线性代数 2-9 第2章9讲-矩阵的秩(2)
27矩阵的秩PPT教学课件

3 2 1 1
例3
A
aij
34
0
4
0 4
0 2
0
3
其中三阶子式共有4个,其值均为0, 例如
32 1
321
0 0 0 0, 0 0 0 0
4 4 2
443
r3
再观察二阶子式 3
2 4 0,
44
R( A) r 2.
第4页/共27页
例4
1 1 1 2
A
aij
第10页/共27页
对 (1),(2) 两种情形,显然B 中与 Dr 对应的 子式 Dr Dr 0,故 R(B) r.
对情形 (3),
Dr ri krj ri k rj Dr kDˆ r ,
若Dˆ r 0,
因 Dˆ r 中不含第 i 行知 B中有不含第 i 行的 r 阶 非零子式 , R(B) r.
第14页/共27页
3 2 0 5 0
A
3 2
2 0
3 1
6 1 5 3
1 6 4 1 4
1 6 4 1 4
r1 r4
3
2
3
6
1
r4 r2
2 0 1 5 3 3 2 0 5 0
第15页/共27页
1 6 4 1 4
3 2 3
6
1
r2 3r1
2 0
0 4
1 3
A P11 P2 BQ2Q11
设P P11P2 , Q Q2Q11 , 则P, Q可 逆 , 且
A PBQ
A, B等价。
第22页/共27页
推论 A为m n阶矩阵,P, Q分别为m, n阶可逆阵,则
r(PA) r( AQ) r(PAQ) r( A).
线性代数3.3矩阵秩-PPT精选文档

1 1 2 2 1 2 r r2 1 3 r r 1 3 解 因为 A 2 5 3 2 0 3 7 1 5 0
2 2 1 1 7 0 1 7 2
1 2 2 1 1r r 2 3 0 1 7 0 所以,秩(A) 3。 0 0 0 2
若 B 可逆时, r (A B ) r (A )。
( A Br ) () Ar () B (5)如果 A 。 m nB np O,则 r
(6)r ( A ) +
r
( B ) ≤ n。
阶矩阵
(3)对于 n
A
,若 A n 。因此,可逆矩阵又称满秩矩阵,
不可逆矩阵(奇异矩阵)又称降秩矩阵。
(4)由于行列式与其转置行列式相等,因此
AT
的子式与
A
的子式对应相等,从而
T r(A ) r(A )
(5)该定义揭示了矩阵秩的本质。 例4 求矩阵 A 和矩阵 B 的秩,其中
T T ) r(B )。 r(A ) r(A ) , r(B ) r(B ),因此 r(A
总之,若 A 经有限次初等变换变为 B (即
) r(B )。 A B),则 r(A
【注】求矩阵
A
行阶梯形, 秩的方法:A
r
行阶梯形中非零行的行数,即是它的秩。
1 2 2 1 例5 求矩阵 A 2 5 3 2 的秩。 3 7 1 5
3.3 矩阵的秩
一 矩阵秩的概念
二
求矩阵秩的方法
一、矩阵秩的概念
定义1 在 mn 阶矩阵 A 中,任取 k 行与
k
列
, n ), ( k mk 位于这些行列交叉处的 k
线性代数 矩阵的秩

小结. 求m × n 矩阵A 的秩r(A), 可用以下方法: 1. 对于比较简单的矩阵, 直接用秩的定义 直接用秩的定义. .
∼
1 0 0 0
0 1 0 4
0 1 0 −1 0 0 5 0
2. 用有限次初等变换, 用有限次初等变换, 将矩阵A变为它的等价 标准形 , 则 r = r( A ) . O O 3. 用有限次行初等变换, 用有限次行初等变换,将矩阵A变为梯矩阵, 则 r(A)等于该梯矩阵的非零行的行数 等于该梯矩阵的非零行的行数. (方法2 与方法3 相比, 方法3 较为简单.)
例1 求下列矩阵的秩: 求下列矩阵的秩:
(1) A = 2 2
1 1
2 4 8 (2) B = 1 2 1
(3) C = 2
1 2 4 1 4 8 2 3 6 2 0
.
解 (1)因为
1 1 a = 1 ≠ 0 而 det A = 1 1 = 0 A= 11 , 2 2 2 2 故 r ( A) = 1
又B 并无3阶子式, 阶子式,故 r (B) =2.
8 2 2 0
故, 矩阵C 的秩不小于2.
= −3 ≠ 0
另外, 因为矩阵 C 不存在高于3阶的子式, 可知r (C) ≤ 3. 又因矩阵C 的第1, 2行元是对应成比例的, 行元是对应成比例的, 故C 的任一 3阶 子式皆等于零. 子式皆等于零.因此
0 0 1 0
4 3 −3 4
1 0 B= 0 0
0 1 0 0
−1 −1 2 0
0 0 1 0
4 3 −3 4
1 0 (2) 每个台阶只有一行, 每个台阶只有一行,台阶 A = 0 数即是非零行的行数, ,阶梯 数即是非零行的行数 0 线的竖线后面的第一个元素
线性代数-第2章

第2章对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。
矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。
任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。
通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。
考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。
总而言之,初等变换不会改变矩阵的秩。
因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。
矩阵的秩,同时又可定义为不为零的子式的最高阶数。
满秩矩阵的行列式不等于零。
非满秩矩阵的行列式必为零。
既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。
另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r<n,有无穷多解。
齐次线性方程组的解的结构问题,可以用基础解系来表示。
当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。
通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。
非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。
在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。
矩阵的加法和数乘,与向量的运算类同。
矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。
即可以把一个矩阵看作是一种线性变换在数学上的表述。
矩阵的乘法,反映的是线性变换的叠加。
如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。
线性代数§3.3矩阵的秩

设A为n阶可逆方阵. 因为| A | 0, 所以, A的最高阶非零子式为| A |, 则R(A)=n.
故, 可逆方阵A的标准形为单位阵E, 即A E. 即可逆矩阵的秩等于阶数. 故又称可逆(非奇异)矩 阵为满秩矩阵, 奇异矩阵又称为降秩矩阵. 1 2 2 1 1 2 4 8 0 2 , b , 例5:设 A 2 4 2 3 3 3 6 0 6 4 求矩阵A和矩阵B=(A | b)的秩. 分析: 设矩阵B的行阶梯形矩阵为B=(A| b), 则A就是A的行阶梯形矩阵. 因此可以从B=(A| b)中同时考察出R(A)及R(B).
性质6: R(A + B) R(A) + R(B). 证明: 设A, B为mn矩阵, 对矩阵(A+B ¦ B)作列变 换: ci – cn+i (i =1,2, · · · , n)得, (A+B ¦ B) (A+O ¦ B) B) R(A) + R(B). 于是, R(A+B) R(A+B ¦ B) =R(A+O ¦ 性质7: R(AB) min{R(A), R(B)}. 性质8: 若AmnBnl =O, 则R(A)+R(B) n . 这两条性质将在后面给出证明. 例7: 设A为n阶方阵, 证明R(A+E)+R(A–E) n . 证明: 因为(A+E)+(E–A)=2E, 由性质6知, R(A+E)+R(E–A)R(2E)=n, 而R(E–A)=R(A–E), 所以 R(A+E)+R(A–E) n .
§3.3 矩阵的秩
一、矩阵秩的概念
由上节讨论知: 任何矩阵Amn, 总可以经过有限次 初等行变换把它们变为行阶梯形矩阵和标准形矩阵. 行阶梯形矩阵中非零行的行数, 也就是标准形矩阵中 的数字r 是唯一确定的. 它是矩阵理论中非常重要的数 量关系之一——矩阵的秩. 定义: 在mn矩阵A中任取 k 行 k 列( km, kn ), 位于这 k 行 k 列交叉处的 k2个元素, 不改变它们在A 中所处的位置次序而得到的 k 阶行列式, 被称为矩阵A 的k阶子式. k C k 个. mn矩阵A的k阶子式共有 C m n
线性代数第2章矩阵

1 0
0 1
+ 00
2n
0
=
1 0
2n
1
.
2.2.12 转置矩阵
将 m n 矩阵
a11 a12
A
a21
a22
am1 a m2
a1n
a2n
amn
的行、列互换得到的矩阵,称为A的转置矩阵, 记为A T,即
a11 a21 AT a12 a22
am1
am
2
a1n a 2n
amn
其中 AT的第i行第j列的元素等于A的第j行第i列的
det
A
21
22
2n
a a a
n1
n2
nn
为方阵A的行列式,记为det A。
方阵行列式定理
定理1 设A、B是任意两个n阶方阵,则
det (AB) = det A det B。
这个定理告诉我们: 1. 两个同阶方阵相乘的行列式等于这两个方 阵的行列式相乘; 2. 两个同阶行列式相乘也可以先求相应的乘 积矩阵,然后求这个乘积矩阵的行列式。 一般地: (1) det (A+B)≠det A + det B (2) det( kA)≠k det A,若A为n阶方阵, 则有 det( kA) = k n det A。
例如 设
A
=
1 1
1 1 ,
B
=
1 1
1
1
,
则
1 1 1 1 0 0
AB = 1
1 1
1
=
0
0 .
称矩阵A是B的左零因子,矩阵B是A的右零因 子。
2.2.11 矩阵A的m次幂
设A为n阶方阵,m为正整数,则
线性代数-矩阵的秩

设A
=
2 −2 3
−4 4 −6
8 −2 0
−036 , b
=
2 43
求矩阵A及矩阵B = ( A b)的秩. 解 分析:设 B 的行阶梯形矩阵为 B~ = ( A~,b~),
则 A~ 就是 A 的行阶梯形矩阵, 故从 B~ = ( A~,b~) 中可同时看出 R( A) 及 R(B).
1 − 2 2 − 1 1
故 R(AT A) = R(A).
又由于 B 也可经一次初等变换变为 A, 故也有 R(B) ≤ R( A).
因此 R( A) = R(B).
经一次初等行变换矩阵的秩不变,即可知经 有限次初等行变换矩阵的秩仍不变.
设A经初等列变换变为 B,也有R( A) = R(B).
设 A 经初等列变换变为 B, 则 AT 经初等行变换变为 BT , R( AT ) = R(BT ),
6 11
则这个子式便是A 的一个最高阶非零子式.
设 n 阶可逆矩阵 A, A ≠ 0, ∴ A 的最高阶非零子式为 A, R( A) = n, 故 A 的标准形为单位阵 E, A ~ E.
可逆矩阵的秩等于阶数 ,故称可逆矩阵 为满秩矩阵. 奇异矩阵为降秩矩阵 .
1 − 2 2 − 1 1
例5
− 2 0 1 5
解
13 02 −2 0
1 0
3 = 2 ≠ 0, 2
计算A的3阶子式,
−2
1 3 2 1 −2 2
− 1 = 0, 0 2 3 = 0, 0 − 1 3 = 0,
1
−2 0 5 −2 1 5
3 −2 2
2 − 1 3 = 0, ∴ R(A) = 2.
015
1 3 − 2 2 另解 对矩阵 A = 0 2 − 1 3 做初等变换,
矩阵的秩及其求法求秩的技巧

第五节:矩阵的秩及其求法一、矩阵秩的概念1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。
例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。
显然, 矩阵 A 共有 个 k 阶子式。
2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r+1阶子式(如果存在的话)全为0 , 称r为矩阵A的秩,记作R (A)或秩(A )。
规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果 An ×n , 且 则 R( A ) = n .反之,如 R ( A ) = n ,则因此,方阵 A 可逆的充分必要条件是 R ( A ) = n .二、矩阵秩的求法1、子式判别法(定义)。
例1 设 为阶梯形矩阵,求R(B )。
解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R(B ) = 2.结论:阶梯形矩阵的秩=台阶数。
例如()n m ij a A ⨯={}),m in 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯k n k m c c ()n m ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理2.9 (2)设 A 为 m n 矩阵, B为 m n 矩阵,则 r( A B) r( A) r(B).
7
矩阵秩的相关结论
例5 设四阶矩阵A 的秩为2,则其伴随矩阵A 的秩为 _____ .
解 解法1 由r( A) 2得A 的所有三阶代数余子式全为0,
从而A 0, 所以r( A) 0. 解法2 使 , r(B) n m .
又AB为m阶方程,当 r( AB) m 时,AB为降秩阵,
故 AB 0.
6
矩阵秩的相关结论
例4 已知A为n 阶矩阵,且满足A2 E,证明:r( A E) r( A E) n.
证 一方面,A2 E2 0
( A E)( A E) 0
n 4,r( A) 2,则r( A) 0.
定理2.10
n ,若r( A) n 设A为n 阶方阵,则r( A) 1 ,若r( A) n 1 .
0 ,若r( A) n 1
故应填 0
8
由于ai 0,bi 0 (i, j 1, 2, , n), 故A 0,所以r( A) 1. 从而r( A) 1
故应填 1
5
矩阵秩的相关结论
例3 设m n,A为m n矩阵,B为n m 矩阵,C AB, 证明:C 0.
当m n 时,由秩的定义知,r( A) n,r(B) n,
线性代数(慕课版)
第二章 矩阵
第九讲 矩阵的秩(2)
主讲教师 |
本讲内容
01 矩阵秩的定义 02 矩阵秩的性质 03 矩阵秩的相关结论
矩阵秩的相关结论
定理2.8 设A为m n矩阵,P、Q 分别为m 阶、n 阶满秩矩阵,则
r( A) r(PA) r( AQ) r(PAQ;)
1 0 2
例1
设A是4 3矩阵,且r( A)
得 r( A E) r( A E) n;
另一方面,
r( A E) r( A E) r[( A E) ( A E)] r(2E) n
r( A E) r( A E) n.
定理2.9 (4)若A 为m n 矩阵,B为n s 矩阵,且AB 0,则 r( A) r(B) n ;
4
矩阵秩的相关结论
a1b1 a1b2
例2
设A
a2b1
a2b2
anb1 anb2
a1bn
a2bn
,其中ai
0, bi
0
anbn
(i 1, 2, , n),则矩阵A的秩r( A) _____ .
解
a1
A
a2
b1
,
b2
,
, bn GH
an
r(G) r(H ) 1,
所以r( A) min{r(G), r(H )} 1,
2,而B
0
2
0
,
1 0 3
则r( AB) ____ .
102 解 因为 B 0 2 0 10 0. 即矩阵B满秩
1 0 3
r( AB) r( A) 2
故应填 2
3
矩阵秩的相关结论
定理2.9
(1)若A为m n矩阵,B为n s矩阵,则 max{r( A),r(B)} r( A, B) r( A) r(B; )
(2)若A,B均为m n 矩阵,则r( A B) r( A) r(B) ; (3)若A为m n 矩阵,B为n s 矩阵,则
r( A) r(B) n r(AB) minr( A), r(B);
(4)若A 为m n 矩阵,B为n s 矩阵,且AB 0,则 r(A) r(B) n.