=60°可知△ABC 为等边三角形. ②由AAb B a A b cos sin tan tan 222⇒=,2sin 2sin ,cos sin cos sin sin sin cos sin cos sin cos sin 22222B A B B A A AB a b B A A B B B a =∴=∴==⇒=∴A=B 或A+B=90°,∴△ABC 为等腰△或Rt △. ③BA B A C cos cos sin sin sin ++= ,由正弦定理:,)cos (cos b a B A c +=+再由余弦定理:b a acb c a c bc c b a c +=-+⨯+-+⨯22222222∆∆∴+=∴=--+∴Rt ABC b a c b a c b a 为,,0))((222222. ④由条件变形为2222)sin()sin(ba b a B A B A +-=+-︒=+=∴=∴=⇒=--+-++∴90,2sin 2sin sin sin sin cos cos sin ,)sin()sin()sin()sin(2222B A B A B A BA B A B A b a B A B A B A B A 或. ∴△ABC 是等腰△或Rt △. 点评:这类判定三角形形状的问题的一般解法是:由正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简考察边或角的关系,从而确定三角形的形状. 有时一个条件既可用正弦定理也可用余弦定理甚至可以混用. 如本例的②④也可用余弦定理,请同学们试试看.〔14〕分析:︒=+︒=∴=+120,60,2C A B B C A 再代入三角式解得A 或 C. 解:︒=+︒=∴=-︒∴=+120.60,2180,2C A B B B B C A .∴由已知条件化为:22cos )120cos(.22)120cos(1cos 1-=+-︒∴-=-︒+A A A A),120cos(cos A A -︒设ααα-︒=+︒==-60,60,2C A CA 则.代入上式得:)60cos(α-︒ )60cos()60cos(22)60cos(ααα-︒+︒-=+︒+.化简整理得023cos 2cos 242=-+αα222cos ,22cos ,0)3cos 22)(2cos 2(=+=∴=+-⇒C A 即ααα. 注:此题有多种解法. 即可以从上式中消去B 、C 求出cosA ,也可以象本例的解法.还可以用和、差化积的公式,同学们可以试一试.〔15〕分析:证明方程有两个不等实根,即只要验证△>0即可.要证α,β为正数,只要证明αβ>0,α+β>0即可. 解:①在钝角△ABC 中,b 边最长.ac b ac b B ac c a b B 424)2(,cos 20cos 122222-=--=∆-+=<<-∴且.0cos 4)(24)cos 2(2222>--=--+=B ac c a ac B ac c a 〔其中0cos 40)(22>-≥-B ac c a 且∴方程有两个不相等的实根. ②,0,02>=>=+aca b αββα ∴两实根α、β都是正数. ③a=c 时,=-=-+=-+=-∴⎪⎪⎩⎪⎪⎨⎧===+424)(2)(,12222222a b a a c a bαββααβββααββα2||0,4cos 40,0cos 1,cos 44)cos 2(22222<-<<-<∴<<--=--+βα因此B B B aa B ac c a . 〔16〕分析:这是一个立体的图形,要注意画图和空间的简单感觉.解:①如图:所示. OB=OA 3330tan =(千米),3=OC 〔千米〕 则313120cos 222=︒⋅-+=OC OB OC OB BC 〔千米〕3926010313=÷=∴v 船速〔千米/小时〕 ②由余弦定理得:=∠=∠∴=⨯-+=∠OBC EBO BC OB OC BC OB OBC sin sin ,261352cos 222 =︒+∠-︒=∠-=∠=-)]30(180sin[sin ,26135cos ,26393)26135(12EBO OEB EBO .131330sin cos 30cos sin )30sin(=︒⨯∠+︒⨯∠=︒+∠EBO EBO EBO 再由正弦定理,得OE=1.5〔千米〕,5),(639==vBEBE 千米〔分钟〕. 答:船的速度为392千米/小时;如果船的航速不变,它5分钟到达岛的正西方向,此时所在点E 离岛1.5千米.。
高三复习:三角函数模型及解三角形应用举例(含解析答案)

§4.8 三角函数模型及解三角形应用举例解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.题型一 测量距离、高度问题例1(2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC匀速步行,速度为50m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260m ,经测量cos A =1213,cos C =35.①求索道AB 的长;②问:乙出发多少分钟后,乙在缆车上与甲的距离最短?③为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?题型二测量角度问题例2如图,在海岸A处发现北偏东45°方向,距A处(3-1)海里的B处有一艘走私船.在A处北偏西75°方向,距A处2海里的C处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.题型三利用三角函数模型求最值例3如图,在直径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中y>x>0.(1)将十字形的面积表示为θ的函数;(2)θ满足何种条件时,十字形的面积最大?最大面积是多少?变式如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面间的距离为h.(1)求h与θ间关系的函数解析式;(2)设从OA开始转动,经过t秒后到达OB,求h与t之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?课堂练习:1.已知△ABC ,C 为坐标原点O ,A (1,sin α),B (cos α,1),α∈⎝⎛⎦⎤0,π2,则当△OAB 的面积达到最大值时,α=______.2.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为________. 3.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于________.4.8三角函数模型及解三角形应用举例作业1.如图为一半径是3m的水轮,水轮的圆心O距离水面2m.已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间x(s)满足函数关系y=A sin(ωx+φ)+2(ω>0,A>0),则ω=________,A=________.2.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________.3.如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30m,并在点C处测得塔顶A的仰角为60°,求塔高AB.4.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°,距离为10nmile的C处,并测得渔船正沿方位角为105°的方向,以10nmile/h的速度向某小岛B靠拢,我海军舰艇立即以103nmile/h的速度前去营救,求舰艇的航向和靠近渔船所需的时间.5.某运输装置如图所示,其中钢结构ABD 是AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于地面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子表示); (2)当t 最小时,C 点应设计在AB 的什么位置?6某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.§4.8 三角函数模型及解三角形应用举例解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.题型一 测量距离、高度问题例1(2013·江苏)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC匀速步行,速度为50m /min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260m ,经测量cos A =1213,cos C =35.①求索道AB 的长;②问:乙出发多少分钟后,乙在缆车上与甲的距离最短?③为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? (1)答案 30+30 3解析 在△P AB 中,∠P AB =30°,∠APB =15°,AB =60,sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=22×32-22×12=6-24,由正弦定理得PB sin30°=ABsin15°,∴PB =12×606-24=30(6+2),∴树的高度为PB ·sin45°=30(6+2)×22=(30+303)m.(2)解 ①在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C=513×35+1213×45=6365. 由正弦定理AB sin C =ACsin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1040m.②假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),由于0≤t ≤1040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.③由正弦定理BC sin A =ACsin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在⎣⎡⎦⎤125043,62514(单位:m/min)范围内. 题型二 测量角度问题例2 如图,在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.思维点拨 设缉私船t 小时后在D 处追上走私船,确定出三角形,先利用余弦定理求出BC ,再利用正弦定理求出时间.解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =103t (海里),BD =10t (海里),在△ABC 中,由余弦定理,有 BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =(3-1)2+22-2(3-1)·2·cos120°=6. ∴BC =6(海里).又∵BC sin ∠BAC =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BAC BC =2·sin120°6=22,∴∠ABC =45°,∴B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD,∴sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin120°103t =12.∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴D =30°,∴BD =BC ,即10t = 6. ∴t =610小时≈15(分钟). ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟. 思维升华 测量角度问题的一般步骤(1)在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离; (2)用正弦定理或余弦定理解三角形;(3)将解得的结果转化为实际问题的解.题型三 利用三角函数模型求最值例3 如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中y >x >0.(1)将十字形的面积表示为θ的函数;(2)θ满足何种条件时,十字形的面积最大?最大面积是多少? 思维点拨 由题图可得:x =cos θ,y =sin θ.列出面积函数后,利用三角函数性质求解,注意θ的范围. 解 (1)设S 为十字形的面积,则S =2xy -x 2=2sin θcos θ-cos 2θ (π4<θ<π2);(2)S =2sin θcos θ-cos 2θ=sin2θ-12cos2θ-12=52sin(2θ-φ)-12,其中tan φ=12, 当sin(2θ-φ)=1,即2θ-φ=π2时,S 最大.所以,当θ=π4+φ2(tan φ=12)时,S 最大,最大值为5-12.思维升华 三角函数作为一类特殊的函数,可利用其本身的值域来求函数的最值.变式 如图为一个缆车示意图,该缆车半径为4.8米,圆上最低点与地面距离为0.8米,且60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为h . (1)求h 与θ间关系的函数解析式; (2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?解 (1)以圆心O 为原点,建立如图所示的平面直角坐标系,则以Ox为始边,OB 为终边的角为θ-π2,故点B 的坐标为(4.8cos(θ-π2),4.8sin(θ-π2)), ∴h =5.6+4.8sin ⎝⎛⎭⎫θ-π2. (2)点A 在圆上转动的角速度是π30弧度/秒,故t 秒转过的弧度数为π30t ,∴h =5.6+4.8sin ⎝⎛⎭⎫π30t -π2,t ∈[0,+∞).到达最高点时,h =10.4米.由sin ⎝⎛⎭⎫π30t -π2=1,得π30t -π2=π2,∴t =30秒, ∴缆车到达最高点时,用的最少时间为30秒.课堂练习:1.已知△ABC ,C 为坐标原点O ,A (1,sin α),B (cos α,1),α∈⎝⎛⎦⎤0,π2,则当△OAB 的面积达到最大值时,α=______.答案 π2解析 ∵S =1-12×1×sin α-12×1×cos α-12(1-cos α)(1-sin α)=12-12sin αcos α =12-14sin2α. ∴当α=π2时,S 取到最大值.3.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为________. 答案 3或2 3解析 如图所示,设此人从A 出发,则AB =x ,BC =3,AC =3,∠ABC =30°, 由余弦定理得(3)2=x 2+32-2x ·3·cos30°,整理,得x 2-33x +6=0,解得x =3或2 3.4.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°且相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ等于________.答案 2114解析 在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos120°=2800,所以BC =207. 由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°)=cos ∠ACB cos30°-sin ∠ACB sin30°=2114.4.8 三角函数模型及解三角形应用举例作业1.如图为一半径是3m 的水轮,水轮的圆心O 距离水面2m .已知水轮每分钟旋转4圈,水轮上的点P 到水面的距离y (m)与时间x (s)满足函数关系y =A sin(ωx +φ)+2(ω>0,A >0),则ω=________,A =________.答案 2π153 解析 每分钟转4圈,每圈所需时间T =604=15. 又T =2πω=15,∴ω=2π15,A =3. 2.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________________.答案 203米、4033米 解析 如图,依题意有甲楼的高度为AB =20·tan60°=203(米),又CM=DB =20(米),∠CAM =60°,所以AM =CM ·1tan60°=2033(米),故乙楼的高度为CD =203-2033=4033(米). 3.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30m ,并在点C 处测得塔顶A 的仰角为60°,求塔高AB .解 在△BCD 中,∠CBD =180°-15°-30°=135°,由正弦定理,得BC sin ∠BDC =CD sin ∠CBD,所以BC =30sin30°sin135°=15 2 (m). 在Rt △ABC 中,AB =BC ·tan ∠ACB =152tan60°=15 6 (m).所以塔高AB 为156m.4.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角为45°,距离为10nmile 的C 处,并测得渔船正沿方位角为105°的方向,以10nmile/h 的速度向某小岛B 靠拢,我海军舰艇立即以103nmile/h 的速度前去营救,求舰艇的航向和靠近渔船所需的时间.解 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t .在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BC ·cos120°,可得:(103t )2=102+(10t )2-2×10×10t cos120°.整理得:2t 2-t -1=0,解得t =1或t =-12(舍去). 所以舰艇需1小时靠近渔船,此时AB =103,BC =10. 在△ABC 中,由正弦定理得:BC sin ∠CAB =AB sin120°, 所以sin ∠CAB =BC ·sin120°AB =10×32103=12. 所以∠CAB =30°.所以舰艇航行的方位角为75°.5.某运输装置如图所示,其中钢结构ABD 是AB =BD =l ,∠B =π3的固定装置,AB 上可滑动的点C 使CD 垂直于地面(C 不与A ,B 重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿D →C →A 运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为3v .为了使运送货物的时间t 最短,需在运送前调整运输装置中∠DCB =θ的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ的函数(用含有v 和l 的式子表示);(2)当t 最小时,C 点应设计在AB 的什么位置?解 (1)在△BCD 中,∵∠BCD =θ,∠B =π3,BD =l , ∴BC =l sin (2π3-θ)sin θ,CD =3l 2sin θ, ∴AC =AB -BC =l -l sin (2π3-θ)sin θ, 则t =AC 3v +CD v =l 3v -l sin (2π3-θ)3v sin θ+3l 2v sin θ(π3<θ<2π3). (2)t =l 6v (1-3cos θsin θ)+3l 2v sin θ=l 6v +3l 6v ·3-cos θsin θ. 令m (θ)=3-cos θsin θ,θ∈(π3,2π3),则m ′(θ)=1-3cos θsin 2θ. 令m ′(θ)=0,得cos θ=13,设cos θ0=13,θ0∈(π3,2π3), 则θ∈(π3,θ0)时,m ′(θ)<0;当θ∈(θ0,2π3)时,m ′(θ)>0,∴当cos θ=13时,m (θ)取得最小值22,此时BC =6+48l . 故当BC =6+48l 时货物运行时间最短. 6某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.规范解答解 (1)设相遇时小艇的航行距离为S 海里, 则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900(t -13)2+300.[4分] 故当t =13时,S min =103,v =10313=30 3.[6分] 即小艇以303海里/小时的速度航行,相遇小艇的航行距离最小.[7分](2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t2.[9分] ∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.[10分] 又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.[12分] 此时,在△OAB 中,有OA =OB =AB =20.故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[14分]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解三角形的实际应用举例综合测
试题(含答案)
解三角形的实际应用举例同步练习
1.在△ABC中,下列各式正确的是()
A. ab =sinBsinA
B.asinC=csinB
C.asin(A+B)=csinA
D.c2=a2+b2-2abcos(A+B)
2.已知三角形的三边长分别为a、b、a2+ab+b2 ,则这个三角形的最大角是()
A.135
B.120
C.60
D.90
3.海上有A、B两个小岛相距10 nmile,从A岛望B岛和C 岛成60的视角,从B岛望A岛和C岛成75角的视角,则B、C间的距离是()
A.52 nmile
B.103 nmile
C. 1036 nmile
D.56 nmile
4.如下图,为了测量隧道AB的长度,给定下列四组数据,测量应当用数据
A.、a、b
B.、、a
C.a、b、
D.、、
5.某人以时速a km向东行走,此时正刮着时速a km的南风,那么此人感到的风向为,风速为.
6.在△ABC中,tanB=1,tanC=2,b=100,则c=. 7.某船开始看见灯塔在南偏东30方向,后来船沿南偏东60 的方向航行30 nmile后看见灯塔在正西方向,则这时船与灯
塔的距离是.
8.甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60,从甲楼顶望乙楼顶的俯角为300,则甲、乙两楼的高分别是. 9.在塔底的水平面上某点测得塔顶的仰角为,由此点向塔沿直线行走30米,测得塔顶的仰角为2,再向塔前进103 米,又测得塔顶的仰角为4,则塔高是米.
10.在△ABC中,求证:cos2Aa2 -cos2Bb2 =1a2 -1b2 . 11.欲测河的宽度,在一岸边选定A、B两点,望对岸的标记物C,测得CAB=45,CBA=75,AB=120 m,求河宽.(精确到0.01 m)
12.甲舰在A处,乙舰在A的南偏东45方向,距A有9 nmile,并以20 nmile/h的速度沿南偏西15方向行驶,若甲舰以28 nmile/h的速度行驶,应沿什么方向,用多少时间,能尽快追上乙舰?
答案
1.C 2.B 3.D 4.C 5.东南2 a 6.40 7.103 8.203 ,203 3
9.15
10.在△ABC中,求证:cos2Aa2 -cos2Bb2 =1a2 -1b2 . 提示:左边=1-2sin2Aa2 -1-2sin2Bb2 =(1a2 -1b2 )-2(sin2Aa2 -sin2Bb2 )=右边.
11.欲测河的宽度,在一岸边选定A、B两点,望对岸的标
记物C,测得CAB=45,CBA=75,AB=120 m,求河宽.(精确到0.01 m)
解:由题意C=180-A-B=180-45-75=60
在△ABC中,由正弦定理ABsinC =BCsinA
BC=ABsinAsinC =120sin450sin600 =1202232 =406
S△ABC=12 ABBCsinB=12 ABh
h=BCsinB=406 6+24=60+203 94.64
河宽94.64米.
12.甲舰在A处,乙舰在A的南偏东45方向,距A有9 nmile,并以20 nmile/h的速度沿南偏西15方向行驶,若甲舰以28 nmile/h的速度行驶,应沿什么方向,用多少时间,能尽快追上乙舰?
解:设th甲舰可追上乙舰,相遇点记为C
则在△ABC中,AC=28t,BC=20t,AB=9,ABC=120
由余弦定理
AC2=AB2+BC2-2ABBCcosABC
(28t)2=81+(20t)2-2920t(-12 )
整理得128t2-60t-27=0
解得t=34 (t=-932 舍去)
故BC=15(nmile),AC=21( nmile)
由正弦定理
sinBAC=1521 32=514 3
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。
称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、
资深之传授知识者”,与教师、老师之意基本一致。
BAC=arcsin514 3
故甲舰沿南偏东4 -arcsin514 3 的方向用0.75 h可追上乙舰.。