华师大版八年级数学上册试题

合集下载

华师大版八年级数学上册测试题

华师大版八年级数学上册测试题

华师大版八年级数学上册测试题1、△ABC 沿AD 的方向平移得△DEF ,则AD 、BE ,CF 三者之间的关系为( )A 相等 B 平行 C 相等与平行 D 以上都不对。

2、等腰△ABC 绕着点A 旋转到达三角形ACD 的位置,已知:∠BAD=80°,∠BCD= 。

( )A 110° B 125° C 140° D 150°3、国旗上的每个五角星 中心对称图形, 轴对称图形。

(填是或不是)( )A 是、不是 B 是、是C 不是、是D 不是、不是平行四边形:4、□ABCD 中,若∠A 与∠B 相等,则∠D 的度数是( )A 70°B 80°C 90°D 100°5、□ABCD 的周长是18,△ABC 的周长是14,则对角线AC 的长是( )A 5 B 6 C 7 D 86、矩形的两条对角线的一个交角为60°,两条对角线的和为16cm ,则这个矩形的一条较短边为 ( ) A 3cm B 4cm C 5cm D 6cm7、若正方形的一条角平分线为10,则这个正方形的面积为( )A 100 B 120 C 50D 558、正方形ABCD 的边BC 的延长线上取一点E ,使CE=AC ,AE 与CD 交于点F ,则∠AFC=( )A 100° B 67.5°C 112.5° D 135°9、梯形的上底长为2,下底长为5,高为4,则面积为( )A 40B 20C 28D 1410、给定不在同一直线上的三点,则以这三点为顶点的平行四边形有( )A 、1个B 、2个C 、3个D 、4个11、如图,AE ∥BD , BE ∥DF , AB ∥CD ,下面给出四个结论(1)AB=CD (2)BE=DF (3)S ABDC =S BDFE (4)S △ABE=S △DCF 其中正确的有( )A 、1个B 、2个C 、3个D 、4个12、□ABCD 的对角线AC 、BD 相交于点O ,下列条件中,不能判定它为菱形的是 ( )A 、AB=ADB 、AC ⊥BD C 、∠A=∠D D 、CA 平分∠BCD13、如图,矩形ABCD 中,DE ⊥AC 于E ,且∠ADE :∠EDC=3:2,则∠BDE 的度数为( ) A 、36° B 、18° C 、27° D 、9°一元一次不等式组:14、不等式2x-5≤0的正整数解有( )A 、0个B 、1个C 、2个D 、3个15、若,那么22bc ac -<-( ) A 、a ≤b B 、a 〈 b C 、a ≥ b D 、a 〉b16、已知关于x 的不等式a x x a -<>-122)1(的解集为,则x 的取值范围是( )A 、a >0B 、a >1C 、a <0D 、a <117、如果一辆汽车每天行使的路程比原来多19km ,那么它8天的行程就超过2200km ,如果他每天的行程比原来少16km,那么他行同样多的路程就得花9天多的时间,那么这辆汽车原来每天行程的千米数x 的范围是( )A 、260259<<xB 、260258<<xC 、260256<<xD 、260257<<x18、某种出租车的收费标准是:起步价7元(即行使距离不超过3千米都需付7元车费),超过3千米以后,每增加0.5千米,加收1.2元(不足0.5千米按0.5千米计),某人乘这种出租车从甲到乙共付车费19元,设此人从甲地到乙地经过的路程x 千米,那么x 的最大值是( )A 、13B 、8C 、7D 、5整式的乘除:19、下列四个算式:44x x ⋅=5555118363343,,,2e e e e b b b b y y y x =++=⋅=+⋅,正确的个数有 ( )A 、0B 、1C 、2D 、320、如果,(x+m )(x+0.5)的乘积中不含关于x 的一次项,则m 应取( )、A 、2 B 、2- C 、21 D 、21-21、(-3)2002+(-3)2003所得的结果是 ( ) A 、3- B 、200232⨯- C 、1- D 、20023-22、n ab ab ,0≠互为相反数,且为正整数,则下列两数互为相反数的是( ) A 、n n b a 与 B 、n n b a 22与 C 、1212--n n b a 与 D 、2222))(----n n b a 与(23、长方体的长、宽、高分别是4x-3,x 和2x,它的体积等于 ( )A 、2334x x -B 、x x 342-C 、2368x x -D 、22x24、44221625)(______)45(b a b a -=+-括号内应填 ( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a --25、下列计算正确的是 ( )A 、22))((y x x y y x -=-+B 、22244)2(y xy x y x +-=+-C 、222414)212(y xy x y x +-=- D 、2224129)23(y xy x y x +-=-- 26、在2222222)())(3(,)()2(),5)(5()5()1(b a b a y x y x x x x +=--+=+-+=-+(4)ab ab ab a b b a =-=--23)2)(3(中错误的有 ( )A 、1个B 、2个C 、3个D 、4个27、下列各式中,能用平方差公式计算的是 ( )A 、))((b a b a +--B 、))((b a b a ---C ))((b a b a --D ))((b a b a ++ 28、计算: 1.992- 1.98×1.99+0.992得 ( )A 、0B 、1C 、8.8804D 、3.960129、如果k x x ++82可运用完全平方公式进行因式分解,则k 的值是( )A 、8B 、16C 、32D 、6430、xyz xy y x 63922-+-的各项的公因式是( )A 、yz 3 B 、xz 3 C 、xy 3- D 、x 3-31、_________________,,6,4822===+=-y x y x y x 则。

(汇总)华师大版八年级上册数学期末测试卷

(汇总)华师大版八年级上册数学期末测试卷

华师大版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、下列长度的三条线段,不能组成三角形的是()A.3,4,5B.4,9,6C.2,5,8D.8,15,82、下列运算正确的是()A.a•a 3=a 3B.(ab)3=a 3bC.(a 3)2=a 6D.a 8÷a 4=a 23、下列线段能组成直角三角形是( )A.7,20,25B.8,15,17C.5,11,12D.5,6,74、下列四个多项式:①﹣a2+b2;②﹣x2﹣y2;③1﹣(a﹣1)2;④m2﹣2mn+n2,其中能用平方差公式分解因式的有()A.①②B.①③C.②④D.②③5、如图,P是AB上任意一点,∠ABC=∠ABD,从下列条件中选一个条件,不能证明△APC≌△APD的是()A.BC=BDB.AC='AD'C.∠ACB=∠ADBD.∠CAB=∠DAB6、下列四组线段中,可以构成直角三角形的是( )A.1,,3B.3,4,5C.4,5,6D.6,7,87、下列命题中,其中正确命题的个数为()个①Rt△ABC中,已知两边长分别为3和4,则第三边为5;②有一个内角等于其他两个内角和的三角形是直角三角形;③三角形的三边分别为a,b,c若a2+c2=b2,则∠C=90°④在△ABC中,∠A:∠B:∠C=1:5:6,则△ABC为直角三角形.A.1B.2C.3D.48、如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A= 180°9、下列运算正确的是()A.x 2+x 3=x 5B.(x+y)2=x 2+y 2C.(2xy 2)3=6x 3y 6D.﹣(x﹣y)=﹣x+y10、下列运算正确的是()A.a 2+a 3=a 5B.(﹣2a 2)3÷()2=﹣16a 4C.3a ﹣1=D.(2 a 2﹣a)2÷3a 2=4a 2﹣4a+111、如图,在△ABC中,∠C=90°,分别以点A,B为圆心,大于AB长为半径作弧,两弧分别交于M,N两点,过M,N两点的直线交AC于点E,若AC=8,BC=6,则AE的长为()A.2B.3C.D.12、下列计算正确的是()A. =-9B. =±5C. =-1D.(-) 2=413、如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC 的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8B.9.5C.10D.11.514、如图,AD、BE分别是的中线和角平分线,,,F为CE的中点,连接DF,则AF的长等于()A.2B.3C.D.15、小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2, a2-b2分别对应下列六个字:州、爱、我、漳、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是( )A.我爱美B.漳州游C.我爱漳州D.美我漳州二、填空题(共10题,共计30分)16、如图,将一个长为9,宽为3的长方形纸片ABCD沿EF折叠,使点C与点A 重合,则EF的长为________17、如图,在正方形ABCD中,点E是BC边上一动点,连接AE,AC,将沿AE翻折得到,延长交CD边于F,若,则________ 用含n的代数式表示.18、如图,在平面直角坐标系中,在x轴、y轴的负半轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为________19、如图,已知正方形ABCD的对角线交于点O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF等于________.20、若周长为12的等腰三角形的腰长为x,则x的取值范围是________.21、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O 的切线,交AB的延长线于点D,则∠D的度数是________.22、如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2 ;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是________(把你认为正确结论的序号都填上).23、因式分解:2a2﹣4a=________24、如图,在扇形中,,分别是半径上的点,以为邻边的的顶点在上,若,则阴影部分图形的面积是________(结果保留).25、在中,若,,,则边上的高线长是________.三、解答题(共5题,共计25分)26、已知m+2的算术平方根是4,2m+n+1的立方根是3,求m﹣n的平方根.27、如图,AC⊥BC,AD⊥BD,AD=BC,那么请你判断阴影部分图形的形状,并说明理由.28、世界杯足球赛于北京时间6月13日2时在巴西开幕,某媒体足球栏目从参加世界杯球队中选出五支传统强队:意大利队、德国队、西班牙队、巴西队、阿根廷队,对哪支球队最有可能获得冠军进行了问卷调查.为了使调查结果有效,每位被调查者只能填写一份问卷,在问卷中必须选择这五支球队中的一队作为调查结果,这样的问卷才能成为有效问卷.从收集到的4800份有效问卷中随机抽取部分问卷进行了统计,绘制了统计图表的一部分如下:球队名称百分比意大利17%德国 a西班牙10%巴西38%阿根廷 b根据统计图表提供的信息,解答下列问题:(1)a= , b= ;(2)根据以上信息,请直接在答题卡中补全条形统计图;(3)根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测德国队最有可能获得冠军.29、已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,求AD的长.30、已知一个数的两个平方根分别是3a+2和a+14,求这个数。

2024-2025学年华东师大版八年级数学上册第一次月考试题

2024-2025学年华东师大版八年级数学上册第一次月考试题

2024-2025学年华东师大版八年级数学上册第一次月考试题一、单选题1.下列说法:①()25-的平方根是5±;②2a -一定没有平方根;③非负数a 的平方根是非负数;④因为负数没有平方根,所以平方根不可能为负,其中错误说法的个数是( ) A .1B .2C .3D .42.下列说法正确的是( ) A .0和1的平方根等于本身 B .0和1的算术平方根等于本身 C .立方根等于本身的数是0D .以上说法都不正确3.如果实数a b ,互为相反数,c d ,互为倒数,m 的绝对值为2,那么()22212a b cd m m -+÷-+的值为( ) A .1B .19C .1和19D .以上都不对4.如果2294x kxy y -+是关于x y ,的完全平方式,则k 的值是( ) A .12B .12-C .12±D .无法确定5.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示.其中正确的说法的个数是( ) A .4B .3C .2D .16.一个正方形的边长增加了2cm ,面积相应增加了32平方厘米。

则这个正方形的边长为( ) A .6cmB .5cmC .8cmD .7cm7172π-&L ,中,无理数有( ) A .2个B .3个C .4个D .5个8.()x y -与()y x -的乘积是( ) A .22x y -B .22y x -C .22x y --D .222x xy y -+-9.下列各式中,能用平方差公式计算的是 ( ) A .()()a b a b --+B .()()a b a b ---C .()()a b c a b c +---+D .()()a b a b -+-10.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++D .()()2222a b a b a ab b +-=+-二、填空题11====…;请用字母表示其中的规律. 12.若2510x x --=,则221x x +=,441x x +=.若()332264x -=,则x =. 13.若 ()()214x x x Ax B -+=++,则A =,B =.14.若a +b =8,ab =15,则a 2+ab +b 2=. 15.找规律: (1)观察下列式子: ①22(12)14(11)+-=+; ②22(22)24(21)+-=+; ③22(32)34(31)+-=+; ④22(42)44(41)+-=+ 第n 个式子呢?(2)观察下列式子:①2222233+=⨯;②2333388+=⨯;③244441515+=⨯ 若21010a ab b+=⨯(a 、b 为正整数),求a b +=.(3)观察下列式子:323323332111231236=+=++=;;;33332123410+++=; 猜想:333331234+++++=L n .(4)观察下列式子:①2243243⨯+⨯≥;②()()2221221≥-+⨯-⨯;③2211242242424⎛⎫+⨯⨯ ⎪⎝≥⎭;④2292922+≥⨯⨯;通过观察、归纳、比较:2220122013+220122013⨯⨯ 请用字母a ,b 写出反映上述规律的表达式. (5)观察下列式子:2==;== 猜想:==.(n 为大于1的正整数)=.三、解答题16(不写作法,保留适当的作图痕迹,要说明理由)17.试确定()()222222222210864297531++++-++++的值.18.已知2231642,2793m n n m -+=⨯=⨯,求2013()m n -的值. 19.已知3m n +能被13整除,求证:33m n ++能被13整除.20.已知实数a 、b 、c 、d 、m ,若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,2的平方根.21.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如,2420=-,22221242,2064=-=-,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么? 22.阅读下面把无限循环小数化为分数的解答过程: 设0.30.3333x ==&&①, 则10 3.3333x =&②, 由-②①得93x =,即13x =故10.33=&. 根据上述提供的方法,把①0.7&,②1.3&化为分数.23.已知实数a 、b 、c 满足()213270a a b -+--,求()()()2236cab aab --的值.24.如图所示,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么两个正方形的面积之和为____________,阴影部分的面积是_______________.25.先观察等式,再解答问题:111111112=+-=+;111112216=+-=+;1111133112=+-=+.(1) (2)请你按照以上各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数). 26.探索题: 2(1)(11x x x -+=-) 23(1)(1)1x x x x -++=- 324(1)(1)1x x x x x -+++=- 4325(1)(1)1x x x x x x -++++=-......(1)当3x =时,324(31)(3331)31-+++=-=. (2)试求∶5432222221+++++的值.(3)20132012222221++++L 的值个位数字是多少?并说明理由.27.认真观察下列二项式乘方展开式的系数规律与贾宪三角形,你就会发现他们有着紧密的联系并有一定的规律可寻.(1)根据你观察到的规律,写出贾宪三角形的第5行系数:; (2)写出()6a b +的展开式:()6a b +=.。

华师大版八年级数学上册期末测试题含答案

华师大版八年级数学上册期末测试题含答案

华师大版八年级数学上册期末测试题含答案注意:本测试题分为两个部分,第一部分是选择题,共计60分;第二部分是解答题,共计40分。

请同学们认真阅读题目,按要求作答。

第一部分:选择题(共60分,每小题3分)1. 设x为正整数,则下列各数中最大的是:(A)300 (B)3x (C)2x (D)4x2. 若x+5=7,则x的值为:(A)-5 (B)7 (C)0 (D)23. 下列各数中,最大的是:(A)0.3 (B)0.03 (C)0.003 (D)0.00034. 甲、乙两个图书馆,甲馆的藏书量是乙馆的2倍减10本,如果乙馆藏书量为x,写出甲馆藏书量的代数式是:(A)2x-10 (B)2x+10 (C)10-2x (D)x-105. 用三角形的边长表示周长作为x,若三角形的一条边为5cm,另外两条边为(2x-1)cm和x-1cm,则x的值是:(A)12 (B)13 (C)10 (D)11......第二部分:解答题(共40分)1. 计算下列各式的值:(1)5x - 3y,其中x=4,y=2(2)3x^2 - 2x + 1,其中x=2(3)2ab + 3a + 4b,其中a=1/2,b=1/32. 一工人在一天内用10台挖土机挖沟,第一小时挖了1/5的沟,第二小时挖了1/4的沟,如此递增,一共用了多少小时挖完沟?3. 英华山是中国五大名山之一,是世界文化与自然遗产。

山区海拔2800多米,山顶处矗立着仙人石。

某天观测到,海拔在山顶高度的48%的地方。

请计算山顶的实际高度。

......答案:第一部分:选择题1. (B)3x2. (D)23. (A)0.34. (A)2x-105. (B)13......第二部分:解答题1.(1) 5x - 3y = 5 * 4 - 3 * 2 = 20 - 6 = 14(2) 3x^2 - 2x + 1 = 3 * 2^2 - 2 * 2 + 1 = 12 - 4 + 1 = 9(3) 2ab + 3a + 4b = 2 * (1/2) * (1/3) + 3 * (1/2) + 4 * (1/3)= 1/3 + 3/2 + 4/3 = 2/6 + 9/6 + 8/6 = 19/62. 第一小时挖的沟:1/5第二小时挖的沟:1/4第三小时挖的沟:1/3以此类推,可以得到挖完沟所需的时间总和:1/5 + 1/4 + 1/3 + ... + 1/10 = 0.853. 海拔在山顶高度的48%的地方,即0.48 * 2800 = 1344m......通过这样的一份期末测试题,同学们可以巩固和提升对八年级数学知识的理解和应用能力。

(汇总)华师大版八年级上册数学期末测试卷

(汇总)华师大版八年级上册数学期末测试卷

华师大版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5﹣66.5这一小组的频率为()A.0.04B.0.5C.0.45D.0.42、李刚同学在黑板上做了四个简单的分式题:①(-3)0=1;②a2÷a2=a;③(-a5)÷(-a)3=a2;④4m-2= .其中做对的题的个数有()A.1个B.2个C.3个D.4个3、两个三角形只有以下元素对应相等,不能判定两个三角形全等的是()A.两角和它们的夹边B.三条边C.两边和一角D.两条边和其中一边上的中线4、张颖同学把自己一周的支出情况,用如图的统计图来表示.则从图中可以看出()A.一周支出的总金额B.一周各项支出的金额C.一周内各项支出金额占总支出的百分比D.各项支出金额在一周中的变化情况5、已知Rt△ABC中,∠ABC=90°,点D是BC中点,分别过B、C为圆心,大于线段BC长为半径作弧,两弧交于点P,作直线PD交AC于点E,连接BE,则下列结论中不正确的是()A.ED⊥BCB.BE平分∠AEDC.E为△ABC的外接圆圆心D.ED= AB6、已知,则的值等于().A. B. C. D.7、如图,在△ABC中,点O是∠ABC的平分线与线段BC的垂直平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB.垂足分别为D、E、F,则下列结论不一定成立的是()A.OB=OCB.OD=OFC.OA=OB=OCD.BD=DC8、计算(x+3)(x﹣3)的结果是()A.x 2﹣9B.x 2﹣3C.x 2﹣6D.9﹣x 29、若m·23=26,则m=()A.2B.4C.6D.810、若m=,则m介于哪两个整数之间()A.1<m<2B.2<m<3C.3<m<4D.4<m<511、能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是()A.120°,60°B.95.1°,104.9°C.30°,60° D.90°,90°12、如图,在平行四边形ABCD中,AB=10,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F恰好为DC的中点,DG⊥AE,垂足为G.若DG=3,则AE的边长为()A.2B.4C.8D.1613、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()cm2A.6B.8C.10D.1214、如果实数满足则的最小值为()A.-1B.1C.2D.-215、4的平方根是()A.±2B.2C.﹣2D.±二、填空题(共10题,共计30分)16、在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为________.17、如果那么________.18、将两块完全相同的等腰直角三角板摆放成如图所示的样子,假设图中的所有点、线都在同一平面内,图中有相似(不包括全等)三角形有________对.19、如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有________种.20、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是________.21、若2a x+y b5与﹣3ab2x﹣y是同类项,则2x﹣5y的立方根是________.22、分解因式:9﹣b2=________.23、分解因式:4ax2-ay2=________.24、请写出一个与- 的积为有理数的数是________.25、在△ABC中,∠C=90°,若a=5,c=13,则b=________.三、解答题(共5题,共计25分)26、计算题.①②③2002-202×198④⑤[(2x+y)2﹣y(y+4x)﹣8xy]÷(﹣2x).其中x=-2,y=127、分解因式:3x2+6xy+3y2.28、如图,点D在AB上,DF交AC于点E,CF∥AB,AE=EC.求证:29、如图,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上△ABC和△DEF相似吗?为什么?30、如图,△ABC是边长为1的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN.求△AMN的周长.参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、C5、B6、B7、C8、A9、D10、C11、D12、D13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、。

华东师大版八年级数学上册《14.2勾股定理的应用》同步测试题含答案

华东师大版八年级数学上册《14.2勾股定理的应用》同步测试题含答案

华东师大版八年级数学上册《14.2勾股定理的应用》同步测试题含答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.你听说过亡羊补牢的故事吧!为了防止羊再次丢失,牧羊人要在如图所示的长为0.8 m、宽为0.6 m 的长方形栅栏门的相对角的顶点钉一根加固木条,则这根木条的长至少为()A.0.9 mB.1 mC.1.1 mD.1.4 m2.如图,长方形纸片ABCD中,AB=8 cm,把长方形纸片沿直线AC折叠,点B落在点E处,AE交DC于cm,则AD的长为()点F,若AF=254A.4 cmB.5 cmC.6 cmD.7 cm3.如图,正方形方格中,若小方格的边长为1,则△ABC是三角形.4.如图,钓鱼竿AC的长为10 m,露在水面上的鱼线BC长为6 m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8 m,则BB'的长为m.5.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个6×6的方格纸中,找出格点C,使△ABC的面积为1个平方单位的直角三角形的个数是个.【能力巩固】6.一辆装满货物,宽为2.4 m的卡车,欲通过如图所示的隧道,已知隧道的下半部分是长为4 m,宽为2.5 m的长方形,上半部分是以AB为直径的半圆,则卡车的高必须低于m.7.如图,小巷的左、右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7 m,梯子顶端到地面的距离AC为2.4 m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5 m,则小巷的宽为m.8.如图,这是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.9.如图,学校在校园围墙边缘开垦了一块四边形菜地ABCD,测得AB=9 m,BC=12 m,CD=8 m,AD=17 m,且∠ABC=90°,则这块菜地的面积是多少?【素养拓展】10.如图,小红和小强一起去公园荡秋千,OA为秋千绳索,小红坐上秋千,小强在离秋千3米的点B处保护.当小红荡至小强处时,小强发现小红升高了1米,于是他就算出了秋千绳索的长度,你知道他是怎么算的吗?请你试一试.参考答案【基础达标】1.B2.C3.直角4.25.6【能力巩固】6.4.17.2.78.解:彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连结DE.在Rt△DEF中,根据勾股定理,得DE=√DF2+EF2=√1202+902=150(cm)h=220-150=70(cm).即彩旗下垂时的最低处离地面的最小高度h为70 cm.9.解:如图,连结AC.∵∠ABC=90°,AB=9 m,BC=12 m∴AC=√AB2+BC2=√92+122=15(m).∵CD=8 m,AD=17 m∴AC2+CD2=152+82=289,AD2=172=289∴AC 2+CD 2=AD 2∴△ACD 是直角三角形 ∴∠ACD=90°∴S 四边形ABCD =S △ABC +S △ACD =12AB ·BC+12AC ·CD=12×9×12+12×15×8=54+60=114(m 2) ∴这块菜地的面积为114 m 2. 【素养拓展】10.解:因为OA=OB ,AC=1米,CB=3米,设OA=OB=x 米,则OC=(x-1)米.在Rt △OBC 中,由勾股定理得OB 2=OC 2+BC 2,即x 2=(x-1)2+32,解得x=5. 故秋千绳索长为5米.。

华师大版本数学八年级上册数开方经典题目

华师大版本数学八年级上册数开方经典题目

第11章数的开方一、选择题1 .在-3, 0, 4,亚S这四个数中,最大的数是()A. 3 3B. 0C. 4D. .2 .下列实数中,最小的数是()A. 3 3B. 3C. J-D. 03 .在实数1、0、-1、-2中,最小的实数是()A. 2 2B. - 1C. 1D. 04 .实数1, - 1,-二,0,四个数中,最小的数是()^-1A. 0B. 1C. - 1D.-25 .在实数-2, 0, 2, 3中,最小的实数是()A. - 2B. 0C. 2D. 36 . a, b是两个连续整数,若a<行<b,则a, b分别是()A. 2, 3B. 3, 2C. 3, 4D. 6, 87 .估算屈-2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4至U 5之间8 .在已知实数:-1, 0,寺,-2中,最小的一个实数是()A. - 1B. 0C.D. - 29 .下列四个实数中,绝对值最小的数是()A. - 5B. :C. 1D. 410 .在-2, 0, 3,正这四个数中,最大的数是()A. - 2B. 0C. 3D.11 .在1, -2, 4, V5这四个数中,比0小的数是()A. 2 2B. 1C.eD. 412 .四个实数-2, 0,-正,1中,最大的实数是()A. - 2B. 0C. -「:D. 113 .与无理数例最接近的整数是()A. 4B. 5C. 6D. 714 .如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3 -诋的点P应落在线段()A. AO上B. OB上C. BC上D. CD上15 .估计与。

介于()£>■A. 0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间16 .若m=^x ( - 2),则有()A. 0<m< 1B. - 1<m< 0C. - 2< m< - 1D. -3<m< - 217 .如图,表示的点在数轴上表示时,所在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C18 .与1+而最接近的整数是()A. 4B. 3C. 2D. 119 .在数轴上标注了四段范围,如图,则表示也的点落在()A.段①B.段②C.段③D.段④20 .若a= (- 3) 13— (—3) 14, b= ( — 0.6 ) 12- (-0.6) 14, c= (—1.5)11—(― 1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a21 .若k<面< k+1 (k是整数),则k=( )A. 6B. 7C. 8D. 922 .估计版x.5+/强的运算结果应在哪两个连续自然数之间( )A. 5 和6 B, 6 和7 C, 7 和8 D. 8 和923 .估计J五的值在( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题24 .把7的平方根和立方根按从小到大的顺序排列为 .25 .若a<在<b,且a、b是两个连续的整数,则a b=.26 .若两个连续整数x、y满足xC+1<y,则x+y的值是.27 .黄金比与! \ (用“>”、“=”填空)28 .请将2、萱、逐这三个数用连结起来 .29 .6的整数部分是.30.实数历-2的整数部分是.第11旗数的开方参考答案与试题解析一、选择题1 .在-3, 0, 4,我这四个数中,最大的数是(A. - 3B. 0C. 4D.二【考点】实数大小比较.【分析】根据有理数大小比较的法则进行判断即可.【解答】解:在-3, 0, 4,黄这四个数中,-3c 05凤<4,最大的数是4.故选C.【点评】本题考查了有理数大小比较的法则,解题的关键是牢记法则,正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是本题的关键.2 .下列实数中,最小的数是()A. - 3B. 3C.D. 0【考点】实数大小比较.【分析】在数轴上表示出各数,再根据数轴的特点即可得出结论.【解答】解:如图所示:故选A.【点评】本题考查的是实数的大小比较,利用数形结合求解是解答此题的关键.3 .在实数1、0、-1、-2中,最小的实数是()A. - 2B. - 1C. 1D. 0【考点】实数大小比较.【分析】先在数轴上表示出各数,再根据数轴的特点进行解答即可.【解答】解:如图所示:;由数轴上各点的位置可知,-2在数轴的最左侧,四个数中-2最小.故选A.【点评】本题考查的是实数的大小比较,熟知数轴上的任意两个数,右边的数总比左边的数大是解答此题的关键.4 .实数1,-1,-亍,0,四个数中,最小的数是()A. 0B. 1C. - 1D. - 3【考点】实数大小比较.【专题】常规题型.【分析】根据正数〉0>负数,几个负数比较大小时,绝对值越大的负数越小解答即可. 【解答】解:根据正数〉0>负数,几个负数比较大小时,绝对值越大的负数越小,可得1>0> y>- 1,所以在1, -1, -^,0中,最小的数是-1.1.1故选:C.【点评】此题主要考查了正、负数、0和负数间的大小比较.几个负数比较大小时,绝对值越大的负数越小,5.在实数-2, 0, 2, 3中,最小的实数是()A. - 2B. 0C. 2D. 3【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2<0<2< 3,最小的实数是-2,故选:A.【点评】本题考查了实数比较大小,正数大于0, 0大于负数是解题关键.6 . a, b是两个连续整数,若a<邛<b,则a, b分别是()A. 2, 3B. 3, 2C. 3, 4D. 6, 8【考点】估算无理数的大小.【分析】根据也<阴<«,可得答案.【解答】解:根据题意,可知V4<V7<V9,可得a=2, b=3.故选:A.【点评】本题考查了估算无理数的大小,卜反<有是解题关键.7 .估算后-2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4至U 5之间【考点】估算无理数的大小.【分析】先估计两的整数部分,然后即可判断亚-2的近似值.【解答】解:.「5<V27<6,..・3〈后—2<4.故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8 .在已知实数:-1, 0, -2中,最小的一个实数是()A. - 1B. 0C. - -D. - 2【考点】实数大小比较.【专题】常规题型.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,由此可得出答案.【解答】解:-2、- 1、0、1中,最小的实数是-2.故选:D.【点评】本题考查了实数的大小比较,属于基础题,掌握实数的大小比较法则是关键.9 .下列四个实数中,绝对值最小的数是()A. - 5B. :C. 1D. 4【考点】实数大小比较.【分析】计算出各选项的绝对值,然后再比较大小即可.【解答】解:| — 5|=5; | 一北」3,|1|=1 , |4|=4 ,绝对值最小的是1.故选C.【点评】本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值.10 .在-2, 0, 3,遍这四个数中,最大的数是()A. - 2B. 0C. 3D.【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2<0<遍<3,故选:C.【点评】本题考查了实数比较大小,俗<3是解题关键.11 .在1, -2, 4,%这四个数中,比0小的数是()【考点】实数大小比较.【专题】常规题型.【分析】根据有理数比较大小的法则:负数都小于0即可选出答案.【解答】解:-2、1、4、厌这四个数中比0小的数是-2,故选:A.【点评】此题主要考查了有理数的比较大小,关键是熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12 .四个实数-2, 0,-鱼,1中,最大的实数是()A. 2 2B. 0C. - :D. 1【考点】实数大小比较.【分析】根据正数大于0, 0大于负数,正数大于负数,比较即可.【解答】解:: —2〈—丑<0<1,「•四个实数中,最大的实数是1.故选:D.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.13 .与无理数J五最接近的整数是()【考点】估算无理数的大小.【分析】根据无理数的意义和二次根式的性质得出强〈际〈府,即可求出答案. 【解答】解:: 晒〈底〈历,・•・如最接近的整数是/病,二6,故选:C.【点评】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道仃!在5和6之间,题目比较典型.14.如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3 -诋的点P应落在线段()A. AO上B. OB上C. BC上D. CD上【考点】估算无理数的大小;实数与数轴.【分析】根据估计无理数的方法得出0<3-“<1,进而得出答案.【解答】解:: 2(炳<3,• .0< 3-泥< 1,故表示数3 -通的点P应落在线段OB上.故选:B.【点评】此题主要考查了估算无理数的大小,得出小的取值范围是解题关键.15 .估计考」介于()A. 0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间【考点】估算无理数的大小.【分析】先估算黄的范围,再进一步估算与斗,即可解答.【解答】解:: 2.22=4.84, 2.32=5.29,・•.2.2<我< 2.3 ,2. 3 - 1=0.6 ,—三—=0.65近一 1 .,.0.6<X2^<0.65 .所以选U介于0.6与0.7之间.故选:C.【点评】本题考查了估算有理数的大小,解决本题的关键是估算四的大小.16.若m=yx ( - 2),则有()A. 0VmK 1B. - 1<rm< 0C. - 2< mK - 1D. -3<m< - 2【考点】估算无理数的大小.【分析】先把m化简,再估算也大小,即可解答.【解答】解;m岑x (—2) =-6,-2< -我< -15故选:C.【点评】本题考查了公式无理数的大小,解决本题的关键是估算正的大小.17.如图,表示干的点在数轴上表示时,所在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C【考点】估算无理数的大小;实数与数轴.【专题】计算题.【分析】确定出7的范围,利用算术平方根求出中的范围,即可得到结果. 【解答】解:: 6.25 <7< 9,・•.2.5〈氏3,则表示书的点在数轴上表示时,所在C和D两个字母之间.故选A【点评】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.18.与1+后最接近的整数是()A. 4B. 3C. 2D. 1【考点】估算无理数的大小.【分析】由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+"最接近的整数即可求解.【解答】解:: 4<5<9,「.2< V5< 3.又5和4比较接近,・••加最接近的整数是2,.•・与1+"最接近的整数是3,故选:B.【点评】此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.19.在数轴上标注了四段范围,如图,则表示乖的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76, 2.72=7.29, 2.8 2=7.84, 2.9 2=8.41, 32=9,7.84 <8< 8.41 ,8〈斥2.9,・•.\ ・,的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.20.若a= (- 3) 13— (—3) 14, b= ( — 0.6 ) 12- (-0.6) 14, c= (—1.5)11—(― 1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a【考点】实数大小比较.【分析】分别判断出a-b与c-b的符号,即可得出答案.【解答】解:: a—b=(-3) 13—(—3) 14—(― 0.6) 12+ (― 0.6) 14=- 313-314-112+-14<05a< b,・ c— b= (― 1.5) 11— (—1.5) 13—( — 0.6) 12+ (—0.6) 14= (—1.5) 11+1.513 -0.612+0.614> 0,c> b,c> b>a.故选D.【点评】此题考查了实数的大小比较,关键是通过判断两数的差,得出两数的大小.21.若k<V而<k+1 (k是整数),则k=( )A. 6B. 7C. 8D. 9【考点】估算无理数的大小.【分析】根据倔=9, 7100=10,可知9〈如<10,依此即可得到k的值.【解答】解:: k<屈<k+1 (k是整数),9<风<10,• ・ k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算西的取值范围,从而解决问题.22 .估计血X.电+/强的运算结果应在哪两个连续自然数之间()A. 5 和6 B . 6 和7 C. 7 和8 D. 8 和9【考点】估算无理数的大小;二次根式的乘除法.【分析】先把各二次根式化为最简二次根式,再进行计算.【解答】解:6X.祗++VIQ26X亭+第=2+第,/6< 2+3/2 < 7,.•.Vsx成耐的运算结果在6和7两个连续自然数之间,故选:B.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小.23 .估计JTT的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】计算题.【分析】由于9<11<16,于是帆后,从而有3<Vn<4.【解答】解:: 9<11<16,.•.凤叵3c Vn< 4.故选c.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.二、填空题24 .把7的平方根和立方根按从小到大的顺序排列为-小〈揖</ .【考点】实数大小比较.【专题】计算题.【分析】先分别得到7的平方根和立方根,然后比较大小.【解答】解:7的平方根为-阴,阴;7的立方根为;沂,所以7的平方根和立方根按从小到大的顺序排列为- ^<V T<VT.故答案为:-田〈轲〈沂.【点评】本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.25 .若a<&<b,且a、b是两个连续的整数,则a b= 8 .【考点】估算无理数的大小.【分析】先估算出巡的范围,即可得出a、b的值,代入求出即可.【解答】解:.「2<遥<3,a=2, b=3,a b=8.故答案为:8.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出通的范围.26 .若两个连续整数x、y满足x<,+1<y,则x+y的值是7 .【考点】估算无理数的大小.【分析】先估算近的范围,再估算近+1,即可解答.【解答】解:3C同<4,. x< V5+1<y,•.x=3, y=4,x+y=3+4=7故答案为:7.【点评】本题考查了估算无理数的大小,解决本题的关键是估算道的范围.27 .黄金比与白> ' (用“>"、“=”填空)【考点】实数大小比较.【分析】根据分母相同,比较分子的大小即可,因为2Vm<3,从而得出泥T>1,即可比较大小.【解答】解:.「2〈近<3,/. 1< V5- 1<2,・建富… 2 2,故答案为:>.【点评】本题考查了实数的大小比较,解题的关键是熟练掌握,在哪两个整数之间,再比较大小.28 .请将2、当、道这三个数用连结起来左》函>2 .【考点】实数大小比较.【专题】存在型.【分析】先估算出门的值,再比较出具大小即可.【解答】解::旄=2.236, 1=2.5 ,.•.£>芯>2.故答案为:手>泰>2.【点评】本题考查的是实数的大小比较,熟记点=2.236是解答此题的关键.29 .旧的整数音份是3 .【考点】估算无理数的大小.【分析】根据平方根的意义确定后的范围,则整数部分即可求得.【解答】解:: 9<13<16,「•3<工<4,「•旧的整数部分是3.故答案是:3.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.30 .实数幅-2的整数部分是3 .【考点】估算无理数的大小.【分析】首先得出我的取值范围,进而得出场-2的整数部分.【解答】解:: 5<疝<6,・.厄-2的整数部分是:3.故答案为:3.【点评】此题主要考查了估计无理数大小,得出收的取值范围是解题关键.。

华东师大版数学八年级上册数学试卷

华东师大版数学八年级上册数学试卷

华东师大版数学八年级上册数学试卷选择题:1. 下列四个数中,哪个是一个质数?A) 12B) 17C) 20D) 252. 若一个三角形有两个边长分别为5cm和8cm,那么第三条边的可能长度是:A) 12cmB) 7cmC) 15cmD) 3cm3. 某班有35名学生,其中男生占总人数的40%,则女生人数是:A) 15B) 20C) 17D) 124. 若一个圆的半径为6cm,则其周长约为:A) 18cmB) 12cmC) 36cmD) 24cm5. 一个矩形的长是12cm,宽是5cm,则它的面积是:A) 60平方厘米B) 42平方厘米C) 24平方厘米D) 30平方厘米填空题:1. 12的平方根是________2. 若一个数的四倍增加了9等于33,那么这个数是________3. 在一个标准的骰子上,三个相对的面的数字之和是________4. 如果一辆汽车每小时行驶60公里,3小时后行驶的总里程是________公里5. 一块土地的长度是8米,宽度是5米,面积是________平方米应用题:1. 某商店有500个苹果,每天售出30个,问多少天能售完?2. 小明学习数学用了1小时,语文用了45分钟,求他学习这两门课的总时间。

3. 一个长方形花园的长度是15米,宽度是8米,围绕着花园修一圈小路,小路的面积是3平方米,求小路的宽度。

4. 若一个长方形的周长是32厘米,宽为6厘米,求该长方形的面积。

5. 某班同学组织篮球比赛,男生队有15人,女生队有10人,男生队的人数是女生队的几倍?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学试题
2015.10.22
一、选择题(每小题3分,共36分)
1. 下列交通标志图案是轴对称图形的是()
2.下列说法中正确的是( )
A.面积相等的两个图形是全等形
B.周长相等的两个图形是全等形
C.所有正方形都是全等形
D.能够完全重合的两个图形是全等形
3.点(3,2)关于x轴的对称点为( )
A.(3,-2)
B.(-3,2)
C.(-3,-2)
D.(2,-3)
4. 如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()
A. ∠BCA=∠F
B. ∠B=∠E
C. BC∥EF
D. ∠A=∠EDF
5. 用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A/O/B/=∠A O B的依据是
( )
A.ASA
B.SAS
C.SSS
D.AAS
6. 下列四种图形都是轴对称图形,其中对称轴条数最多的图形是
()
A. 等边三角形
B.矩形
C.菱形
D.正方形
7.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若
CD=4,则点D到AB的距离是( )
A.2
B.3
C.4
D.5
8. 一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合
要求的是( )
...
9.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=4cm,则BD等于( )
A.2cm
B.3cm
C.4cm
D.5cm
10. 如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为( )
A.1cm B.2cm C.3cm D.4cm
11. 如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A/B/C/D/E/F/.下列判断错误
..的是().
A. AB=A/B/
B. BC//B/C/
C.直线l⊥BB/
D.∠A/=120°
12. 如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出( )
A.1个
B.2个
C.3个
D.4个
二、填空题(每小题3分,共24分)
13. 写出一个成轴对称图形的汉字:______________
14.如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .
15. 如图,在△ABC中,AB=AC,D为BC的中点,则△ABD≌△ACD,其根据是______.。

相关文档
最新文档