配送运输中车辆路径问题研究综述

合集下载

车辆路径规划问题研究综述

车辆路径规划问题研究综述

车辆路径规划问题研究综述车辆路径规划问题是指在给定条件下,求解车辆如何合理地选择路径和行驶顺序,以达到某种最优化目标的问题。

在现实生活中,车辆路径规划问题广泛应用于物流配送、公交线路规划、交通流控制等领域,对于提高交通运输效率、减少能源消耗、缓解交通拥堵具有重要意义。

随着信息技术和智能算法的发展,车辆路径规划问题得到了越来越多的关注和研究。

一、车辆路径规划问题的分类车辆路径规划问题可以分为静态车辆路径规划和动态车辆路径规划两大类。

静态车辆路径规划是指在路网、需求、车辆等参数全部给定的情况下,确定车辆的最优路径和行驶顺序。

而动态车辆路径规划则是指在一定时间段内,根据实时交通信息和需求变化,动态地调整车辆的路径和行驶顺序。

静态车辆路径规划问题通常应用于物流配送、固定路线的公交线路规划等场景,而动态车辆路径规划问题更多地应用于交通流控制、共享出行等领域。

二、车辆路径规划问题的方法1. 传统方法在早期,对车辆路径规划问题的研究主要依赖于传统的规划和优化技术,如线性规划、整数规划、动态规划等。

这些方法在一定范围内能够解决一些简单的车辆路径规划问题,但对于复杂的实际问题往往效率不高,无法在合理的时间内给出最优解。

2. 启发式算法随着计算机科学和运筹学的发展,启发式算法逐渐被引入到车辆路径规划问题的研究中。

启发式算法是一类基于经验和规则的算法,能够在有限时间内找到接近最优解的解决方案。

蚁群算法、遗传算法、模拟退火算法等成为应用较多的启发式算法。

这些算法通过模拟自然界的优化过程,使得车辆路径规划问题的解空间得到了更好的搜索,能够有效处理一些中等规模的问题。

3. 智能算法近年来,随着人工智能和深度学习技术的发展,越来越多的研究者尝试将这些技术引入到车辆路径规划问题的研究中。

神经网络、深度强化学习等技术被应用于解决车辆路径规划问题,在一些复杂的场景和大规模问题中取得了较好的效果。

智能算法具有较强的适应性和泛化能力,能够在复杂的实际环境中进行路径规划和决策。

车辆路径规划问题研究综述

车辆路径规划问题研究综述

车辆路径规划问题研究综述车辆路径规划问题是指在特定条件下,对车辆的路线进行规划,以达到最优或最优化的目标。

它是一种典型的组合优化问题,涉及到多个领域,如计算机科学、数学、人工智能、交通运输、物流管理等。

研究这些问题的主要目的是为了解决一系列实际应用问题,如物流配送、智能交通管理、货车配送等。

本文将从路线规划问题的定义、算法、应用等方面进行综述。

一、定义车辆路径规划问题可以分为两大类:静态路径规划问题和动态路径规划问题。

静态路径规划问题是指在已知起点和终点的情况下,寻找一条最优路线,使得路线具有一定的性质或满足一定的限制条件。

这些限制条件可以是时间限制、路程限制、交通流限制、成本限制等。

常见算法如Dijkstra算法、A*算法、Floyd算法等。

而动态路径规划问题则是指车辆在运行过程中,需要实时调整路线,以适应环境变化或路况变化。

动态规划问题相对于静态规划问题而言,难度更大,需要更加复杂的算法来求解。

常见算法如遗传算法、模拟退火算法、福尔摩斯算法等。

二、算法1.贪心算法贪心算法是一种基于局部最优原则作出选择的策略。

该算法对于寻找单个最优解十分有效,但在寻找多个最优解或全局最优解时,可能会产生局部最优解而不是全局最优解的问题。

2.动态规划算法动态规划算法是一种可解决具有重叠子问题和最优子结构的问题的算法。

它以自底向上、递推的方式求解问题,具有高效、简单的特点。

该算法可以使我们更加深入地理解问题,在计算机视觉、自然语言处理等领域有广泛的应用。

3.遗传算法遗传算法是一种仿生优化算法,通过模拟进化的过程求解最优解。

在车辆路径规划问题中,该算法一般用于实现路线的优化,通过对种群的遗传进化,不断优化路线,达到最优化的目标。

4.强化学习算法强化学习算法是一种在不断试错过程中学习,以最大化预期收益的方法。

在车辆路径规划问题中,该算法可以用于实现车辆的自主控制和智能驾驶,根据环境变化或路况变化,快速做出反应和调整。

车辆路径规划问题研究综述

车辆路径规划问题研究综述

车辆路径规划问题研究综述车辆路径规划问题是指在给定的道路网络中,找到最佳的路径规划方案,使得车辆能够以最短的时间或最短的距离到达目的地,并且避免拥堵、交通事故等因素的影响。

这个问题在现代交通管理、物流配送等领域中具有重要的应用价值,因此吸引了大量的研究者投入其中。

本文将对车辆路径规划问题的研究现状进行综述,探讨相关的算法、模型以及应用情况,以期为相关领域的研究者提供参考。

一、车辆路径规划问题的分类车辆路径规划问题可以根据不同的约束条件和目标函数进行分类。

根据约束条件的不同,可以将车辆路径规划问题分为静态路径规划问题和动态路径规划问题。

静态路径规划问题是指在起点和终点已知的情况下,通过对道路网络的分析和计算,找到最优的路径规划方案。

而动态路径规划问题则考虑了实时交通信息的影响,需要根据实时的道路状况对路径进行调整,以求得最优的行驶方案。

根据目标函数的不同,车辆路径规划问题可以分为最短路径问题、最小耗费路径问题、最短时间路径问题等。

最短路径问题是寻找两点之间的最短路径,即使得权重和最小的路径。

最小耗费路径问题是在考虑了车辆油耗、路费等因素的基础上,寻找最小耗费的路径。

最短时间路径问题则是在考虑了交通拥堵、限速等因素的基础上,寻找最短时间的路径。

车辆路径规划问题的解决需要借助于一系列的算法,常用的算法包括Dijkstra算法、A*算法、遗传算法、模拟退火算法、禁忌搜索算法等。

Dijkstra算法是一种经典的最短路径算法,通过不断更新起点到各个节点的最短距离来找到最短路径。

A*算法是一种启发式搜索算法,它结合了Dijkstra算法和启发式函数,能够更快的找到最短路径。

遗传算法、模拟退火算法、禁忌搜索算法等是一些元启发式算法,它们通过模拟生物进化、物理退火等过程来搜索最优解,适用于复杂的路径规划问题。

在动态路径规划问题中,常用的算法包括实时A*算法、实时Dijkstra算法、实时禁忌搜索算法等。

这些算法能够结合实时的交通信息,动态调整路径规划方案,以应对复杂的交通环境。

配送运输中车辆路径问题研究综述

配送运输中车辆路径问题研究综述

䝽䘱䘀䗃ѝⲴ䖖䖶䐟 䰞仈⹄ウ㔬䘠㾱˖䝽䘱䘀䗃ѝⲴ䖖䖶䐟 䰞仈аⴤ 䘀ㆩ 亶 Ⲵ⹄ウ✝⛩ѻаDŽ Ҿ䖖䖶䐟 䰞仈Ⲵ ⭘㛼 ˈ 㓣 㔃Ҷ ㊫䰞仈 ≲䀓㇇⌅Ⲵ⹄ウ䘋 ˈ 䎻 ˈѪ⴨ 䢤DŽ䭞䇽˖⢙⍱䝽䘱˗䖖䖶䐟 䰞仈˗䙊⭘ ㇇⌅˗㔬䘠DŽThe Current Situation and Development Trends on Vehicle Routing Problems of distribution managementAbstract: Vehicle routing problem is one of the attractive research area in the circles of operations research. In this paper, on the basis of introducing briefly the application background, the research classified the vehicle routing problem, analyzed and summarized the progress of different type of problems and solution algorithms. Furthermore, the research progress of the problems is also discussed. It is expected to provide inference for relevant research work.Key words: distribution management; vehicle routing problem; heuristics; overview.䀶䲿⵰㓿⍾Ⲵ 、 Ⲵ䘋↕ˈ⢙⍱ӗъ䗵䙏 ˈ Ѫ ≁㓿⍾ Ⲵ 㜹 ⹰ӗъˈ ≤ 㺑䟿ањ ⧠ԓ 〻 㔬 Ⲵ䟽㾱 ḷDŽкц㓚80 ԓԕ ˈ ⢙⍱ӗъⲴ ˈ⢙⍱ъ Ѫањ⤜・Ⲵӗъ䗵䙏 䎧DŽ❦㘼ˈ ⢙⍱ъӽ Ҿ 㓗䱦⇥ˈо 䗮 ⴨∄䘈 а Ⲵ 䐍ˈ ѝ ケ Ⲵ䰞仈 ⢙⍱ 䖳儈DŽ 㔏䇑[1]ˈ ⢙⍱ 䍩⭘Ѫ7.1зӯ ˈ GDPⲴ∄䟽Ѫ17.8%ˈ㘼 㖾 ㅹ 䗮 ⢙⍱ 㓖 GDPⲴ10%ˈ丙 ㅹѝㅹ 䗮 Ⲵ∄䟽㓖Ѫ15%DŽ䗷儈Ⲵ⢙⍱ Ѫ 㓖 ≁㓿⍾ Ⲵ䟽㾱 ㍐DŽ ↔ˈ 儈⢙⍱ъⲴ、 ㇑⨶≤ ǃ䱽վ⢙⍱ ӏ䴰䀓 Ⲵ 䭞 䰞仈DŽ䘀䗃 ⢙⍱ Ⲵ䟽㾱㓴 䜘 DŽ 䘀䗃 ⢙⍱ 䍩⭘Ⲵ∄ 䖳儈ˈ㓖Ѫ50%[1]DŽ䱽վ䘀䗃 ˈ 儈䘀䗃 ⦷ǃ 䘋⢙⍱ъ 㔝 Ⲵ䟽㾱䙄 DŽѪ⢙⍱䝽䘱ѝⲴ 䭞а⧟ˈ䖖䖶䐟 䰞仈˄Vehicle Routing Problem, VRP˅ 䘀䗃㓴㓷Ո ⲴṨ 䰞仈ѻаDŽ㠚1959 Dantzig Ramser[2]俆⅑ ԕ ˈVRP Ѫ䘀ㆩ 㓴 Ո 亶 Ⲵ ⋯о⹄ウ✝⛩ѻаDŽ⧠ ⭏ӗѝˈ䛞 䘀䗃ǃ 䖖 ⊭䖖䈳 ㅹ䈨 䰞仈䜭 ԕ 䊑ѪVRPDŽ ↔ˈ VRPⲴ␡ ⹄ウˈ ⵰䟽㾱Ⲵ、 ѹ 〻 ⭘ԧ DŽ 㓣 㔃ҶVRP Ⲵ⹄ウ䘋 ˈ ҶVRPⲴ 䎻 ˈѪ⴨ 㓿傼 䐟DŽ1. 䖜䖼䐥 䰤从Ⲻ 䘦Ր㔏кˈ 䖖䖶䐟 䰞仈Ⲵа㡜 䘠Ѫ[3, 4]˖ а㌫ 㔉 Ⲵ ˄䘱䍗⛩ 䍗⛩˅ˈ⺞ 䘲 Ⲵ䝽䘱䖖䖶㹼傦䐟㓯ˈ Ӿ䝽䘱ѝ ˈ ⅑ 䇯䰞 њ ⛩ˈ 䘄 䝽䘱ѝ ˈ ┑䏣а Ⲵ㓖 Ԧл˄ 䖖䖶䖭䍗䟿ǃ 䴰≲䟿ǃ 䰤デ䲀 ㅹ˅ˈ 䘀䗃 ˄ ⭘䖖䖶 ǃ䖖䖶㹼傦䐟〻 䰤˅䗮 DŽ 1 ⽪ˈ ѝⲴ Ṷ㺘⽪䖖䖶 ⛩˄ 䖖 䝽䘱ѝ ˅ˈ ⛩㺘⽪䴰㾱䇯䰞Ⲵ ⛩ˈ㓯⇥㺘⽪є⛩ѻ䰤Ⲵ䘎 䐟⇥ˈ ѝ⇿ 㓯⇥ ⵰ањ䍩⭘˄ 䐍⿫ 㹼傦 䰤˅DŽ1 䖜䖼䐥 䰤从⽰Fig.1 Schematic figure of VRPⲴ䖖䖶䐟 䰞仈ѫ㾱 ԕлṨ 㾱㍐[5]˖䚃䐟㖁㔌˄Road Network˅ǃ ˄Customer˅ǃ䝽䘱ѝ ˄䖖 ˅˄Distribution Center, Depot˅ǃ䖖䖶˄Vehicle˅ǃ傮傦 ˄Driver˅ǃ䲀 Ԧǃ㹼傦䍩⭘ 㹼傦 䰤ˈԕ Ո ⴞḷ˄Objective˅DŽ њ㾱㍐Ⲵ⢩ 㿱㺘1DŽ㺞1 䖜䖼䐥 䰤从Ⲻ㓺 㾷㍖Tab. 1 Key elements of VRP㓴 㾱㍐⢩䚃䐟㖁㔌1. VRPⲴṨ 㾱㍐ѻа˗2. 䙊 ⭡ 㢲⛩ 㓴 Ⲵ䍻 㺘⽪DŽ 㺘⽪䐟⇥ˈ⛩㺘⽪䚃䐟Ӕ ⛩ǃ䝽䘱ѝ ˗3. ṩ 䐟㖁⴨㚄є⛩䰤Ⲵ䚃䐟⢩ ˈ⴨ Ⲵ Ѫ ˗ 䍻Ҹ⇿ 䶎䍏Ⲵ䍩⭘ 䟽ˈ є⛩䰤Ⲵ䘀㹼䐍⿫ˈ䘀㹼 䰤ㅹDŽ1. VRPѝ䖖䖶 Ⲵ 䊑ˈ Ҿ㖁㔌 ѝⲴ ⛩˗2. ⛩Ⲵ ㊫ ˖䘱䍗 ˄Delivery˅ǃ 䍗 ˄Pickup˅ є㘵˗3. ⛩Ⲵ 䴰≲䟿˖а⅑┑䏣ˈ ˄Split˅;4. ⛩Ⲵ 䰤˖䖖䖶 ӔԈ 䍗⢙ 㣡䍩Ⲵ 䰤˗5. ⛩Ⲵ 䰤デ˖ 㾱≲ Ⲵ 䰤 䲀ˈ Ѫ⺜ 䰤デ[6]䖟 䰤デ[7]˗6. ⛩ Ⲵ ⅑ ˖ Ո 㓗˗ ㊫ 亪ˈ 䘱䍗 䍗˗7. ⛩Ⲵ ㌫˖ ḀӋ лˈ ⛩Ⲵ䝽 ㌫ˈ Ӿањ 䍗❦ 䘱 оѻ䝽 Ⲵ⢩ 䘱䍗 ⛩DŽ䝽䘱ѝ 1. ⇿ 䖖䖶䐟㓯Ⲵ䎧⛩ 㓸⛩ˈ Ҿ㖁㔌 ѝⲴ ⛩˗2. 䖖 䟿˖ањ䖖 њ䖖 ˗3. 䖖䖶 䘄 䖖 ˖ VRP[5, 8]ˈ䰝 VRP˗4. 䖖 䰤デ˖ḀӋ лˈ䖖 䲀 ⢩↺㾱≲˄ Ⲵ 䰤 䰤˅˗5. 䖖 ѻ䰤Ⲵ ㌫˖ḀӋ лˈ䖖 䰤 䝽 ㌫ˈ Ӿањ䖖 䛓䟼 Ⲵ䖖䖶 享 оѻ䝽 Ⲵ Ⲵ䖖 DŽ䖖䖶1. 䖖䖶 㠚 䘈 』ˈ ԫ 䘄 ˗2. 䖖䖶㊫ ˖ VRPѝ 䇮䖖䖶Ѫ а㊫ ˈն 䱵䝽䘱㇑⨶ѝˈ䖖䱏 ⭡ н 㻵䖭㜭 ǃн ԕ Ⲵ 䖖䖶㓴 ˗3. 䖖䖶Ⲵ㻵䖭㜭 ˖䖖䖶 Ⲵ䖭䟽䟿 Ⲵ㻵䖭 䟿ㅹ˗4. 䖖䖶 ˖䖖䖶Ⲵ ˈ 䖖䖶䍝㖞䍩⭘ㅹ˗ ⭘ ս 䟼Ⲵ䍩⭘ ս 䰤Ⲵ䍩⭘ 㺑䟿˗5. 䖖䖶Ⲵ 㔝 ˄Duration˅˖䖖䖶 Ⲵ 䇨㹼傦䐍⿫ 䰤DŽ傮傦 1. 㔉傮傦 䘱䍗ԫ ˈ 享ㅖ 䰤Ⲵ 㿴 DŽ⴨ 傮傦 䲀 Ԧа㡜䜭 ⴨ Ⲵ䖖䖶䲀 ԦѝDŽ䲀 Ԧ1. 䖖䖶Ⲵ 䍏䖭н㜭䎵䗷䖖䖶Ⲵ㻵䖭㜭 ˗2. 㾱≲䘱䍗ǃ 䍗ǃ 䘱䍗 ˗3. 㾱≲Ⲵ 䰤デ 傮傦 Ⲵ 䰤 ˗4. 䇯䰞 Ⲵ亪 㾱≲DŽ㹼傦䍩⭘㹼傦 䰤1. ⛩о ⛩ѻ䰤ǃ䝽䘱ѝ о ⛩ѻ䰤Ⲵ㹼傦䐍⿫ 㹼傦 䰤DŽՈ ⴞḷ1. 䘀䗃 ˈ Ҿ 䴰Ⲵ䖖䖶 ˄ 㓯䐟 ˅ǃ 㹼傦䐍⿫˄ 䰤˅˗2. о Ⲵн ㅹ Ⲵ 㖊 ˗3. 㺑 㓯䐟кⲴ㹼傦 䰤 䖖䖶䖭䟽䟿DŽ2. 䖜䖼䐥 䰤从Ⲻ ㊱䙊䗷 к䘠VRPṨ 㾱㍐䱴 н Ⲵ⢩ 䘲 Ⲵ ˈ 㹽⭏ ⿽н Ⲵ䖖䖶䐟 䰞仈㊫ DŽ ⴨ ⹄ウ[5, 9, 10]ˈ 㿱ⲴVRP ㊫ 㹽⭏㊫ DŽ VRP㊫ 㻵䖭㜭 ⲴVRPǃ 䐟〻䮯 ⲴVRPǃ 䰤デⲴVRPǃ 〻䘀䗃ⲴVRPˈԕ 䘱䍗ⲴVRP˗ ⁑ Ⲵ ⹰кˈ㔃 н Ⲵ㓖 Ԧˈ ҶVRPⲴ㹽⭏㊫ ˈ 䲿 VRPǃ⁑㋺VRPǃ VRPㅹDŽ њ㊫ Ⲵ⢩ 㿱㺘2DŽ㺞2 䖜䖼䐥 䰤从Ⲻ㊱Tab. 2 Types of VRP ㊫ ⢩㻵䖭㜭 ⲴVRP˄Capacitated VRP, CVRP˅1. VRPѝ Ⲵ ˗2. 䜭 Ҿ㾱䘱䍗Ⲵ 㾱 䍗Ⲵˈ 䴰≲䟿 ⸕ˈфн ˗3. 䖖䖶 ㊫ ф䜭 ањ䝽䘱ѝ ˗4. 䖖䖶 㻵䖭㜭 Ⲵ䲀 ˗5. Ո ⴞḷ Ⲵ 䍩⭘ DŽ䐟〻䮯 ⲴVRP˄Distance-Constrained andCapacitated VRP, DCVRP˅1. 䖖䖶㻵䖭㜭 䲀 ˈ 䐟〻䮯 䲀 DŽ䰤デⲴVRP˄VRP with time windows, VRPTW˅1. 䲔Ҷ䖖䖶㻵䖭㜭 Ⲵ㓖 ˈ⇿њ 䜭 ањоѻ⴨㚄㌫Ⲵ㾱≲ Ⲵ 䰤 䰤˗2. Ѫ⺜ 䰤デVRP 䖟 䰤デVRPDŽ⺜ 䰤デ ⇿亩ԫ 享 㾱≲Ⲵ 䰤 ˈ䖟 䰤デ Ḁ亩ԫ н㜭 㾱≲Ⲵ 䰤㤳 ˈ 㔉Ҹа Ⲵ 㖊[11]DŽ〻䘀䗃ⲴVRP˄VRP with backhauls, VRPB˅1. 䳶㻛 2њ 䳶˖㾱≲䘱 а 䟿䍗⢙Ⲵ 〻 ԕ 㾱≲ а 䟿䍗⢙䘀 䝽䘱ѝ Ⲵ 〻 ˗2. 〻 〻 Ⲵ䴰≲ ⸕ф ˗3. 〻 享 Ҿ 〻 DŽ䘱䍗ⲴVRP˄VRP with pickup and delivery˅1. 䖖䖶нӵ 䘱䍗 ˈҏ Ⲵ䍗⢙˗2. ⇿њ ⛩ˈ㿴 㻵DŽ㹽⭏㊫VRP[5]˄Open VRP, OVRP˅1.н㾱≲䖖䖶 ԫ 䘄 ⛩ˈ 㤕㾱≲䘄 ⛩ˈ ⋯ 〻䐟㓯䘄 DŽ䖖 VRP˄Multiple Depots VRP, MDVRP˅1. њ䝽䘱ѝ ˈ䖖䖶 ԕӾԫօањ䝽䘱ѝ ⍮ ˈ ԫ ˈ䖖䖶ҏ ԕ䘄 ԫօањ䝽䘱ѝ ˗2. 䰞仈 Ѫ DŽ䙊 䇮Ḁњ䖖 Ⲵ䖖䖶ӽ䴰䘄 䈕䖖 ˈ≲䀓 ˈ ➗Ḁ⿽㇇⌅ 䝽㔉Ḁњ䖖 ˈ❦ ➗ а䖖 VRP䘋㹼≲䀓[12]DŽ䖖 VRP[13]˄Heterogeneous Fleet VRP,HVRP˅1. 䖖䖶Ⲵ н ˈ䙊 䖖䖶Ⲵ䖭䟽䟿на㠤DŽ䴰≲ ⲴVRP[14]˄VRPwith Split Deliveries˅1. Ⲵ䴰≲ ԕ 㻛 њ䖖䖶 DŽ䲿 VRP˄Stochastic Vehicle Routing Problem, SVRP˅1. Ѫ䲿 VRPǃ䲿 䴰≲VRPǃ䲿 㹼傦 䰤VRP˗2. 䲿 VRP ⢙⍱亶 㓿 ⧠˗3. Ҿ䲿 䴰≲VRPˈ⺞ Ⲵ ⸕ˈն Ⲵ ⺞䴰≲䟿 ⸕ˈ ⟳⋩䝽䘱䰞仈˗4. Ҿ䲿 㹼傦 䰤VRPˈ⹄ウ䖳 ˈ㘼 䲿 㖁㔌 ⸝䐟 䰞仈Ⲵ⹄ウ䖳␡ [15, 16]DŽ⁑㋺VRP˄Fuzzy VRP, FVRP˅1. ḀӋ ˄ 䴰≲ǃ䐍⿫ǃ 䰤デ[3]˅ ⌅ ⺞ 䘠˗2. ⁑㋺ᾲ ⁑ ㇇⌅ 䀓 ↔㊫䰞仈DŽVRP˄Periodic VRP, PVRP˅1. VRPⲴ ˈVRP⹄ウⲴ 䖖䖶Ⲵ ˈ㘼PVRP 䖖䖶Ⲵањ Ⲵ ˈ ањ ˈ⇿њ ┑䏣䴰≲Ⲵ лˈ 㻛 а⅑DŽ䶎 〠㖁㔌VRP˄Asymmetric network VRP, AVRP˅1. ⧠ ѝˈ⭡Ҿ 㹼䚃 ⾱→ 䖜ㅹӔ䙊㇑ ˈ є 䘄Ⲵ䐍⿫ 䰤 н⴨ㅹ˗2. ⴞ Ⲵ≲䀓㇇⌅䜭 Ҿ䶎 〠TSP䰞仈Ⲵ㇇⌅[17]DŽVRP˄Dynamic VRP, DVRP˅1. 䖖䖶 ˈ䈳 н⺞ 䜘 н⺞ ˗ 䖖䖶 ˈ ⧠ Ⲵ䈳 ˗2. ѹкˈ䲿 VRPˈ⁑㋺VRPˈԕ 㖁㔌VRP䜭 ҾDVRPDŽ↔ ˈ䘈 ԕ 䰤デ㓖 о Ԇ㓖 Ԧ㔃 ˈ 䰤デ㓖 Ⲵ 䘱 ъVRPˈ 䰤デ㓖 Ⲵ 〻䘀䗃VRPㅹDŽ3. 䖜䖼䐥 䰤从Ⲻ≸䀙㇍⌋VRP ⭼ 䇔ⲴNP䳮䰞仈[18]DŽVRP㻛 ˈ ≲䀓㇇⌅Ⲵ 䙐аⴤ ⹄ウⲴ䟽⛩ 䳮⛩DŽⴞ ⿽≲䀓VRPⲴ㇇⌅ˈ 䍘к Ѫ㋮⺞㇇⌅ ㇇⌅є ㊫DŽ㋮⺞㇇⌅ Ҿ ѹ 䇱 ˈ ≲ Ո䀓Ⲵ㇇⌅DŽⴞ ⭘Ҿ≲䀓VRP ԓ㺘 Ⲵ㋮⺞㇇⌅ѫ㾱 ⭼䲀⌅[19]˄Branch and Bound Approach˅ǃ 䶒⌅[20]˄Cutting Planes Approach˅ǃ㖁㔌⍱㇇⌅˄Network Flow Approach˅[21] 㿴 ⌅˄Dynamic Programming Approach˅[22]DŽ⭡ҾVRP NP-䳮䰞仈ˈ ⴨ Ⲵ㋮⺞㇇⌅Ⲵ䇑㇇䟿а㡜䲿⵰䰞仈㿴⁑Ⲵ 䮯˗ф ⛩䎵䗷50 ˈ㋮⺞㇇⌅ на ≲ 䰞仈Ⲵ Ո䀓[23]DŽ⴨ ˈ ⭘䰞仈⢩ ѝㅹ䇑㇇ 䰤 㧧 VRPⲴ⅑Ո䀓 ┑ 䀓Ⲵ ㇇⌅ Ѫ 㘵Ԝ⹄ウⲴ䟽⛩DŽ ㇇⌅ Ѫ㓿 ㇇⌅˄Classical Heuristics˅ 䙊⭘ ㇇⌅˄Metaheuristics˅DŽ3.1 㔅 ㇍⌋˄1˅㢲㓖㇇⌅˄Saving Methods˅⭡Clark WrightҾ1964 俆⅑ [24]ˈ а⿽ Ҿ㢲㓖 Ⲵ䖖䖶䐟㓯䙀↕ 䙐㇇⌅DŽ Ѫ˖ ⇿њ䝽䘱⛩ Ѫа 㓯䐟ˈ 䜘㓯䐟 Ⲵ䳶 Ѫ 䀓DŽ ањ⛩о ањ⛩⴨䘎 а Ⲵ㓯䐟ˈ Ⲵ㓯䐟㜭┑䏣㓖 Ԧˈ 㹼Ⲵˈ Ⲵ㢲㓖 ˄ 䟼〻ǃ䰤ㅹ˅ ѹѪ䘎 䘉є 㓯䐟Ⲵ㢲㓖 DŽӾ 㓯䐟ѝ䘹 㢲㓖 Ⲵ䗩䘋㹼а⅑㓯䐟 ˈ н 㹼ˈ㇇⌅㔃 DŽ䈕㇇⌅ ԕ ┑ 䀓ˈնна 㜭 䇱 Ո䀓DŽ Ո⛩ ⨶ㆰ ф ⧠ˈⴞ Ѫ VRP ㇇⌅ѝӗ⭏ 䀓Ⲵ㇇⌅DŽ䈕㇇⌅ ԕ ˈ 㘵 䘋㇇⌅䘋㹼Ҷ⹄ウˈԕ ≲䀓Ⲵ䍘䟿ˈѫ㾱 ԕл2⿽䙄 ˖а 䙊䗷 Ⲵ 㔃 ㆆ⮕ ⨶㢲㓖 [25, 26]˗Ҽ Ҿ 䝽㇇⌅˄Matching Algorithm˅Ո 䈕㇇⌅ѝⲴ䐟㓯 䗷〻[27, 28]DŽ˄2˅ ㇇⌅˄Sweep Algorithm˅⭡Gillett MillerҾ1974 [29]ˈ ҾĀ 㓴 㓯䐟āⲴ㇇⌅DŽ 䉃Ā 㓴ā ⍮㔉⇿䖶䖖а㓴䝽䘱⛩DŽа⿽ㆰ Ⲵ 㓴 ⌅ ԕ䝽䘱ѝ Ѫ ⛩ˈ ḷ 䶒 Ѫ њ ˈ ↕Ѫ⇿њ Ⲵ⛩ ⍮а䖶䖖DŽ 䉃Ā㓯䐟ā ⇿њ ˈ 䟷⭘ ⌅䘹 䝽⛩ˈ❦ 䟷⭘ ㇇⌅ 㓯䐟DŽ 䘋㹼Ҷа⅑Ā 㓴о㓯䐟āⲴ䐟㓯 䙐 ˈ䘈 䝽⛩ˈ 㔗㔝䘋 Ā 㓴о䐟㓯ā〻 DŽ ↔ ˈⴤ Ⲵ⛩ 䝽 ∅Ѫ→DŽⲴ ㇇⌅а⅑ 㜭ӗ⭏а 䐟㓯ˈ Ѫ ㇇⌅Ⲵ ˈаӋ 㘵⹄ウҶа⅑⭏ 㤕 㹼䖖䖶䐟㓯Ⲵ ⌅ˈ❦ 䙊䗷≲䀓ањ䳶 䰞仈 ⺞ ՈⲴ㓴 ˈ∄䖳 Ⲵ 1-㣡⬓㇇⌅[30, 31] 2-㣡⬓㇇⌅[32]DŽ䴰㾱 Ⲵ ˈ ㇇⌅ 䘲 Ҿ 䶒㔃 ˄Plannar Structure˅ⲴVRPˈ Ҿ䛓Ӌ ḵṬ㺇䚃 ⲴVRPˈ䈕㇇⌅ н䘲⭘DŽ˄3˅䛫 ㇇⌅˄Nearest-Neighbor˅䈕㇇⌅ а⿽ 䙐 䐟㓯⌅ˈ Ӿа ањ䝽䘱⛩Ⲵ㓯䐟 (䙊 䐍⿫䝽䘱ѝ 䘁Ⲵ⛩)ˈӾ 䘹 ⛩ѝㆋ䘹 ⛩ˈ Ӿ ⛩ѝ䘹 ањ⛩ Ѫ 㓯䐟Ⲵ㓸⛩ˈ 㓯䐟Ⲵ DŽԕ↔ 㓯䐟н 䘋㹼 ˈⴤ 㓯䐟⋑ ⛩Ѫ→DŽ ⛩ 䘹 ˈ ㇇⌅㔃 ˗ ˈ ⭏ а Ⲵ 㓯䐟ˈ䟽 䶒Ⲵ㓯䐟 䗷〻ˈⴤ㠣 ⛩䜭 䘹 DŽ˄4˅ ㇇⌅䈕㇇⌅㔃 㢲㓖㇇⌅о䛫 ㇇⌅Ⲵ ˈ 䝽䘱⛩㓣 䐟 ѝԕ 䝽䘱㓯䐟DŽ 〻 о䛫 ㇇⌅⴨լˈ Ӿ 㓯䐟 ˈ 䙐 㓯䐟ˈ ⋑ 㹼 а 㓯䐟DŽ䈕㇇⌅Ⲵ 䭞 䘹 䘲Ⲵ 䝽⛩ 㓯䐟Ⲵ ս㖞䘋㹼 DŽ˄5˅є䱦⇥㇇⌅˄Two-phase Process˅VRPє䱦⇥ ㇇⌅⹄ウѝˈ ԓ㺘 ⲴѪChristofidesㅹӪ[33]ԕ Fisher Jaikumar[34] Ⲵ㇇⌅DŽChistofidesㅹ Ⲵє䱦⇥㇇⌅ѝˈ єњ䱦⇥˖ 䐟㓯 䙐䱦⇥ԕ 㹼䐟㓯 䙐䱦⇥ˈ 䍘 㜭≲䀓ḷ VRPDŽFisher Jaikumarㅹ俆 䙊䗷≲䀓ањ ѹ ⍮䰞仈˄Generalized Assignment ProblemˈGAP˅ ⺞ 㹼Ⲵ亮 ⛩ 㓴ˈ❦ ҾTSP㇇⌅ ⺞ ⇿њ 㓴 Ⲵ䖖䖶䐟㓯DŽGAP ањNP䳮䰞仈ˈ䙊 䙊䗷 Ṭ ㇇⌅ ≲䀓DŽFisher Jaikumar 䲿 Ⲵ⹄ウѝ 㔉 Ҷ亮 ⛩䘹 Ⲵ ⌅ Ṭ ⌅[35, 36]DŽ❦㘼ˈ䈕 ⌅ 䲀 ˖а 䶒ˈ㇇⌅н 㕆〻ˈ 䇑㇇䙏 ⿽ 亮 䘹 ԕ Ṭ 䗷〻 䖳 ˗ а 䶒ˈ㤕䟷⭘Fisher Jaikumar Ⲵ⿽ 亮 ㆋ䘹 ⌅ Ṭ ⌅ˈ ㇇⌅Ⲵ 䖳 ˈа㡜 䳮䗮 㘵 㔉 Ⲵ䇑㇇㔃 [32]DŽ Fisher Jaikumar⹄ウⲴ ⹰кˈBramel Simchi-Levi[37]䙊䗷≲䀓ањ㜭 㓖 䘹 䰞仈 ⺞ ⿽ 亮 ⛩ˈՈ ҶFisher Jaikumar ⿽ 亮 ⛩䘹 ⌅ˈն 㘵 㔉 Ҷ 㜭 㓖 VRPк䶒⍻䈅Ⲵ㔃 DŽ ԕⴻ ˈ 䜘 㓿 ㇇⌅ 1960 -1990 䰤 ⲴDŽ 䱵 ⭘ѝˈ ḷ 䀓 䙐 ⌅ 䀓 䘋 ⌅䜭 Ҿ㓿 ㇇⌅DŽа 䶒ˈ 㜭 䀓オ䰤ѝ䘋㹼 䲀 ㍒ˈ 䖳⸝Ⲵ 䰤 ≲ ┑ 䀓˗ а 䶒ˈ䘉㊫㇇⌅㜭 䖳Ѫ ˈԕ 䱵 ⭘ѝ ⻠ Ⲵ䈨 㓖 Ԧˈ ↔ ъ䖟Ԧ ѝ㻛 ⌋ ⭘DŽⴞ ˈ 㓿 ㇇⌅亶 ˈ Ѿ 䘋㹼䟽 䘋Ⲵ DŽ3.2 䙐⭞ ㇍⌋㠚20ц㓚90 ԓˈ䙊䗷⁑ 㠚❦⧠䊑 䗷〻ˈ䇨 㘵 ҶаӋ≲䀓VRPⲴ䙊⭘ ㇇⌅ˈѪ≲䀓 㿴⁑Ⲵ 䝽䘱䰞仈 Ҷ Ⲵ 䐟DŽ䈕㊫ ⌅ 亶 ㍒ ǃ䇠 㔃 ǃԕ 䀓Ⲵ䟽㓴㔃 䎧 ˈ 䈳 オ䰤䘋㹼 ㍒ˈ⢩ Ⲵ 䘋㹼㓥␡䈅 ˈ䘉ṧ 㜭 Ո䀓䳶ѝ ㍒ˈ 㜭 䐣 䜘 ㍒亶 ˈӾ㘼 䇱Ҷ⿽㗔Ⲵ ṧ ˈ䚯 䲧 䜘 Ոˈ 儈Ҷ Ո䀓Ⲵᾲ⦷DŽ䘁 ˈ䙊⭘ ㇇⌅ 䖳 ˈ ⁑ 䘰⚛㇇⌅ǃ⾱ ㍒㇇⌅ǃ䚇Ր㇇⌅ǃ㲱㗔㇇⌅ǃ㋂ 㗔㇇⌅ǃ⾎㓿㖁㔌ǃ␧ ㇇⌅ㅹ䜭 ⭘ ≲䀓VRPDŽ 㢲 ԓ㺘 Ⲵ䙊⭘ ㇇⌅䘋㹼㔬䘠DŽ˄1˅⁑ 䘰⚛㇇⌅˄Simulated Annealing, SA˅1982 ˈKirkpatrickfㅹ փ䘰⚛ 㓴 Ո 亶 ˈ Ҷа⿽≲䀓 㿴⁑VRPⲴ 䘁լ㇇⌅ˈ ⁑ 䘰⚛㇇⌅˄SA˅DŽSAⓀҾ փ䘰⚛䗷〻Ⲵ⁑ ˈ 䍘к а⿽䲿 Ⲵ ㍒ ⌅DŽ ѝˈSA䟷⭘Metropolis ˈ ⭘а㓴〠ѻѪ 䘋 㺘Ⲵ ㇇⌅䘋〻ˈ ㇇⌅ 亩 䰤䟼㔉 ањ䘁լ Ո䀓DŽо㓿 ㇇⌅⴨∄ˈSA 䘠ㆰǃ ⭘⚥⍫ǃ ⭘ ⌋ 䖳 Ԧ䲀 ㅹՈ⛩ˈⴞ 䇨 Ո 䰞仈ѝ ⭘DŽⴞ ҾSAⲴ⹄ウˈ 㔃 ԆՈ ㆆ⮕ ⌅DŽ Tian[38]ㅹӪ 䙐Ҷа⿽ Ҿ Ո ㆆ⮕ⲴSA㇇⌅ ≲䀓VRPˈ ⭘ ㇇⌅ 䙐 䀓ˈ SAо2-opt㔃 ˈ ㇇⌅ѝ ⭘⑙ 䟽 ˈ 䗮 㓸⑙ ˈṩ ⑙ Ո Ⲵ⑙ 䟽 ㊫ ㇇⌅DŽLi[39]ㅹӪ SAо⾱ ㍒㇇⌅⴨㔃 ˈ ⭘TS㇇⌅ѝⲴ〫ս Ӕ ㇇ 㓯䐟 㓯䐟䰤Ⲵ ˈ㘼 SA Ѫ 〻 ˈṩ Ⲵ Ո䀓 䇮 Ⲵ⑙ ˈ ㇇⌅䘋㹼 ㍒DŽTavakkoli-Moghaddam[40]ㅹӪ 䛫䘁㇇⌅оSA㔃 ˈԕ⭘ ≲䀓 䖖 VRP 䴰≲ Ⲵ 䖖 VRPDŽ㜑 Տ[41]ㅹ 䲿 䙐VRP 䀓Ⲵ ⹰кˈ㔃 ⁑ 䘰⚛㇇⌅ㆆ⮕ˈ䟷⭘䐟 䰤䈳 䐟 Ո ⌅ˈ 䙏 VRP䘋㹼Ҷ≲䀓DŽ⭡ҾSAⲴ 䙏 䖳 ˈфо Ԇ㇇⌅⴨∄ˈSA н㜭 Ⲵ䀓[42]ˈ ↔ⴞ SA VRPѝⲴ ⭘⋑ ⾱ ㍒㇇⌅ 䚇Ր㇇⌅ ⌋DŽ˄2˅⾱ ㍒㇇⌅˄Tabu Search, TS˅1986 Glover Ҷ⾱ ㍒㇇⌅˄TS˅[43]DŽ Ҿ Ӫ㊫ 〻Ⲵа⿽⁑ ˈTS 䜘亶 ㍒Ⲵа⿽ ˈ а⿽ 䙀↕ Ո㇇⌅ˈ ˖㔉 ањ 䀓˄ 䀓˅ 䘹䀓ӗ⭏ ˄亶 㔃 ˅ˈ 䀓Ⲵ亶 ѝ⺞ 㤕 䘹䀓˗㤕 䘹䀓 Ⲵⴞḷ ՈҾ ⴞ Ѫ→ ㍒ Ⲵ³ 䀓´˄Best-so-for˅ˈ 㿶 ⾱ ⢩ ˈ⭘ ԓ 䀓 ³ 䀓´˗㤕н к䘠 䘹䀓ˈ 䘹䀓䳶ѝ䘹 䶎⾱ Ⲵ 䘹䀓Ѫ Ⲵ 䀓ˈ㘼 㿶 о 䀓ⲴՈ ˗к䘠є⿽ л䜭 ⴨ Ⲵ 䊑 ⾱ 㺘ˈ ⾱ 㺘ѝ 䊑Ⲵԫ ˗ ↔䟽 к䘠䘝ԓ ㍒䗷〻ˈⴤ㠣┑䏣㓸→ DŽ ԕⴻ ˈ亶 㔃 ǃ 䘹䀓䳶ǃ⾱ 䊑ǃ㰀㿶 ǃ㓸→ ㅹ䜭 TS 㜭Ⲵ 䭞DŽˈWillard[44], Pureza Franca[45] TS ⭘ҾVRPˈն䜭 㜭≲ 䖳 Ⲵ㔃 DŽ Osman WassanⲴTS㇇⌅ѝ[46]ˈ ⭘є⿽ 䀓ӗ⭏ ⌅˖ањ 㢲㓖㇇⌅о ⌅㔃 ˈ ањ 㢲㓖㇇⌅о ⍮⌅㔃 ˗ 䛫 㔃 ањє 䐟 䰤Ⲵ њ 㘵єњ䘎㔝Ⲵ ⛩ⲴӔ ˗ ⾱ 䮯 ⭡ањ 〻 ㍒ 䰤䘋㹼 ѹDŽ⍻䈅㔃 ⽪ˈ䘉є⿽TS ⧠ 䜭 Ҷ䖳 Ⲵ㔃 DŽ1994 ˈGendreau[47] Ҷ㓿 ⲴTaburoute㇇⌅ˈ 亶 㔃 ањ亦⛩Ӿ Ⲵ㓯䐟ѝ ˈ а 㓯䐟ѝˈ㘼䘉 㓯䐟 ⭘ԆԜ Ⲵ≲䀓TSPⲴ ѹ ⌅˄GENI˅ ӗ⭏Ⲵpњ 䛫䘁䀓ѻа˗ Ҿ⾱ ˈ Ӿ 䰤[5, 10]ѝ䲿 ањ ˗ ⭘Ҷа⿽ ṧ ㆆ⮕ˈѪ 㘳㲁䛓Ӌ〫 䖳 Ⲵ亦⛩Ⲵ 㜭 ˈ 䛓Ӌ㓿 㻛〫 Ⲵ亦⛩䘋㹼 㖊˗ ⭘՚䎧⛩ˈ⭏ њ䀓 ⇿ањ䜭䘋㹼 䲀Ⲵ ㍒ˈ❦ 䘹 ѝ 㘵Ѫѫ ㍒䗷〻Ⲵ 䀓˗⍻䈅㔃 㺘 ˈ䈕㇇⌅㜭≲ 儈䍘䟿Ⲵ㔃 ˈф ≲ ⴞ Ѫ→Ⲵ 䀓DŽ1995 ˈRochat Taillard[48] Ҷ㠚䘲 䇠 ˄Adaptive Memory˅ᾲ ˈ 䘁 TS亶 ⧠Ⲵ Ⲵ䘋 ѻаDŽ ㍒䗷〻ѝ ⲴՈ䍘䀓 䎧 ˈ❦ 䙊䗷䘉Ӌ䀓Ⲵ㓴 ˈӗ⭏TSⲴ 䀓DŽањ㠚䘲 䇠 а㓴 њ ㍒䗷〻ѝн Ⲵ 䀓DŽ䘉Ӌ䀓ⲴḀӋ ㍐㻛 ˈ 䘋㹼н Ⲵ㓴 ԕӗ⭏ Ⲵ 䀓DŽ VRPѝˈӾ њ䀓ѝ 䘹 Ⲵ䖖䖶㓯䐟 㻛⭘ Ѫањ䎧⛩DŽ䘉њ ⌅ 㓿 ԆԜ 14њḷ VRP⍻䈅䰞仈ѝˈ≲ Ҷєњ ⴞ Ѫ→Ⲵ 䀓DŽ1998 ˈToth Vigo[49] Ҷа⿽ ⌋䘲⭘㤳 Ⲵㆋ㖁⾱ ㍒˄Granular Tabu Search, GTS˅DŽGTSⲴѫ㾱 ⓀҾ˖ањ ѝ䖳䮯Ⲵ䗩㻛 ањ Ո䀓ѝⲴ 㜭 DŽ ↔ˈ䙊䗷⎸ 䮯 䎵䗷ањ䟿 ˄Granularity˅Ⲵ Ⲵ䗩ˈ аӋ⋑ 䙄Ⲵ䀓 ㍒䗷〻ѝ н 㘳㲁DŽ㔃 㺘 ˈ GTS㜭 ⸝Ⲵ 䰤 ≲ Ⲵ䀓DŽ䘁 ˈBrandao[50] 䇮䇑ⲴTSѝˈ䛫 㔃 䘹䀓䳶 ⭡ ˈ ⭘Ҷй⿽〫 ˈ 䐟 䰤 ⛩ ǃ䐟 䰤 ⛩Ӕ ǃ䐟 ⛩Ӕ DŽ⾱ 䮯 ⭡[N/6ˈN/2]ѻ䰤Ⲵ䲿 ˈ ⭘ Ⲵ[N/3] Ѫ⾱ 䮯 䘋㹼 傼⭘ԕ ∄DŽBrandao Eglese[51]䇮䇑Ⲵ≲䀓 䐟 Ⲵ⾱ ㍒㇇⌅ѝˈԕ5⿽ ⌅㧧 䀓ˈ 䘹 ԧ䗩ǃ䘹 䍥䗩ǃ ǃ䘎 䗩 亦⛩(Connected Components)ǃ䐟 (Path Scanning)˗ 䛫 㔃 䗩 ǃ 䗩 є 䐟 кⲴ䗩Ӕ DŽ⭡ҾTS㇇⌅ 䀓 Ⲵ 䎆 ˈ 㘵ԕSolomon ⌅ Ѫ ㇇⌅ˈҏ 䟷⭘ ⌅ǃл ㇇⌅ǃK-tree㇇⌅ӗ⭏ 䀓DŽⴞ ˈTS 䖖VRPǃ 〻䖭䍗VRPǃ 䰤デ㓖 ⲴVRPǃԕ VRP䜭 䟿 ⭘DŽ˄3˅䚇Ր㇇⌅˄Genetic Algorithms, GA˅1975 ˈHolland[52] Ҷ䚇Ր㇇⌅˄GA˅DŽGA а⿽⁑ԯ⭏⢙䘋 䗷〻Ⲵ 䲿 ㍒ ⌅ˈ Ѫ˖ӾՈ 䰞仈Ⲵањ⿽㗔˄а㓴 㹼䀓˅ ˈ ➗䘲㘵⭏ Ո㜌 ⊠Ⲵ ⨶ˈ䙀ԓ˄Generation˅╄ ӗ⭏ 䎺 䎺 Ⲵањ⿽㗔˄а㓴 㹼䀓˅˗ ⇿аԓˈṩ њփ˄ 㹼䀓˅Ⲵ䘲 ˄ⴞḷ ˅ⲴՈ 䘹а䜘 Ո㢟њփ ˄㑱⇆˅ лаԓˈ 䘋㹼Ӕ ˈӗ⭏ ԓ㺘 Ⲵ䀓䳶 Ⲵ⿽㗔DŽ䘉њ䗷〻 㠤⿽㗔 㠚❦䘋 аṧⲴ ԓ⿽㗔∄⡦ԓ 䘲 Ҿ⧟ ˄ 㹼䀓∄ 㹼䀓 䘁䰞仈Ⲵ Ո䀓˅ˈ њ䘋 䗷〻ѝⲴ Ոњփ Ѫ䰞仈Ⲵ 㓸䀓DŽҾн ㊫ Ⲵ䰞仈ˈ օ䇮䇑а⿽ 㖾Ⲵ㕆⸱ Ṹаⴤ GAⲴ ⭘䳮⛩ѻаˈҏ GAⲴањ䟽㾱⹄ウ DŽҼ䘋 㕆⸱ ⌅ GAѝ ⭘Ⲵа⿽㕆⸱ ⌅ˈ❦㘼ˈ Ҿ≲䀓VRP䘉ṧⲴ 䰞仈 ˈҼ㓗 㕆⸱ а Ⲵ㕪䲧DŽ ↔ˈㅖ 㕆⸱ ⌅ ⌋䇔 DŽն ㅖ 㕆⸱ ⌅ ˈ 㔉GA Ҷ Ⲵ䰞仈ˈ㤕䟷 ㆰ Ӕ Պ ԓ㓯䐟ѝ Ӌ亦⛩䟽 ˈ аӋ亦⛩㻛䚇┿ˈ 㠤 㜭 䙽 亦⛩Ⲵ䶎⌅㓯䐟DŽ ↔ˈ 享 у䰘Ⲵ Ҿ亪 ⲴӔ ӗ⭏ Ⲵ ԓ DŽ䘁 㓿 Ҷ л ⌅[5]˖䜘 䝽Ӕ ⌅˄Partially Matched Crossover, PMX˅ǃ亪 Ӕ ⌅˄Order Crossover, OX˅ǃ ⧟Ӕ ⌅˄Cycle Crossover, CX˅ˈԕ 䗩䟽㓴Ӕ ⌅˄Edge Recombination Crossover, ERC˅DŽ Ҿ ˈҏ 㓿 ҶаӋу䰘Ⲵ ⌅ˈ ˄Remove and Reinsert˅ǃ ˄Swap˅ˈԕ 䘶䖜 ˄Inversion˅DŽⴞ ˈ≲䀓VRP OVRPⲴGA ⥞⴨ 䖳 ˈ㘼≲䀓 䰤デⲴVRP ㅹ ⲴGA ⥞⴨ 䖳 DŽ Ⲵ䲀 Ԧˈ⢩ 䰤デⲴ ˈаⴤ ⢥ ⵰ Ⲵ≲䀓 ⌅Ⲵ DŽ䘉㔉GA⭘ Ԉ 䲀 Ԧ 䶒Ⲵ ≲ ㄎҹ Ⲵ㔃 Ҷ ՊDŽ˄4˅㲱㗔㇇⌅˄Ant Colony Optimization, ACO˅㲱㗔㇇⌅ ⭡Dorigo, M., ㅹ[53]Ҿ1991 俆⅑ ⲴDŽACO 㠚❦⭼ѝⵏ 㲱㗔㿵伏㹼ѪⲴ 㘼 Ⲵа⿽⁑ 䘋 ㇇⌅DŽ 伏⢙ ˈ㲲㲱Պ 㓿䗷Ⲵ䐟 䙊䗷 а⿽ ◰㍐˄pheromoneˈ ㇇⌅ѝ〠Ѫ ㍐˅ ḷ䇠ˈ Ⲵ䟿 ṩ 䐟 䮯 伏⢙Ⲵㅹ㓗 DŽ䘉Ӌ ◰㍐Ѫ 㲲㲱 ˈ Ԝ 䘀伏⢙DŽⴞ ˈACO ⭘Ҿ ㊫VRPDŽBullnheimerㅹ[54]䪸 VRP䇮䇑Ҷу䰘Ⲵ㲱㗔䖜〫䘹 ㆆ⮕ˈ 㲱㗔 ㍒ ˈ ⭘2-OptՈ 䐟 ˗Gambardellaㅹ[55] ACO⭘Ҿ≲䀓VRPTWˈ 㘵䟷⭘єњ⿽㗔 Ո 䰞仈ˈањՈ 䖖䖶 ⴞˈањՈ 㓯䐟䮯 ˗Donatiㅹ[56] ACO⭘Ҿ 㖁㔌VRPˈ ㇇⌅ѝ ㍐ ѹѪањ 䰤 䎆䟿ˈ а 〻 к䀓 Ҷ 䰤デⲴ 㖁㔌VRP˗Montemanniㅹ[57]⹄ウҶACO 䖖䖶䐟 䰞仈Ⲵ ⭘ˈ Ҷањ⭡һԦ㇑⨶ǃ㲱㗔㇇⌅ǃ ㍐ ㆆ⮕3њ ㍐㓴 Ⲵ㌫㔏Ṷ ˗Pellegrini ㅹ[58]⹄ウҶн 䖖䖶ǃ 䖖 ǃ 䰤デㅹ㓖 ⲴVRPˈ ⭘2⿽ ⿽ACOՈ ≲䀓˗Gajpal Abad[59]ԕ㋮㤡㲲㲱 䐟 ㆆ⮕Ⲵ㲱㗔㌫㔏≲䀓Ҷ 䘱 ъⲴVRP˗Ugur Aydin[60] ҾACO ҶањӪ ӔӂTSP ⁑ 䖟ԦDŽ˄5˅␧ ㇇⌅а䙊⭘ ㇇⌅⹄ウ␡ Ⲵ ˈ⹄ウӪ 㓿䖳 ⿽ аⲴ ㇇⌅㔃 䎧 ˈԕ 儈VRPⲴ≲䀓䙏 䀓Ⲵ䍘䟿DŽ1995 ˈGloverㅹ[61] 䈅 GA TS⴨㔃 ˗䛾㤲⾕ 㜑 㔗[62]䙊䗷 䜘 ㍒㜭 Ⲵ⡜ ㇇⌅о ㍒㜭 Ⲵ䚇Ր㇇⌅㔃 ˈ 䙐Ҷ≲䀓⢙⍱䝽䘱䐟 Ո 䰞仈Ⲵ␧ 䚇Ր㇇⌅ˈ 㢟 Ո㔃 ˗䛡 ẵ[63]ˈ[64] ⹄ウҶ㋂ 㗔㇇⌅о Ԇ㇇⌅Ⲵ㔃 VRP 䰞仈кⲴ ⭘˗б⿻䴧[65]ㅹ ⚮ ㇇ 㲱㗔㇇⌅ 䲧 䜘Ո Ⲵ㕪䲧˗Saez[66]ㅹ 䚇Ր㇇⌅о⁑㋺㚊㊫㔃 ˈ ↔ ⹰к Ҷа⿽ 㜭䘲 亴 ⌅≲䀓 䖖䖶 䘱 ъVRPDŽ㔬к 䘠ˈ ≲䀓VRPⲴ ⿽䙊⭘ ㇇⌅ ␧ ㇇⌅Ⲵ⹄ウ㺘 ˈ Ҿ Ⲯњ Ⲵ ˈ䘉Ӌ ⌅ѝ䜭 ԕ≲ 䶎 Ⲵǃ ⭊㠣 ՈⲴ䀓ˈ㲭❦䘀㇇ 䰤㾱䮯аӋDŽ փ 䈤ˈ ⴞ Ѫ→ˈ⾱ ㍒ ⧠ Ⲵ ⌅˗ Ҿ䚇Ր㇇⌅ ⾎㓿㖁㔌Ⲵ ⌅ 㜭Ո㢟˗㘼 Ҿ⁑ 䘰⚛ 㲱㗔㌫㔏Ⲵ ⌅ㄎҹ н DŽ❦㘼ˈ㘳㲁 ⿽ ⌅ 䙀⅑ ⧠ѝⲴ 㜭 䘋 ˈ ⿽␧ ㇇⌅ 䳶ѝ ㍒ ṧ ㍒ǃ ㇇⌅≲䀓䍘䟿 䇑㇇ 䰤ѻ䰤㜭㧧 䖳 Ⲵ 㺑ˈ␧ Ⲵ㲱㗔㌫㔏 䚇Ր㇇⌅ 㻛 ˈ о⾱ ㍒㇇⌅⴨ 㖾DŽ4. 㔉 䈣䖖䖶䐟 䰞仈 ㇑⨶ 䘀ㆩ 亶 䱄Ⲵ ⭘ԧ ⹄ウ DŽ䲿⵰⽮ՊⲴ ˈVRPҏ н Ⲵ ˈ 䲿 䴰≲VRPǃ䶎 〠㖁㔌VRPǃԃ -䝽䘱аփ 䐟 䰞仈ㅹ 䘋а↕⹄ウⲴ DŽ 㓣 㔃ҶVRP Ⲵ⹄ウ䘋 䎻 ˈѪ⴨ Ⲵ 䢤DŽ㘳 ⥞[1] 䶙 , 㔏䇑 , ѝ ⢙⍱о䟷䍝㚄 Պ. 2010 ⢙⍱䘀㹼 䙊 [M]. ѝ ⢙⍱о䟷䍝㚄 Պ, ѝ ⢙⍱ 䢤2011, Ӝ: ѝ ⢙䍴 ⡸⽮, 2011: 61-62[2] Dantzig, G.B., and Ramser, J.H., The truck dispatching problem [J].Management Science, 1959, 6: 80[3] ⇥仾 . 䖟 䰤デ㓖 Ⲵ 䖖䖶䐟 䰞仈⹄ウ ⭘[D]. 䮯⋉: ѝ , 2009[4] █・ . 䰤デ䖖䖶䐟 䰞仈 ㇇⌅⹄ウ[D]. 䮯⋉: ѝ , 2012[5] ㅖ . 䖖䖶䐟 䰞仈 ⭘⹄ウ[D]. 䮯⋉: ѝ , 2004[6] █・ , ㅖ . ≲䀓 ⺜ 䰤デ䖖䖶䐟 䰞仈Ⲵ ㇇⌅[J]. 䇑㇇ ⭘, 2012, 32(11): 3042-3043, 3070[7] 㛆䳱, ㅖ , 㛢 . 䖟 䰤デⲴ䖖䖶䐟 䰞仈 ⭘ 䇘[C]. 䮯⋉: ѝ 䘀ㆩ ՊㅜӔ⍱Պ, 2000: 634-638[8] ㅖ , 㙲䶆. 䖖䖶䐟 䰞仈 㤕 ⹄ウ䘋 [C]. ␡ : ѝ 䘀ㆩ Պㅜ Ӕ⍱Պ, 2006:395-400[9] Bodin, L.B., Golden, B.L., Assad, A.A., Ball, M.O., Routing and scheduling of vehicles and crews: the state ofthe art [J]. Computer Operation Research, 1983, 10: 163-211[10] Toth, P., Vigo, D. The Vehicle Routing Problem [M]. Society for Industrial and Applied Mathematics,Philadelphia, USA, 2002[11] 㛆 䖹. 䖖䖶䐟 Ո ⥞㔬䘠[J]. ь 㤳 䲒 ˄㠚❦、 ˅, 2010, 2: 31-37[12] Crevier, B., Cordeau, J.F., LaPorte, G., The multi-depot vehicle routing problem with inter-depot routes [J].European Journal of Operational Research, 2007, 176(2): 756-773[13] Golden, B., Assad, A., Levy, L., The fleet size and mix vehicle routing problem [J]. Computer and OperationsResearch, 11(1): 49-66[14] Drorand, M., Trudeau, P. Split delivery routing [J]. Naval Research Logistics, 1990, 37: 383-402[15] 䉒⿹⻺. 䲿 䖖䖶䐟 䰞仈⹄ウ[D]. 䜭: 㾯 Ӕ䙊 , 2003[16] Bent, R.W., and Hentenryck, P.V., Scenario-Based Planning for Partially Dynamic Vehicle Routing withStochastic Customers [J]. Operations Research, 2004, 52(6): 977-987[17] Oppen, J., L okketangen, A., Arc routing in a node routing environment [J]. Computers and OperationsResearch, 2006, 33(4): 1033-1055[18] Lenstra, J.K., and Rinnooy, K., Complexity of vehicle routing and scheduling problem [J]. Network, 1981, 11:221-227[19] . Ҿ ⭼䲀⌅Ⲵ 㹼 ㍒㇇⌅⹄ウ[D]. 㾯 : 㾯 ⭥ 、 , 2011[20] Տ. а⿽ Ҿ䀓 ѝ 䶒Ⲵ ㊫㇇⌅[D]. 䘎: 䘎⨶ , 2009[21] . CVRP 䝽㖁㔌⍱㇇⌅[D]. ⍾ : ь、 , 2003[22] 㕚 㣜, 䛥 . 㿴 ㇇⌅Ⲵ ⨶ ⭘[J]. ѝ 、 , 2005(21): 42-42[23] Golden, B.L., Wasil, E.A., Kelly, J.P., and Chao, I.M., Meatheuristics in vehicle routing [C]. In Crainic, T.G.,and Laporte, G. editors, Fleet Management and Logistics, Kluwer Academic Publishers, London, 1998, 33-56 [24] Clark, G. and Wright, J.R., Scheduling of vehicle routing problem from a central depot to a number ofdelivery points [J]. Operations Research, 1964, 12: 568-581[25] Nelson, M.D., Nygard, K.E., Griffin, J.H., and Shreve, W.E., Implementation techniques for the vehiclerouting problem [J]. Computer and Operations Research, 1985, 12(3): 273-283[26] Paessens, H., The savings algorithm for the vehicle routing problem [J]. European Journal of OperationalResearch, 1988, 34(3): 336-344[27] Altinkemer K., Gavish B., Parallel savings based heuristic for the delivery Problem [J]. Operations Research,1991, 39: 456-469[28] Wark, P., and Holt, J., A repeated matching heuristic for the vehicle routing problem [J]. Journal ofOperational Research Society, 1994, 45: 1156-1167[29] Gillett, B.E., and Miller, L.R., A heuristic algorithm for the vehicle dispatch problem [J]. Operations Research,1974, 22: 340-349[30] Foster, B., and Ryan, D., An integer Programming approach to the vehicle scheduling problem [J]. OperationResearch, 1976, 27: 307-384[31] Ryan, D.M., Hjorring, C., and Glover, F. Extension of the Petal method for vehicle routing [J]. Journal ofOperational Research Society, 1993, 44: 289-296[32] Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y., and Semet, F., A guide to vehicle routing heuristics [J].Journal of Operational Research Society, 2002, 53(5): 512-522[33] Christofides, N., Mingozzi, A., and Toth, P., The vehicle routing problem [C]. Combinatorial optimization,Chichester, UK: Wiley, 1979: 315-338[34] Fisher, M.L., Jaikumar, R., A generalized assignment heuristic for vehicle routing [J]. Network, 1981, 11:109-124[35] Fisher, M.L., Greenfield, A.J., Jaikumar, R., and Lester, J., A computerized vehicle routing application [J].Interfaces, 1982, 12(4): 42-52[36] Fisher, M.L., Jaikumar, R., and Wassenbove, L.N., Multiplier adjustment method for the generalizedassignment problem [J]. Management Science, 1986, 32: 1095-1103[37] Bramel, J.B., and Simchi-Levi, D., A location based heuristic for general routing problems [J]. OperationsResearch, 1995, 43(4): 649-660[38] Tian, P., Ma, J., and Zhang, D.M., Application of the simulated annealing algorithm to the combinatorialoptimization problem with permutation property: an investigation of generation mechanism [J].European Journal of Operational Research, 1999, 118(1): 81-94[39] Li, H., Lim, A., Huang, J., Local search with annealing-like restarts to solve VRPTW [J]. European Journal ofOperational Research, 2003, 150(1): 115-127[40] Tavakkoli-Moghaddam , R. Safaei, N., Gholipour, Y., A hybrid simulated annealing for capacitated vehiclerouting problems with the independent route length [J]. Applied Mathematics and Computation, 2006, 176(2): 445-454[41] 㜑 Տ, , 㜑 . 䖖䖶䐟 䰞仈Ⲵ⁑ 䘰⚛㇇⌅[J]. ѝ 䐟 , 2006, 19(4): 123-126[42] Breedam, A.V., Improvement heuristics for the vehicle routing problem based on simulated annealing [J].European Journal of Operation Research, 1995, 86(3): 480-490[43] Glover, F. Future paths for integer programming and links to artificial Intelligence [J]. Computers andOperations Research, 1986, 13:533-549[44] Willard, J.A.G., Vehicle routing using r-optimal tabu search [M]. London: The Imperial College, 1989[45] Pureza, V.M., and Franca, P.M., Vehicle routing problems via tabu search metaheuristic [R].Technical ReportCRT-347, Centre for Research on Transportation, Montreal, Canada, 1991[46] OsmanˈI., and Wassan, N., A reactive tabu search metaheuristic for the vehicle routing problem with back-hauls [J]. Journal of Scheduling, 2002, 5(4): 263-285[47] Gendreau, M., Hertz, A., L aporte, G., A tabu search heuristic for the vehicle routing problem [J].Management Science, 1994, 40: 1276-1290[48] Rochat, Y., and Taillard, E.D., Probabilistic diversification and intensification in local search for vehiclerouting [J].Journal of Heuristics, 1995, 1: 147-167[49] Toth, P., and Vigo, D., The granular tabu search and its application to the vehicle routing problem[R].Technical Report OR19819, DEIS, Italy, 1998[50] Brandao, J., A new tabu search algorithm for the vehicle routing problem with backhauls [J]. EuropeanJournal of Operation Research, 2006, 173(2): 540-555[51] Brandao, J., and Eglese, R., A deterministic tabu search algorithm for the capacitated arc routing problem [J].Computers and Operations Research, 2008, 35(4): 1112-1126[52] Holland, J., Adaptation in natural and artificial systems [D]. University of Michigan Wesley, 1975[53] Colorni, A., Dorigo, M., Maniezzo, V., Distributed optimization by ant colonies [J]. In: Proc of the FirstEuropean Conference of Artificial Life. Paris, France Elsevier Publishing, 1991: 134-142[54] Bullnheimer, B., Hartl, R.F., and Strauss, C., Applying ant system algorithm to the vehicle routing problem[A]. Advances and Trends in Local Search Paradigms for Optimizaiton [C], Kluwer Acedenics, 1998: 109-120[55] Gambardella, L.M., Taillard, E., Agazzi, G., MACS-VROTW: a multiple ant colony system for vehiclerouting problems with time window [A]. New ides in optimization [C], London, U.K.: McGraw-Hill, 1999: 63-76[56] Donati, A.V., Montemanni, R., Casagrande, N., Rizzoll, A.E., and Gambardella, L.M., Time dependentvehicle routing problem with a multi ant colony system [R]. Technical Report TR-17-03, IDSIA, Galleria2, Manno, 6928, Switzerland, 2003[57] Montemanni, R., Gambardella, L.M., Rizzoll, A.E., and Donati, A.V., A new algorithm for a dynamic vehiclerouting problem based on ant colony system [R]. Technical Report TR-23-02, IDSIA, Galleria2, Manno, 6928, Switzerland, 2004[58] Pellegrini, P., Favaretto, D., Moretti, E., Multiple ant colony optimization for a rich vehicle routing problem:a case study [J]. Lecture Notes in Computer Science, 2007, 4639: 627-634[59] Gajpal, Y., and Abad, P.L., Multi-ant colony system (MACS) for a vehicle routing problem with backhauls[J]. European Journal of Operation Research, 2009, 196: 102-117[60] Ugur, A., and Aydin, D., An interactive simulation and analysis software for solving TSP using ant colonyoptimization algorithms [J]. Advances in Engineering Software, 2004, 40: 341-349[61] Glover, F., Kelly, J.P., and L aguna, M., Genetic algorithms and tabu search: hybrids for optimization [J].Computers Operation and Research, 1995, 22(1): 111-134[62] 䛾㤲⾕, 㜑 㔗. ⭘␧ 䚇Ր㇇⌅≲䀓⢙⍱䝽䘱䐟 Ո 䰞仈Ⲵ⹄ウ[J]. ѝ ㇑⨶、 , 2002, 10(5): 51-56[63] 䛡 , ẵ. Ҿ 䘋㋂ 㗔㇇⌅Ⲵ ս-䘀䗃䐟㓯䰞仈⹄ウ[J].ѝ Ỡ 〻, 2006, 17(22):2359-2361[64] . 䖖䖶䐟 䰞仈Ⲵ㋂ 㗔㇇⌅⹄ウо ⭘[D]. ⎉⊏: ⎉⊏ ъ , 2007[65] б⿻䴧, 㜑⾕ , ≨ . ≲䀓 䰤デⲴ䖖䖶䐟 䰞仈Ⲵ␧ 㲱㗔㇇⌅[J]. ㌫㔏 〻⨶䇪о 䐥, 2007,10: 98-104[66] Saez, D., Cortes, C.E., and Nunez, A., Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering. Computers and Operations Research, 2008, 35: 3412-3438。

车辆路径规划问题研究综述

车辆路径规划问题研究综述

车辆路径规划问题研究综述车辆路径规划问题是指在给定的网络中,确定车辆的路径和顺序,以最大化效率和减少成本。

该问题在很多领域都有应用,例如物流配送、交通管理和智能交通系统等。

在这篇文章中,我们将对车辆路径规划问题进行综述,包括问题的定义、解决方法和应用领域。

一、车辆路径规划问题的定义车辆路径规划问题是指在给定的网络中,确定一组车辆的路径和顺序,以最小化某种成本函数。

该问题通常包括以下几个要素:1.网络结构:表示车辆可以到达的位置和它们之间的连接关系。

通常用图论中的图来表示,节点表示位置,边表示路径。

2.车辆集合:表示可用的车辆,每辆车有一定的容量和最大行驶距离。

3.配送任务:表示需要在不同位置之间运输的货物,每个任务有一定的需求量。

问题的目标是找到一组车辆的路径和顺序,使得满足配送任务的需求,并且最小化成本函数,通常可以是总行驶距离、总时间或者总成本。

车辆路径规划问题是一个典型的组合优化问题,具有复杂的计算结构和多样的解决方法。

目前,主要的解决方法包括启发式算法、精确算法和元启发式算法。

1.启发式算法:如遗传算法、模拟退火算法、禁忌搜索等,这些算法能够在较短的时间内找到较好的解,但不能保证找到最优解。

2.精确算法:如分枝定界法、整数规划法等,这些算法能够保证找到最优解,但通常需要较长的计算时间。

3.元启发式算法:如粒子群算法、蚁群算法、人工鱼群算法等,这些算法结合了启发式算法和精确算法的优点,能够在较短的时间内找到较好的解,并且具有一定的全局搜索能力。

车辆路径规划问题在许多领域都有着重要的应用价值,其中包括物流配送、交通管理和智能交通系统等。

1.物流配送:在快递、邮政、零售等行业中,车辆路径规划可以帮助优化配送路径,减少行驶距离和时间,从而提高效率和降低成本。

2.交通管理:在城市交通管理中,车辆路径规划可以帮助优化交通信号配时、减少交通拥堵,提高道路通行效率。

3.智能交通系统:在智能交通系统中,车辆路径规划可以帮助导航系统优化路线规划,避开拥堵路段,提供更加智能的交通导航服务。

车辆路径问题的算法综述

  车辆路径问题的算法综述

车辆路径问题的算法综述作者:***来源:《甘肃科技纵横》2020年第08期摘要:物流与国民经济及生活的诸多领域密切相关,在物流成本方面,运输费用占大约50%,比重最大。

因此,物流成了企业创造利润的重要途径。

要降低配送成本,缩短并优化车辆路径是关键所在。

然而,车辆路径问题(vRP)是物流领域中的一个强NP问题,国内外学者近年来不断提出多种车辆路径优化问题及求解方法以解决愈加复杂的问题。

为进一步理清国内外研究现状,就VRP进行总结分析,然后对车辆路径求解方法进行了介绍,特别地对元启发式算法进行了较为详细的综述。

关键词:VRP;元启发式算法;文献综述中图分类号:U116.2 文献标志码:A0引言随着电子商务的快速发展,物流业作为连接生产者与消费者的桥梁,发挥着越来越重要的作用。

然而,物流在给人们生活带来极大便利的同时,也给相关企业带来了逐年增高的物流费用。

伴随着竞争日益白热化的商业环境,降低物流成本成了物流企业存活和发展所必须重视的环节。

在降低物流成本方面,最关键的途径之一是解决车辆路径问题(vehicle routing prob-lem,VRP)。

1VRP综述车辆路径问题于1959年由丹齐格和拉姆泽提出,最早源于旅行商问题(TsP)的研究。

TsP可以简单理解为在给定的m个城市里,从一个城市出发,经过每个城市,并且每个城市只经过一次,最后回到出发点,找出最短回程路径问题。

在TsP的研究基础上,出现了能力约束车辆路径问题(CVRP),CVRP相对于TsP的“一对多”,可以理解为“多对多”,如图1所示。

2VRP元启发式算法综述基于车辆路径模型,其求解算法基本可分为精确式算法、启发式算法、元启发式算法和机器学习算法,如图2所示。

2.1遗传算法遗传算法是由J.Holland教授在1975年首先提出,它借鉴了生物进化论中的遗传、杂交、变异以及自然选择等现象,利用计算机模拟生物进化的过程,根据优胜劣汰、适者生存的自然法则规定搜索方向,以此迭代,最终获得具有最大适应度个体,该个体就作为最优解输出。

深度强化学习求解车辆路径问题的研究综述

深度强化学习求解车辆路径问题的研究综述

深度强化学习求解车辆路径问题的研究综述摘要:车辆路径问题是指在给定起点和终点的情况下,寻找最优路径的问题。

传统的车辆路径问题求解方法存在着计算复杂度高、解空间大、求解精度不高等问题。

随着人工智能的快速发展,深度强化学习作为一种强大的求解方法,被广泛应用于解决车辆路径问题。

本文通过综述相关文献和研究成果,分析深度强化学习在车辆路径问题上的应用,并对其研究方向进行展望。

1. 引言车辆路径问题是指在给定起点和终点的情况下,寻找最优路径的问题。

传统的车辆路径问题通常采用启发式搜索方法,如A*算法、遗传算法等。

然而,这些方法存在着计算复杂度高、解空间大、求解精度不高等问题。

近年来,深度强化学习的快速发展使得人们可以通过训练智能体来求解车辆路径问题,取得了许多突破性的进展。

2. 深度强化学习在车辆路径问题上的应用深度强化学习通过将驾驶车辆的行为建模为一个马尔可夫决策过程,并通过长期反馈奖励来训练智能体。

该方法克服了传统方法中解空间大的问题,可以在海量的路径选择中找到最优解。

研究者通过结合深度神经网络和强化学习算法,设计了一系列有效的模型和算法来解决车辆路径问题。

2.1 基于Q-learning的车辆路径规划Q-learning是一种经典的强化学习算法,通过学习一个Q值函数来指导决策。

研究者通过将车辆路径问题转化为一个离散状态的决策问题,并使用Q-learning算法进行训练,取得了良好的效果。

然而,由于车辆路径问题的状态空间非常大,传统的Q-learning算法在实际应用中仍然存在训练时间长、收敛速度慢等问题。

2.2 基于深度Q网络的车辆路径规划为了克服传统Q-learning算法的缺点,研究者提出了深度Q 网络(DQN)。

DQN通过利用深度神经网络来近似Q值函数,将车辆路径问题的状态空间映射到一个连续空间,从而大大减少了训练时间和存储空间。

研究者在实验中发现,DQN可以在较短的时间内找到最优解,并且具有较高的求解精度。

同时送取货车辆路径问题算法研究综述

同时送取货车辆路径问题算法研究综述
耗直接关系到企业成本 , 所 以一 直 受 到企 业 界 的重 视 。 随着 新 的 法 律 法 规 的制 定 , 以及 人 们 社 会 责 任 感 的 增 强 , 也 使 得 废 物 的 排 放 问题 逐 渐 成 为 人 们 关 注 的焦 点 。
可能会导致不必要 的车辆被使用 , 因此可 以通过将在客户处 的
所不同 的是 , 在
中, 客户
节点 既 具 有 送 货 需 求 (
) , 也 具 有 取 货 需 求
就原材料 的再循环率 、 产 品包装 的 回收, 甚 至产品全部 生命周
期( 包 括义务进 行产 品使用 期结 束后 的 回收 ) , 对 工业 界提 出


) 。两种需求 的大小都 不超 过车 辆 的容量 , 当
送货和取货两种操作同时进 行来 避免 这种情况 的发生 。另外 ,
受环境保护意识的影响 , 许多实 际问题 中, 顾客具有送货 、 取货
两种需求 , 考虑到操作 的复杂程度 , 他们 可能不会 接受两 种需
求被分开服务 , 而 同时执行 送货 、 取货 两种服务 可 以在很 大程 度上减少这种操作复杂度 , 因此顾客要求 只能被服务一次 。以 上 问题 的解决 归结 为求解 同时送 取货 车辆 路 径 问题 (
第 2期
王科峰 , 等: 同时送取 货车 辆路 径 问题 算 法研 究综述
・ 3 3 5・
而是呈现不规则 变化 。所 以 V R P S D P解 的负 载能力 可行性 控 制是 区别 于 V R P求解 的难 点所 在。 V R P S D P在现 实生 活 中 也广 泛 存 在。例 如 , 在 饮 料 工 业
车辆服务客户 的时候 , 同时执行送 货 、 取货两 种操作从 而保证 每个客户 只被服务一次 。其 目标是最小化总的行驶路径长度 。 正如上文所述 , 中客户节点 具有发货 、 收货两种 需求 , 中那样 单调 变化 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

䝽䘱䘀䗃ѝⲴ䖖䖶䐟 䰞仈⹄ウ㔬䘠㾱˖䝽䘱䘀䗃ѝⲴ䖖䖶䐟 䰞仈аⴤ 䘀ㆩ 亶 Ⲵ⹄ウ✝⛩ѻаDŽ Ҿ䖖䖶䐟 䰞仈Ⲵ ⭘㛼 ˈ 㓣 㔃Ҷ ㊫䰞仈 ≲䀓㇇⌅Ⲵ⹄ウ䘋 ˈ 䎻 ˈѪ⴨ 䢤DŽ䭞䇽˖⢙⍱䝽䘱˗䖖䖶䐟 䰞仈˗䙊⭘ ㇇⌅˗㔬䘠DŽThe Current Situation and Development Trends on Vehicle Routing Problems of distribution managementAbstract: Vehicle routing problem is one of the attractive research area in the circles of operations research. In this paper, on the basis of introducing briefly the application background, the research classified the vehicle routing problem, analyzed and summarized the progress of different type of problems and solution algorithms. Furthermore, the research progress of the problems is also discussed. It is expected to provide inference for relevant research work.Key words: distribution management; vehicle routing problem; heuristics; overview.䀶䲿⵰㓿⍾Ⲵ 、 Ⲵ䘋↕ˈ⢙⍱ӗъ䗵䙏 ˈ Ѫ ≁㓿⍾ Ⲵ 㜹 ⹰ӗъˈ ≤ 㺑䟿ањ ⧠ԓ 〻 㔬 Ⲵ䟽㾱 ḷDŽкц㓚80 ԓԕ ˈ ⢙⍱ӗъⲴ ˈ⢙⍱ъ Ѫањ⤜・Ⲵӗъ䗵䙏 䎧DŽ❦㘼ˈ ⢙⍱ъӽ Ҿ 㓗䱦⇥ˈо 䗮 ⴨∄䘈 а Ⲵ 䐍ˈ ѝ ケ Ⲵ䰞仈 ⢙⍱ 䖳儈DŽ 㔏䇑[1]ˈ ⢙⍱ 䍩⭘Ѫ7.1зӯ ˈ GDPⲴ∄䟽Ѫ17.8%ˈ㘼 㖾 ㅹ 䗮 ⢙⍱ 㓖 GDPⲴ10%ˈ丙 ㅹѝㅹ 䗮 Ⲵ∄䟽㓖Ѫ15%DŽ䗷儈Ⲵ⢙⍱ Ѫ 㓖 ≁㓿⍾ Ⲵ䟽㾱 ㍐DŽ ↔ˈ 儈⢙⍱ъⲴ、 ㇑⨶≤ ǃ䱽վ⢙⍱ ӏ䴰䀓 Ⲵ 䭞 䰞仈DŽ䘀䗃 ⢙⍱ Ⲵ䟽㾱㓴 䜘 DŽ 䘀䗃 ⢙⍱ 䍩⭘Ⲵ∄ 䖳儈ˈ㓖Ѫ50%[1]DŽ䱽վ䘀䗃 ˈ 儈䘀䗃 ⦷ǃ 䘋⢙⍱ъ 㔝 Ⲵ䟽㾱䙄 DŽѪ⢙⍱䝽䘱ѝⲴ 䭞а⧟ˈ䖖䖶䐟 䰞仈˄Vehicle Routing Problem, VRP˅ 䘀䗃㓴㓷Ո ⲴṨ 䰞仈ѻаDŽ㠚1959 Dantzig Ramser[2]俆⅑ ԕ ˈVRP Ѫ䘀ㆩ 㓴 Ո 亶 Ⲵ ⋯о⹄ウ✝⛩ѻаDŽ⧠ ⭏ӗѝˈ䛞 䘀䗃ǃ 䖖 ⊭䖖䈳 ㅹ䈨 䰞仈䜭 ԕ 䊑ѪVRPDŽ ↔ˈ VRPⲴ␡ ⹄ウˈ ⵰䟽㾱Ⲵ、 ѹ 〻 ⭘ԧ DŽ 㓣 㔃ҶVRP Ⲵ⹄ウ䘋 ˈ ҶVRPⲴ 䎻 ˈѪ⴨ 㓿傼 䐟DŽ1. 䖜䖼䐥 䰤从Ⲻ 䘦Ր㔏кˈ 䖖䖶䐟 䰞仈Ⲵа㡜 䘠Ѫ[3, 4]˖ а㌫ 㔉 Ⲵ ˄䘱䍗⛩ 䍗⛩˅ˈ⺞ 䘲 Ⲵ䝽䘱䖖䖶㹼傦䐟㓯ˈ Ӿ䝽䘱ѝ ˈ ⅑ 䇯䰞 њ ⛩ˈ 䘄 䝽䘱ѝ ˈ ┑䏣а Ⲵ㓖 Ԧл˄ 䖖䖶䖭䍗䟿ǃ 䴰≲䟿ǃ 䰤デ䲀 ㅹ˅ˈ 䘀䗃 ˄ ⭘䖖䖶 ǃ䖖䖶㹼傦䐟〻 䰤˅䗮 DŽ 1 ⽪ˈ ѝⲴ Ṷ㺘⽪䖖䖶 ⛩˄ 䖖 䝽䘱ѝ ˅ˈ ⛩㺘⽪䴰㾱䇯䰞Ⲵ ⛩ˈ㓯⇥㺘⽪є⛩ѻ䰤Ⲵ䘎 䐟⇥ˈ ѝ⇿ 㓯⇥ ⵰ањ䍩⭘˄ 䐍⿫ 㹼傦 䰤˅DŽ1 䖜䖼䐥 䰤从⽰Fig.1 Schematic figure of VRPⲴ䖖䖶䐟 䰞仈ѫ㾱 ԕлṨ 㾱㍐[5]˖䚃䐟㖁㔌˄Road Network˅ǃ ˄Customer˅ǃ䝽䘱ѝ ˄䖖 ˅˄Distribution Center, Depot˅ǃ䖖䖶˄Vehicle˅ǃ傮傦 ˄Driver˅ǃ䲀 Ԧǃ㹼傦䍩⭘ 㹼傦 䰤ˈԕ Ո ⴞḷ˄Objective˅DŽ њ㾱㍐Ⲵ⢩ 㿱㺘1DŽ㺞1 䖜䖼䐥 䰤从Ⲻ㓺 㾷㍖Tab. 1 Key elements of VRP㓴 㾱㍐⢩䚃䐟㖁㔌1. VRPⲴṨ 㾱㍐ѻа˗2. 䙊 ⭡ 㢲⛩ 㓴 Ⲵ䍻 㺘⽪DŽ 㺘⽪䐟⇥ˈ⛩㺘⽪䚃䐟Ӕ ⛩ǃ䝽䘱ѝ ˗3. ṩ 䐟㖁⴨㚄є⛩䰤Ⲵ䚃䐟⢩ ˈ⴨ Ⲵ Ѫ ˗ 䍻Ҹ⇿ 䶎䍏Ⲵ䍩⭘ 䟽ˈ є⛩䰤Ⲵ䘀㹼䐍⿫ˈ䘀㹼 䰤ㅹDŽ1. VRPѝ䖖䖶 Ⲵ 䊑ˈ Ҿ㖁㔌 ѝⲴ ⛩˗2. ⛩Ⲵ ㊫ ˖䘱䍗 ˄Delivery˅ǃ 䍗 ˄Pickup˅ є㘵˗3. ⛩Ⲵ 䴰≲䟿˖а⅑┑䏣ˈ ˄Split˅;4. ⛩Ⲵ 䰤˖䖖䖶 ӔԈ 䍗⢙ 㣡䍩Ⲵ 䰤˗5. ⛩Ⲵ 䰤デ˖ 㾱≲ Ⲵ 䰤 䲀ˈ Ѫ⺜ 䰤デ[6]䖟 䰤デ[7]˗6. ⛩ Ⲵ ⅑ ˖ Ո 㓗˗ ㊫ 亪ˈ 䘱䍗 䍗˗7. ⛩Ⲵ ㌫˖ ḀӋ лˈ ⛩Ⲵ䝽 ㌫ˈ Ӿањ 䍗❦ 䘱 оѻ䝽 Ⲵ⢩ 䘱䍗 ⛩DŽ䝽䘱ѝ 1. ⇿ 䖖䖶䐟㓯Ⲵ䎧⛩ 㓸⛩ˈ Ҿ㖁㔌 ѝⲴ ⛩˗2. 䖖 䟿˖ањ䖖 њ䖖 ˗3. 䖖䖶 䘄 䖖 ˖ VRP[5, 8]ˈ䰝 VRP˗4. 䖖 䰤デ˖ḀӋ лˈ䖖 䲀 ⢩↺㾱≲˄ Ⲵ 䰤 䰤˅˗5. 䖖 ѻ䰤Ⲵ ㌫˖ḀӋ лˈ䖖 䰤 䝽 ㌫ˈ Ӿањ䖖 䛓䟼 Ⲵ䖖䖶 享 оѻ䝽 Ⲵ Ⲵ䖖 DŽ䖖䖶1. 䖖䖶 㠚 䘈 』ˈ ԫ 䘄 ˗2. 䖖䖶㊫ ˖ VRPѝ 䇮䖖䖶Ѫ а㊫ ˈն 䱵䝽䘱㇑⨶ѝˈ䖖䱏 ⭡ н 㻵䖭㜭 ǃн ԕ Ⲵ 䖖䖶㓴 ˗3. 䖖䖶Ⲵ㻵䖭㜭 ˖䖖䖶 Ⲵ䖭䟽䟿 Ⲵ㻵䖭 䟿ㅹ˗4. 䖖䖶 ˖䖖䖶Ⲵ ˈ 䖖䖶䍝㖞䍩⭘ㅹ˗ ⭘ ս 䟼Ⲵ䍩⭘ ս 䰤Ⲵ䍩⭘ 㺑䟿˗5. 䖖䖶Ⲵ 㔝 ˄Duration˅˖䖖䖶 Ⲵ 䇨㹼傦䐍⿫ 䰤DŽ傮傦 1. 㔉傮傦 䘱䍗ԫ ˈ 享ㅖ 䰤Ⲵ 㿴 DŽ⴨ 傮傦 䲀 Ԧа㡜䜭 ⴨ Ⲵ䖖䖶䲀 ԦѝDŽ䲀 Ԧ1. 䖖䖶Ⲵ 䍏䖭н㜭䎵䗷䖖䖶Ⲵ㻵䖭㜭 ˗2. 㾱≲䘱䍗ǃ 䍗ǃ 䘱䍗 ˗3. 㾱≲Ⲵ 䰤デ 傮傦 Ⲵ 䰤 ˗4. 䇯䰞 Ⲵ亪 㾱≲DŽ㹼傦䍩⭘㹼傦 䰤1. ⛩о ⛩ѻ䰤ǃ䝽䘱ѝ о ⛩ѻ䰤Ⲵ㹼傦䐍⿫ 㹼傦 䰤DŽՈ ⴞḷ1. 䘀䗃 ˈ Ҿ 䴰Ⲵ䖖䖶 ˄ 㓯䐟 ˅ǃ 㹼傦䐍⿫˄ 䰤˅˗2. о Ⲵн ㅹ Ⲵ 㖊 ˗3. 㺑 㓯䐟кⲴ㹼傦 䰤 䖖䖶䖭䟽䟿DŽ2. 䖜䖼䐥 䰤从Ⲻ ㊱䙊䗷 к䘠VRPṨ 㾱㍐䱴 н Ⲵ⢩ 䘲 Ⲵ ˈ 㹽⭏ ⿽н Ⲵ䖖䖶䐟 䰞仈㊫ DŽ ⴨ ⹄ウ[5, 9, 10]ˈ 㿱ⲴVRP ㊫ 㹽⭏㊫ DŽ VRP㊫ 㻵䖭㜭 ⲴVRPǃ 䐟〻䮯 ⲴVRPǃ 䰤デⲴVRPǃ 〻䘀䗃ⲴVRPˈԕ 䘱䍗ⲴVRP˗ ⁑ Ⲵ ⹰кˈ㔃 н Ⲵ㓖 Ԧˈ ҶVRPⲴ㹽⭏㊫ ˈ 䲿 VRPǃ⁑㋺VRPǃ VRPㅹDŽ њ㊫ Ⲵ⢩ 㿱㺘2DŽ㺞2 䖜䖼䐥 䰤从Ⲻ㊱Tab. 2 Types of VRP ㊫ ⢩㻵䖭㜭 ⲴVRP˄Capacitated VRP, CVRP˅1. VRPѝ Ⲵ ˗2. 䜭 Ҿ㾱䘱䍗Ⲵ 㾱 䍗Ⲵˈ 䴰≲䟿 ⸕ˈфн ˗3. 䖖䖶 ㊫ ф䜭 ањ䝽䘱ѝ ˗4. 䖖䖶 㻵䖭㜭 Ⲵ䲀 ˗5. Ո ⴞḷ Ⲵ 䍩⭘ DŽ䐟〻䮯 ⲴVRP˄Distance-Constrained andCapacitated VRP, DCVRP˅1. 䖖䖶㻵䖭㜭 䲀 ˈ 䐟〻䮯 䲀 DŽ䰤デⲴVRP˄VRP with time windows, VRPTW˅1. 䲔Ҷ䖖䖶㻵䖭㜭 Ⲵ㓖 ˈ⇿њ 䜭 ањоѻ⴨㚄㌫Ⲵ㾱≲ Ⲵ 䰤 䰤˗2. Ѫ⺜ 䰤デVRP 䖟 䰤デVRPDŽ⺜ 䰤デ ⇿亩ԫ 享 㾱≲Ⲵ 䰤 ˈ䖟 䰤デ Ḁ亩ԫ н㜭 㾱≲Ⲵ 䰤㤳 ˈ 㔉Ҹа Ⲵ 㖊[11]DŽ〻䘀䗃ⲴVRP˄VRP with backhauls, VRPB˅1. 䳶㻛 2њ 䳶˖㾱≲䘱 а 䟿䍗⢙Ⲵ 〻 ԕ 㾱≲ а 䟿䍗⢙䘀 䝽䘱ѝ Ⲵ 〻 ˗2. 〻 〻 Ⲵ䴰≲ ⸕ф ˗3. 〻 享 Ҿ 〻 DŽ䘱䍗ⲴVRP˄VRP with pickup and delivery˅1. 䖖䖶нӵ 䘱䍗 ˈҏ Ⲵ䍗⢙˗2. ⇿њ ⛩ˈ㿴 㻵DŽ㹽⭏㊫VRP[5]˄Open VRP, OVRP˅1.н㾱≲䖖䖶 ԫ 䘄 ⛩ˈ 㤕㾱≲䘄 ⛩ˈ ⋯ 〻䐟㓯䘄 DŽ䖖 VRP˄Multiple Depots VRP, MDVRP˅1. њ䝽䘱ѝ ˈ䖖䖶 ԕӾԫօањ䝽䘱ѝ ⍮ ˈ ԫ ˈ䖖䖶ҏ ԕ䘄 ԫօањ䝽䘱ѝ ˗2. 䰞仈 Ѫ DŽ䙊 䇮Ḁњ䖖 Ⲵ䖖䖶ӽ䴰䘄 䈕䖖 ˈ≲䀓 ˈ ➗Ḁ⿽㇇⌅ 䝽㔉Ḁњ䖖 ˈ❦ ➗ а䖖 VRP䘋㹼≲䀓[12]DŽ䖖 VRP[13]˄Heterogeneous Fleet VRP,HVRP˅1. 䖖䖶Ⲵ н ˈ䙊 䖖䖶Ⲵ䖭䟽䟿на㠤DŽ䴰≲ ⲴVRP[14]˄VRPwith Split Deliveries˅1. Ⲵ䴰≲ ԕ 㻛 њ䖖䖶 DŽ䲿 VRP˄Stochastic Vehicle Routing Problem, SVRP˅1. Ѫ䲿 VRPǃ䲿 䴰≲VRPǃ䲿 㹼傦 䰤VRP˗2. 䲿 VRP ⢙⍱亶 㓿 ⧠˗3. Ҿ䲿 䴰≲VRPˈ⺞ Ⲵ ⸕ˈն Ⲵ ⺞䴰≲䟿 ⸕ˈ ⟳⋩䝽䘱䰞仈˗4. Ҿ䲿 㹼傦 䰤VRPˈ⹄ウ䖳 ˈ㘼 䲿 㖁㔌 ⸝䐟 䰞仈Ⲵ⹄ウ䖳␡ [15, 16]DŽ⁑㋺VRP˄Fuzzy VRP, FVRP˅1. ḀӋ ˄ 䴰≲ǃ䐍⿫ǃ 䰤デ[3]˅ ⌅ ⺞ 䘠˗2. ⁑㋺ᾲ ⁑ ㇇⌅ 䀓 ↔㊫䰞仈DŽVRP˄Periodic VRP, PVRP˅1. VRPⲴ ˈVRP⹄ウⲴ 䖖䖶Ⲵ ˈ㘼PVRP 䖖䖶Ⲵањ Ⲵ ˈ ањ ˈ⇿њ ┑䏣䴰≲Ⲵ лˈ 㻛 а⅑DŽ䶎 〠㖁㔌VRP˄Asymmetric network VRP, AVRP˅1. ⧠ ѝˈ⭡Ҿ 㹼䚃 ⾱→ 䖜ㅹӔ䙊㇑ ˈ є 䘄Ⲵ䐍⿫ 䰤 н⴨ㅹ˗2. ⴞ Ⲵ≲䀓㇇⌅䜭 Ҿ䶎 〠TSP䰞仈Ⲵ㇇⌅[17]DŽVRP˄Dynamic VRP, DVRP˅1. 䖖䖶 ˈ䈳 н⺞ 䜘 н⺞ ˗ 䖖䖶 ˈ ⧠ Ⲵ䈳 ˗2. ѹкˈ䲿 VRPˈ⁑㋺VRPˈԕ 㖁㔌VRP䜭 ҾDVRPDŽ↔ ˈ䘈 ԕ 䰤デ㓖 о Ԇ㓖 Ԧ㔃 ˈ 䰤デ㓖 Ⲵ 䘱 ъVRPˈ 䰤デ㓖 Ⲵ 〻䘀䗃VRPㅹDŽ3. 䖜䖼䐥 䰤从Ⲻ≸䀙㇍⌋VRP ⭼ 䇔ⲴNP䳮䰞仈[18]DŽVRP㻛 ˈ ≲䀓㇇⌅Ⲵ 䙐аⴤ ⹄ウⲴ䟽⛩ 䳮⛩DŽⴞ ⿽≲䀓VRPⲴ㇇⌅ˈ 䍘к Ѫ㋮⺞㇇⌅ ㇇⌅є ㊫DŽ㋮⺞㇇⌅ Ҿ ѹ 䇱 ˈ ≲ Ո䀓Ⲵ㇇⌅DŽⴞ ⭘Ҿ≲䀓VRP ԓ㺘 Ⲵ㋮⺞㇇⌅ѫ㾱 ⭼䲀⌅[19]˄Branch and Bound Approach˅ǃ 䶒⌅[20]˄Cutting Planes Approach˅ǃ㖁㔌⍱㇇⌅˄Network Flow Approach˅[21] 㿴 ⌅˄Dynamic Programming Approach˅[22]DŽ⭡ҾVRP NP-䳮䰞仈ˈ ⴨ Ⲵ㋮⺞㇇⌅Ⲵ䇑㇇䟿а㡜䲿⵰䰞仈㿴⁑Ⲵ 䮯˗ф ⛩䎵䗷50 ˈ㋮⺞㇇⌅ на ≲ 䰞仈Ⲵ Ո䀓[23]DŽ⴨ ˈ ⭘䰞仈⢩ ѝㅹ䇑㇇ 䰤 㧧 VRPⲴ⅑Ո䀓 ┑ 䀓Ⲵ ㇇⌅ Ѫ 㘵Ԝ⹄ウⲴ䟽⛩DŽ ㇇⌅ Ѫ㓿 ㇇⌅˄Classical Heuristics˅ 䙊⭘ ㇇⌅˄Metaheuristics˅DŽ3.1 㔅 ㇍⌋˄1˅㢲㓖㇇⌅˄Saving Methods˅⭡Clark WrightҾ1964 俆⅑ [24]ˈ а⿽ Ҿ㢲㓖 Ⲵ䖖䖶䐟㓯䙀↕ 䙐㇇⌅DŽ Ѫ˖ ⇿њ䝽䘱⛩ Ѫа 㓯䐟ˈ 䜘㓯䐟 Ⲵ䳶 Ѫ 䀓DŽ ањ⛩о ањ⛩⴨䘎 а Ⲵ㓯䐟ˈ Ⲵ㓯䐟㜭┑䏣㓖 Ԧˈ 㹼Ⲵˈ Ⲵ㢲㓖 ˄ 䟼〻ǃ䰤ㅹ˅ ѹѪ䘎 䘉є 㓯䐟Ⲵ㢲㓖 DŽӾ 㓯䐟ѝ䘹 㢲㓖 Ⲵ䗩䘋㹼а⅑㓯䐟 ˈ н 㹼ˈ㇇⌅㔃 DŽ䈕㇇⌅ ԕ ┑ 䀓ˈնна 㜭 䇱 Ո䀓DŽ Ո⛩ ⨶ㆰ ф ⧠ˈⴞ Ѫ VRP ㇇⌅ѝӗ⭏ 䀓Ⲵ㇇⌅DŽ䈕㇇⌅ ԕ ˈ 㘵 䘋㇇⌅䘋㹼Ҷ⹄ウˈԕ ≲䀓Ⲵ䍘䟿ˈѫ㾱 ԕл2⿽䙄 ˖а 䙊䗷 Ⲵ 㔃 ㆆ⮕ ⨶㢲㓖 [25, 26]˗Ҽ Ҿ 䝽㇇⌅˄Matching Algorithm˅Ո 䈕㇇⌅ѝⲴ䐟㓯 䗷〻[27, 28]DŽ˄2˅ ㇇⌅˄Sweep Algorithm˅⭡Gillett MillerҾ1974 [29]ˈ ҾĀ 㓴 㓯䐟āⲴ㇇⌅DŽ 䉃Ā 㓴ā ⍮㔉⇿䖶䖖а㓴䝽䘱⛩DŽа⿽ㆰ Ⲵ 㓴 ⌅ ԕ䝽䘱ѝ Ѫ ⛩ˈ ḷ 䶒 Ѫ њ ˈ ↕Ѫ⇿њ Ⲵ⛩ ⍮а䖶䖖DŽ 䉃Ā㓯䐟ā ⇿њ ˈ 䟷⭘ ⌅䘹 䝽⛩ˈ❦ 䟷⭘ ㇇⌅ 㓯䐟DŽ 䘋㹼Ҷа⅑Ā 㓴о㓯䐟āⲴ䐟㓯 䙐 ˈ䘈 䝽⛩ˈ 㔗㔝䘋 Ā 㓴о䐟㓯ā〻 DŽ ↔ ˈⴤ Ⲵ⛩ 䝽 ∅Ѫ→DŽⲴ ㇇⌅а⅑ 㜭ӗ⭏а 䐟㓯ˈ Ѫ ㇇⌅Ⲵ ˈаӋ 㘵⹄ウҶа⅑⭏ 㤕 㹼䖖䖶䐟㓯Ⲵ ⌅ˈ❦ 䙊䗷≲䀓ањ䳶 䰞仈 ⺞ ՈⲴ㓴 ˈ∄䖳 Ⲵ 1-㣡⬓㇇⌅[30, 31] 2-㣡⬓㇇⌅[32]DŽ䴰㾱 Ⲵ ˈ ㇇⌅ 䘲 Ҿ 䶒㔃 ˄Plannar Structure˅ⲴVRPˈ Ҿ䛓Ӌ ḵṬ㺇䚃 ⲴVRPˈ䈕㇇⌅ н䘲⭘DŽ˄3˅䛫 ㇇⌅˄Nearest-Neighbor˅䈕㇇⌅ а⿽ 䙐 䐟㓯⌅ˈ Ӿа ањ䝽䘱⛩Ⲵ㓯䐟 (䙊 䐍⿫䝽䘱ѝ 䘁Ⲵ⛩)ˈӾ 䘹 ⛩ѝㆋ䘹 ⛩ˈ Ӿ ⛩ѝ䘹 ањ⛩ Ѫ 㓯䐟Ⲵ㓸⛩ˈ 㓯䐟Ⲵ DŽԕ↔ 㓯䐟н 䘋㹼 ˈⴤ 㓯䐟⋑ ⛩Ѫ→DŽ ⛩ 䘹 ˈ ㇇⌅㔃 ˗ ˈ ⭏ а Ⲵ 㓯䐟ˈ䟽 䶒Ⲵ㓯䐟 䗷〻ˈⴤ㠣 ⛩䜭 䘹 DŽ˄4˅ ㇇⌅䈕㇇⌅㔃 㢲㓖㇇⌅о䛫 ㇇⌅Ⲵ ˈ 䝽䘱⛩㓣 䐟 ѝԕ 䝽䘱㓯䐟DŽ 〻 о䛫 ㇇⌅⴨լˈ Ӿ 㓯䐟 ˈ 䙐 㓯䐟ˈ ⋑ 㹼 а 㓯䐟DŽ䈕㇇⌅Ⲵ 䭞 䘹 䘲Ⲵ 䝽⛩ 㓯䐟Ⲵ ս㖞䘋㹼 DŽ˄5˅є䱦⇥㇇⌅˄Two-phase Process˅VRPє䱦⇥ ㇇⌅⹄ウѝˈ ԓ㺘 ⲴѪChristofidesㅹӪ[33]ԕ Fisher Jaikumar[34] Ⲵ㇇⌅DŽChistofidesㅹ Ⲵє䱦⇥㇇⌅ѝˈ єњ䱦⇥˖ 䐟㓯 䙐䱦⇥ԕ 㹼䐟㓯 䙐䱦⇥ˈ 䍘 㜭≲䀓ḷ VRPDŽFisher Jaikumarㅹ俆 䙊䗷≲䀓ањ ѹ ⍮䰞仈˄Generalized Assignment ProblemˈGAP˅ ⺞ 㹼Ⲵ亮 ⛩ 㓴ˈ❦ ҾTSP㇇⌅ ⺞ ⇿њ 㓴 Ⲵ䖖䖶䐟㓯DŽGAP ањNP䳮䰞仈ˈ䙊 䙊䗷 Ṭ ㇇⌅ ≲䀓DŽFisher Jaikumar 䲿 Ⲵ⹄ウѝ 㔉 Ҷ亮 ⛩䘹 Ⲵ ⌅ Ṭ ⌅[35, 36]DŽ❦㘼ˈ䈕 ⌅ 䲀 ˖а 䶒ˈ㇇⌅н 㕆〻ˈ 䇑㇇䙏 ⿽ 亮 䘹 ԕ Ṭ 䗷〻 䖳 ˗ а 䶒ˈ㤕䟷⭘Fisher Jaikumar Ⲵ⿽ 亮 ㆋ䘹 ⌅ Ṭ ⌅ˈ ㇇⌅Ⲵ 䖳 ˈа㡜 䳮䗮 㘵 㔉 Ⲵ䇑㇇㔃 [32]DŽ Fisher Jaikumar⹄ウⲴ ⹰кˈBramel Simchi-Levi[37]䙊䗷≲䀓ањ㜭 㓖 䘹 䰞仈 ⺞ ⿽ 亮 ⛩ˈՈ ҶFisher Jaikumar ⿽ 亮 ⛩䘹 ⌅ˈն 㘵 㔉 Ҷ 㜭 㓖 VRPк䶒⍻䈅Ⲵ㔃 DŽ ԕⴻ ˈ 䜘 㓿 ㇇⌅ 1960 -1990 䰤 ⲴDŽ 䱵 ⭘ѝˈ ḷ 䀓 䙐 ⌅ 䀓 䘋 ⌅䜭 Ҿ㓿 ㇇⌅DŽа 䶒ˈ 㜭 䀓オ䰤ѝ䘋㹼 䲀 ㍒ˈ 䖳⸝Ⲵ 䰤 ≲ ┑ 䀓˗ а 䶒ˈ䘉㊫㇇⌅㜭 䖳Ѫ ˈԕ 䱵 ⭘ѝ ⻠ Ⲵ䈨 㓖 Ԧˈ ↔ ъ䖟Ԧ ѝ㻛 ⌋ ⭘DŽⴞ ˈ 㓿 ㇇⌅亶 ˈ Ѿ 䘋㹼䟽 䘋Ⲵ DŽ3.2 䙐⭞ ㇍⌋㠚20ц㓚90 ԓˈ䙊䗷⁑ 㠚❦⧠䊑 䗷〻ˈ䇨 㘵 ҶаӋ≲䀓VRPⲴ䙊⭘ ㇇⌅ˈѪ≲䀓 㿴⁑Ⲵ 䝽䘱䰞仈 Ҷ Ⲵ 䐟DŽ䈕㊫ ⌅ 亶 ㍒ ǃ䇠 㔃 ǃԕ 䀓Ⲵ䟽㓴㔃 䎧 ˈ 䈳 オ䰤䘋㹼 ㍒ˈ⢩ Ⲵ 䘋㹼㓥␡䈅 ˈ䘉ṧ 㜭 Ո䀓䳶ѝ ㍒ˈ 㜭 䐣 䜘 ㍒亶 ˈӾ㘼 䇱Ҷ⿽㗔Ⲵ ṧ ˈ䚯 䲧 䜘 Ոˈ 儈Ҷ Ո䀓Ⲵᾲ⦷DŽ䘁 ˈ䙊⭘ ㇇⌅ 䖳 ˈ ⁑ 䘰⚛㇇⌅ǃ⾱ ㍒㇇⌅ǃ䚇Ր㇇⌅ǃ㲱㗔㇇⌅ǃ㋂ 㗔㇇⌅ǃ⾎㓿㖁㔌ǃ␧ ㇇⌅ㅹ䜭 ⭘ ≲䀓VRPDŽ 㢲 ԓ㺘 Ⲵ䙊⭘ ㇇⌅䘋㹼㔬䘠DŽ˄1˅⁑ 䘰⚛㇇⌅˄Simulated Annealing, SA˅1982 ˈKirkpatrickfㅹ փ䘰⚛ 㓴 Ո 亶 ˈ Ҷа⿽≲䀓 㿴⁑VRPⲴ 䘁լ㇇⌅ˈ ⁑ 䘰⚛㇇⌅˄SA˅DŽSAⓀҾ փ䘰⚛䗷〻Ⲵ⁑ ˈ 䍘к а⿽䲿 Ⲵ ㍒ ⌅DŽ ѝˈSA䟷⭘Metropolis ˈ ⭘а㓴〠ѻѪ 䘋 㺘Ⲵ ㇇⌅䘋〻ˈ ㇇⌅ 亩 䰤䟼㔉 ањ䘁լ Ո䀓DŽо㓿 ㇇⌅⴨∄ˈSA 䘠ㆰǃ ⭘⚥⍫ǃ ⭘ ⌋ 䖳 Ԧ䲀 ㅹՈ⛩ˈⴞ 䇨 Ո 䰞仈ѝ ⭘DŽⴞ ҾSAⲴ⹄ウˈ 㔃 ԆՈ ㆆ⮕ ⌅DŽ Tian[38]ㅹӪ 䙐Ҷа⿽ Ҿ Ո ㆆ⮕ⲴSA㇇⌅ ≲䀓VRPˈ ⭘ ㇇⌅ 䙐 䀓ˈ SAо2-opt㔃 ˈ ㇇⌅ѝ ⭘⑙ 䟽 ˈ 䗮 㓸⑙ ˈṩ ⑙ Ո Ⲵ⑙ 䟽 ㊫ ㇇⌅DŽLi[39]ㅹӪ SAо⾱ ㍒㇇⌅⴨㔃 ˈ ⭘TS㇇⌅ѝⲴ〫ս Ӕ ㇇ 㓯䐟 㓯䐟䰤Ⲵ ˈ㘼 SA Ѫ 〻 ˈṩ Ⲵ Ո䀓 䇮 Ⲵ⑙ ˈ ㇇⌅䘋㹼 ㍒DŽTavakkoli-Moghaddam[40]ㅹӪ 䛫䘁㇇⌅оSA㔃 ˈԕ⭘ ≲䀓 䖖 VRP 䴰≲ Ⲵ 䖖 VRPDŽ㜑 Տ[41]ㅹ 䲿 䙐VRP 䀓Ⲵ ⹰кˈ㔃 ⁑ 䘰⚛㇇⌅ㆆ⮕ˈ䟷⭘䐟 䰤䈳 䐟 Ո ⌅ˈ 䙏 VRP䘋㹼Ҷ≲䀓DŽ⭡ҾSAⲴ 䙏 䖳 ˈфо Ԇ㇇⌅⴨∄ˈSA н㜭 Ⲵ䀓[42]ˈ ↔ⴞ SA VRPѝⲴ ⭘⋑ ⾱ ㍒㇇⌅ 䚇Ր㇇⌅ ⌋DŽ˄2˅⾱ ㍒㇇⌅˄Tabu Search, TS˅1986 Glover Ҷ⾱ ㍒㇇⌅˄TS˅[43]DŽ Ҿ Ӫ㊫ 〻Ⲵа⿽⁑ ˈTS 䜘亶 ㍒Ⲵа⿽ ˈ а⿽ 䙀↕ Ո㇇⌅ˈ ˖㔉 ањ 䀓˄ 䀓˅ 䘹䀓ӗ⭏ ˄亶 㔃 ˅ˈ 䀓Ⲵ亶 ѝ⺞ 㤕 䘹䀓˗㤕 䘹䀓 Ⲵⴞḷ ՈҾ ⴞ Ѫ→ ㍒ Ⲵ³ 䀓´˄Best-so-for˅ˈ 㿶 ⾱ ⢩ ˈ⭘ ԓ 䀓 ³ 䀓´˗㤕н к䘠 䘹䀓ˈ 䘹䀓䳶ѝ䘹 䶎⾱ Ⲵ 䘹䀓Ѫ Ⲵ 䀓ˈ㘼 㿶 о 䀓ⲴՈ ˗к䘠є⿽ л䜭 ⴨ Ⲵ 䊑 ⾱ 㺘ˈ ⾱ 㺘ѝ 䊑Ⲵԫ ˗ ↔䟽 к䘠䘝ԓ ㍒䗷〻ˈⴤ㠣┑䏣㓸→ DŽ ԕⴻ ˈ亶 㔃 ǃ 䘹䀓䳶ǃ⾱ 䊑ǃ㰀㿶 ǃ㓸→ ㅹ䜭 TS 㜭Ⲵ 䭞DŽˈWillard[44], Pureza Franca[45] TS ⭘ҾVRPˈն䜭 㜭≲ 䖳 Ⲵ㔃 DŽ Osman WassanⲴTS㇇⌅ѝ[46]ˈ ⭘є⿽ 䀓ӗ⭏ ⌅˖ањ 㢲㓖㇇⌅о ⌅㔃 ˈ ањ 㢲㓖㇇⌅о ⍮⌅㔃 ˗ 䛫 㔃 ањє 䐟 䰤Ⲵ њ 㘵єњ䘎㔝Ⲵ ⛩ⲴӔ ˗ ⾱ 䮯 ⭡ањ 〻 ㍒ 䰤䘋㹼 ѹDŽ⍻䈅㔃 ⽪ˈ䘉є⿽TS ⧠ 䜭 Ҷ䖳 Ⲵ㔃 DŽ1994 ˈGendreau[47] Ҷ㓿 ⲴTaburoute㇇⌅ˈ 亶 㔃 ањ亦⛩Ӿ Ⲵ㓯䐟ѝ ˈ а 㓯䐟ѝˈ㘼䘉 㓯䐟 ⭘ԆԜ Ⲵ≲䀓TSPⲴ ѹ ⌅˄GENI˅ ӗ⭏Ⲵpњ 䛫䘁䀓ѻа˗ Ҿ⾱ ˈ Ӿ 䰤[5, 10]ѝ䲿 ањ ˗ ⭘Ҷа⿽ ṧ ㆆ⮕ˈѪ 㘳㲁䛓Ӌ〫 䖳 Ⲵ亦⛩Ⲵ 㜭 ˈ 䛓Ӌ㓿 㻛〫 Ⲵ亦⛩䘋㹼 㖊˗ ⭘՚䎧⛩ˈ⭏ њ䀓 ⇿ањ䜭䘋㹼 䲀Ⲵ ㍒ˈ❦ 䘹 ѝ 㘵Ѫѫ ㍒䗷〻Ⲵ 䀓˗⍻䈅㔃 㺘 ˈ䈕㇇⌅㜭≲ 儈䍘䟿Ⲵ㔃 ˈф ≲ ⴞ Ѫ→Ⲵ 䀓DŽ1995 ˈRochat Taillard[48] Ҷ㠚䘲 䇠 ˄Adaptive Memory˅ᾲ ˈ 䘁 TS亶 ⧠Ⲵ Ⲵ䘋 ѻаDŽ ㍒䗷〻ѝ ⲴՈ䍘䀓 䎧 ˈ❦ 䙊䗷䘉Ӌ䀓Ⲵ㓴 ˈӗ⭏TSⲴ 䀓DŽањ㠚䘲 䇠 а㓴 њ ㍒䗷〻ѝн Ⲵ 䀓DŽ䘉Ӌ䀓ⲴḀӋ ㍐㻛 ˈ 䘋㹼н Ⲵ㓴 ԕӗ⭏ Ⲵ 䀓DŽ VRPѝˈӾ њ䀓ѝ 䘹 Ⲵ䖖䖶㓯䐟 㻛⭘ Ѫањ䎧⛩DŽ䘉њ ⌅ 㓿 ԆԜ 14њḷ VRP⍻䈅䰞仈ѝˈ≲ Ҷєњ ⴞ Ѫ→Ⲵ 䀓DŽ1998 ˈToth Vigo[49] Ҷа⿽ ⌋䘲⭘㤳 Ⲵㆋ㖁⾱ ㍒˄Granular Tabu Search, GTS˅DŽGTSⲴѫ㾱 ⓀҾ˖ањ ѝ䖳䮯Ⲵ䗩㻛 ањ Ո䀓ѝⲴ 㜭 DŽ ↔ˈ䙊䗷⎸ 䮯 䎵䗷ањ䟿 ˄Granularity˅Ⲵ Ⲵ䗩ˈ аӋ⋑ 䙄Ⲵ䀓 ㍒䗷〻ѝ н 㘳㲁DŽ㔃 㺘 ˈ GTS㜭 ⸝Ⲵ 䰤 ≲ Ⲵ䀓DŽ䘁 ˈBrandao[50] 䇮䇑ⲴTSѝˈ䛫 㔃 䘹䀓䳶 ⭡ ˈ ⭘Ҷй⿽〫 ˈ 䐟 䰤 ⛩ ǃ䐟 䰤 ⛩Ӕ ǃ䐟 ⛩Ӕ DŽ⾱ 䮯 ⭡[N/6ˈN/2]ѻ䰤Ⲵ䲿 ˈ ⭘ Ⲵ[N/3] Ѫ⾱ 䮯 䘋㹼 傼⭘ԕ ∄DŽBrandao Eglese[51]䇮䇑Ⲵ≲䀓 䐟 Ⲵ⾱ ㍒㇇⌅ѝˈԕ5⿽ ⌅㧧 䀓ˈ 䘹 ԧ䗩ǃ䘹 䍥䗩ǃ ǃ䘎 䗩 亦⛩(Connected Components)ǃ䐟 (Path Scanning)˗ 䛫 㔃 䗩 ǃ 䗩 є 䐟 кⲴ䗩Ӕ DŽ⭡ҾTS㇇⌅ 䀓 Ⲵ 䎆 ˈ 㘵ԕSolomon ⌅ Ѫ ㇇⌅ˈҏ 䟷⭘ ⌅ǃл ㇇⌅ǃK-tree㇇⌅ӗ⭏ 䀓DŽⴞ ˈTS 䖖VRPǃ 〻䖭䍗VRPǃ 䰤デ㓖 ⲴVRPǃԕ VRP䜭 䟿 ⭘DŽ˄3˅䚇Ր㇇⌅˄Genetic Algorithms, GA˅1975 ˈHolland[52] Ҷ䚇Ր㇇⌅˄GA˅DŽGA а⿽⁑ԯ⭏⢙䘋 䗷〻Ⲵ 䲿 ㍒ ⌅ˈ Ѫ˖ӾՈ 䰞仈Ⲵањ⿽㗔˄а㓴 㹼䀓˅ ˈ ➗䘲㘵⭏ Ո㜌 ⊠Ⲵ ⨶ˈ䙀ԓ˄Generation˅╄ ӗ⭏ 䎺 䎺 Ⲵањ⿽㗔˄а㓴 㹼䀓˅˗ ⇿аԓˈṩ њփ˄ 㹼䀓˅Ⲵ䘲 ˄ⴞḷ ˅ⲴՈ 䘹а䜘 Ո㢟њփ ˄㑱⇆˅ лаԓˈ 䘋㹼Ӕ ˈӗ⭏ ԓ㺘 Ⲵ䀓䳶 Ⲵ⿽㗔DŽ䘉њ䗷〻 㠤⿽㗔 㠚❦䘋 аṧⲴ ԓ⿽㗔∄⡦ԓ 䘲 Ҿ⧟ ˄ 㹼䀓∄ 㹼䀓 䘁䰞仈Ⲵ Ո䀓˅ˈ њ䘋 䗷〻ѝⲴ Ոњփ Ѫ䰞仈Ⲵ 㓸䀓DŽҾн ㊫ Ⲵ䰞仈ˈ օ䇮䇑а⿽ 㖾Ⲵ㕆⸱ Ṹаⴤ GAⲴ ⭘䳮⛩ѻаˈҏ GAⲴањ䟽㾱⹄ウ DŽҼ䘋 㕆⸱ ⌅ GAѝ ⭘Ⲵа⿽㕆⸱ ⌅ˈ❦㘼ˈ Ҿ≲䀓VRP䘉ṧⲴ 䰞仈 ˈҼ㓗 㕆⸱ а Ⲵ㕪䲧DŽ ↔ˈㅖ 㕆⸱ ⌅ ⌋䇔 DŽն ㅖ 㕆⸱ ⌅ ˈ 㔉GA Ҷ Ⲵ䰞仈ˈ㤕䟷 ㆰ Ӕ Պ ԓ㓯䐟ѝ Ӌ亦⛩䟽 ˈ аӋ亦⛩㻛䚇┿ˈ 㠤 㜭 䙽 亦⛩Ⲵ䶎⌅㓯䐟DŽ ↔ˈ 享 у䰘Ⲵ Ҿ亪 ⲴӔ ӗ⭏ Ⲵ ԓ DŽ䘁 㓿 Ҷ л ⌅[5]˖䜘 䝽Ӕ ⌅˄Partially Matched Crossover, PMX˅ǃ亪 Ӕ ⌅˄Order Crossover, OX˅ǃ ⧟Ӕ ⌅˄Cycle Crossover, CX˅ˈԕ 䗩䟽㓴Ӕ ⌅˄Edge Recombination Crossover, ERC˅DŽ Ҿ ˈҏ 㓿 ҶаӋу䰘Ⲵ ⌅ˈ ˄Remove and Reinsert˅ǃ ˄Swap˅ˈԕ 䘶䖜 ˄Inversion˅DŽⴞ ˈ≲䀓VRP OVRPⲴGA ⥞⴨ 䖳 ˈ㘼≲䀓 䰤デⲴVRP ㅹ ⲴGA ⥞⴨ 䖳 DŽ Ⲵ䲀 Ԧˈ⢩ 䰤デⲴ ˈаⴤ ⢥ ⵰ Ⲵ≲䀓 ⌅Ⲵ DŽ䘉㔉GA⭘ Ԉ 䲀 Ԧ 䶒Ⲵ ≲ ㄎҹ Ⲵ㔃 Ҷ ՊDŽ˄4˅㲱㗔㇇⌅˄Ant Colony Optimization, ACO˅㲱㗔㇇⌅ ⭡Dorigo, M., ㅹ[53]Ҿ1991 俆⅑ ⲴDŽACO 㠚❦⭼ѝⵏ 㲱㗔㿵伏㹼ѪⲴ 㘼 Ⲵа⿽⁑ 䘋 ㇇⌅DŽ 伏⢙ ˈ㲲㲱Պ 㓿䗷Ⲵ䐟 䙊䗷 а⿽ ◰㍐˄pheromoneˈ ㇇⌅ѝ〠Ѫ ㍐˅ ḷ䇠ˈ Ⲵ䟿 ṩ 䐟 䮯 伏⢙Ⲵㅹ㓗 DŽ䘉Ӌ ◰㍐Ѫ 㲲㲱 ˈ Ԝ 䘀伏⢙DŽⴞ ˈACO ⭘Ҿ ㊫VRPDŽBullnheimerㅹ[54]䪸 VRP䇮䇑Ҷу䰘Ⲵ㲱㗔䖜〫䘹 ㆆ⮕ˈ 㲱㗔 ㍒ ˈ ⭘2-OptՈ 䐟 ˗Gambardellaㅹ[55] ACO⭘Ҿ≲䀓VRPTWˈ 㘵䟷⭘єњ⿽㗔 Ո 䰞仈ˈањՈ 䖖䖶 ⴞˈањՈ 㓯䐟䮯 ˗Donatiㅹ[56] ACO⭘Ҿ 㖁㔌VRPˈ ㇇⌅ѝ ㍐ ѹѪањ 䰤 䎆䟿ˈ а 〻 к䀓 Ҷ 䰤デⲴ 㖁㔌VRP˗Montemanniㅹ[57]⹄ウҶACO 䖖䖶䐟 䰞仈Ⲵ ⭘ˈ Ҷањ⭡һԦ㇑⨶ǃ㲱㗔㇇⌅ǃ ㍐ ㆆ⮕3њ ㍐㓴 Ⲵ㌫㔏Ṷ ˗Pellegrini ㅹ[58]⹄ウҶн 䖖䖶ǃ 䖖 ǃ 䰤デㅹ㓖 ⲴVRPˈ ⭘2⿽ ⿽ACOՈ ≲䀓˗Gajpal Abad[59]ԕ㋮㤡㲲㲱 䐟 ㆆ⮕Ⲵ㲱㗔㌫㔏≲䀓Ҷ 䘱 ъⲴVRP˗Ugur Aydin[60] ҾACO ҶањӪ ӔӂTSP ⁑ 䖟ԦDŽ˄5˅␧ ㇇⌅а䙊⭘ ㇇⌅⹄ウ␡ Ⲵ ˈ⹄ウӪ 㓿䖳 ⿽ аⲴ ㇇⌅㔃 䎧 ˈԕ 儈VRPⲴ≲䀓䙏 䀓Ⲵ䍘䟿DŽ1995 ˈGloverㅹ[61] 䈅 GA TS⴨㔃 ˗䛾㤲⾕ 㜑 㔗[62]䙊䗷 䜘 ㍒㜭 Ⲵ⡜ ㇇⌅о ㍒㜭 Ⲵ䚇Ր㇇⌅㔃 ˈ 䙐Ҷ≲䀓⢙⍱䝽䘱䐟 Ո 䰞仈Ⲵ␧ 䚇Ր㇇⌅ˈ 㢟 Ո㔃 ˗䛡 ẵ[63]ˈ[64] ⹄ウҶ㋂ 㗔㇇⌅о Ԇ㇇⌅Ⲵ㔃 VRP 䰞仈кⲴ ⭘˗б⿻䴧[65]ㅹ ⚮ ㇇ 㲱㗔㇇⌅ 䲧 䜘Ո Ⲵ㕪䲧˗Saez[66]ㅹ 䚇Ր㇇⌅о⁑㋺㚊㊫㔃 ˈ ↔ ⹰к Ҷа⿽ 㜭䘲 亴 ⌅≲䀓 䖖䖶 䘱 ъVRPDŽ㔬к 䘠ˈ ≲䀓VRPⲴ ⿽䙊⭘ ㇇⌅ ␧ ㇇⌅Ⲵ⹄ウ㺘 ˈ Ҿ Ⲯњ Ⲵ ˈ䘉Ӌ ⌅ѝ䜭 ԕ≲ 䶎 Ⲵǃ ⭊㠣 ՈⲴ䀓ˈ㲭❦䘀㇇ 䰤㾱䮯аӋDŽ փ 䈤ˈ ⴞ Ѫ→ˈ⾱ ㍒ ⧠ Ⲵ ⌅˗ Ҿ䚇Ր㇇⌅ ⾎㓿㖁㔌Ⲵ ⌅ 㜭Ո㢟˗㘼 Ҿ⁑ 䘰⚛ 㲱㗔㌫㔏Ⲵ ⌅ㄎҹ н DŽ❦㘼ˈ㘳㲁 ⿽ ⌅ 䙀⅑ ⧠ѝⲴ 㜭 䘋 ˈ ⿽␧ ㇇⌅ 䳶ѝ ㍒ ṧ ㍒ǃ ㇇⌅≲䀓䍘䟿 䇑㇇ 䰤ѻ䰤㜭㧧 䖳 Ⲵ 㺑ˈ␧ Ⲵ㲱㗔㌫㔏 䚇Ր㇇⌅ 㻛 ˈ о⾱ ㍒㇇⌅⴨ 㖾DŽ4. 㔉 䈣䖖䖶䐟 䰞仈 ㇑⨶ 䘀ㆩ 亶 䱄Ⲵ ⭘ԧ ⹄ウ DŽ䲿⵰⽮ՊⲴ ˈVRPҏ н Ⲵ ˈ 䲿 䴰≲VRPǃ䶎 〠㖁㔌VRPǃԃ -䝽䘱аփ 䐟 䰞仈ㅹ 䘋а↕⹄ウⲴ DŽ 㓣 㔃ҶVRP Ⲵ⹄ウ䘋 䎻 ˈѪ⴨ Ⲵ 䢤DŽ㘳 ⥞[1] 䶙 , 㔏䇑 , ѝ ⢙⍱о䟷䍝㚄 Պ. 2010 ⢙⍱䘀㹼 䙊 [M]. ѝ ⢙⍱о䟷䍝㚄 Պ, ѝ ⢙⍱ 䢤2011, Ӝ: ѝ ⢙䍴 ⡸⽮, 2011: 61-62[2] Dantzig, G.B., and Ramser, J.H., The truck dispatching problem [J].Management Science, 1959, 6: 80[3] ⇥仾 . 䖟 䰤デ㓖 Ⲵ 䖖䖶䐟 䰞仈⹄ウ ⭘[D]. 䮯⋉: ѝ , 2009[4] █・ . 䰤デ䖖䖶䐟 䰞仈 ㇇⌅⹄ウ[D]. 䮯⋉: ѝ , 2012[5] ㅖ . 䖖䖶䐟 䰞仈 ⭘⹄ウ[D]. 䮯⋉: ѝ , 2004[6] █・ , ㅖ . ≲䀓 ⺜ 䰤デ䖖䖶䐟 䰞仈Ⲵ ㇇⌅[J]. 䇑㇇ ⭘, 2012, 32(11): 3042-3043, 3070[7] 㛆䳱, ㅖ , 㛢 . 䖟 䰤デⲴ䖖䖶䐟 䰞仈 ⭘ 䇘[C]. 䮯⋉: ѝ 䘀ㆩ ՊㅜӔ⍱Պ, 2000: 634-638[8] ㅖ , 㙲䶆. 䖖䖶䐟 䰞仈 㤕 ⹄ウ䘋 [C]. ␡ : ѝ 䘀ㆩ Պㅜ Ӕ⍱Պ, 2006:395-400[9] Bodin, L.B., Golden, B.L., Assad, A.A., Ball, M.O., Routing and scheduling of vehicles and crews: the state ofthe art [J]. Computer Operation Research, 1983, 10: 163-211[10] Toth, P., Vigo, D. The Vehicle Routing Problem [M]. Society for Industrial and Applied Mathematics,Philadelphia, USA, 2002[11] 㛆 䖹. 䖖䖶䐟 Ո ⥞㔬䘠[J]. ь 㤳 䲒 ˄㠚❦、 ˅, 2010, 2: 31-37[12] Crevier, B., Cordeau, J.F., LaPorte, G., The multi-depot vehicle routing problem with inter-depot routes [J].European Journal of Operational Research, 2007, 176(2): 756-773[13] Golden, B., Assad, A., Levy, L., The fleet size and mix vehicle routing problem [J]. Computer and OperationsResearch, 11(1): 49-66[14] Drorand, M., Trudeau, P. Split delivery routing [J]. Naval Research Logistics, 1990, 37: 383-402[15] 䉒⿹⻺. 䲿 䖖䖶䐟 䰞仈⹄ウ[D]. 䜭: 㾯 Ӕ䙊 , 2003[16] Bent, R.W., and Hentenryck, P.V., Scenario-Based Planning for Partially Dynamic Vehicle Routing withStochastic Customers [J]. Operations Research, 2004, 52(6): 977-987[17] Oppen, J., L okketangen, A., Arc routing in a node routing environment [J]. Computers and OperationsResearch, 2006, 33(4): 1033-1055[18] Lenstra, J.K., and Rinnooy, K., Complexity of vehicle routing and scheduling problem [J]. Network, 1981, 11:221-227[19] . Ҿ ⭼䲀⌅Ⲵ 㹼 ㍒㇇⌅⹄ウ[D]. 㾯 : 㾯 ⭥ 、 , 2011[20] Տ. а⿽ Ҿ䀓 ѝ 䶒Ⲵ ㊫㇇⌅[D]. 䘎: 䘎⨶ , 2009[21] . CVRP 䝽㖁㔌⍱㇇⌅[D]. ⍾ : ь、 , 2003[22] 㕚 㣜, 䛥 . 㿴 ㇇⌅Ⲵ ⨶ ⭘[J]. ѝ 、 , 2005(21): 42-42[23] Golden, B.L., Wasil, E.A., Kelly, J.P., and Chao, I.M., Meatheuristics in vehicle routing [C]. In Crainic, T.G.,and Laporte, G. editors, Fleet Management and Logistics, Kluwer Academic Publishers, London, 1998, 33-56 [24] Clark, G. and Wright, J.R., Scheduling of vehicle routing problem from a central depot to a number ofdelivery points [J]. Operations Research, 1964, 12: 568-581[25] Nelson, M.D., Nygard, K.E., Griffin, J.H., and Shreve, W.E., Implementation techniques for the vehiclerouting problem [J]. Computer and Operations Research, 1985, 12(3): 273-283[26] Paessens, H., The savings algorithm for the vehicle routing problem [J]. European Journal of OperationalResearch, 1988, 34(3): 336-344[27] Altinkemer K., Gavish B., Parallel savings based heuristic for the delivery Problem [J]. Operations Research,1991, 39: 456-469[28] Wark, P., and Holt, J., A repeated matching heuristic for the vehicle routing problem [J]. Journal ofOperational Research Society, 1994, 45: 1156-1167[29] Gillett, B.E., and Miller, L.R., A heuristic algorithm for the vehicle dispatch problem [J]. Operations Research,1974, 22: 340-349[30] Foster, B., and Ryan, D., An integer Programming approach to the vehicle scheduling problem [J]. OperationResearch, 1976, 27: 307-384[31] Ryan, D.M., Hjorring, C., and Glover, F. Extension of the Petal method for vehicle routing [J]. Journal ofOperational Research Society, 1993, 44: 289-296[32] Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y., and Semet, F., A guide to vehicle routing heuristics [J].Journal of Operational Research Society, 2002, 53(5): 512-522[33] Christofides, N., Mingozzi, A., and Toth, P., The vehicle routing problem [C]. Combinatorial optimization,Chichester, UK: Wiley, 1979: 315-338[34] Fisher, M.L., Jaikumar, R., A generalized assignment heuristic for vehicle routing [J]. Network, 1981, 11:109-124[35] Fisher, M.L., Greenfield, A.J., Jaikumar, R., and Lester, J., A computerized vehicle routing application [J].Interfaces, 1982, 12(4): 42-52[36] Fisher, M.L., Jaikumar, R., and Wassenbove, L.N., Multiplier adjustment method for the generalizedassignment problem [J]. Management Science, 1986, 32: 1095-1103[37] Bramel, J.B., and Simchi-Levi, D., A location based heuristic for general routing problems [J]. OperationsResearch, 1995, 43(4): 649-660[38] Tian, P., Ma, J., and Zhang, D.M., Application of the simulated annealing algorithm to the combinatorialoptimization problem with permutation property: an investigation of generation mechanism [J].European Journal of Operational Research, 1999, 118(1): 81-94[39] Li, H., Lim, A., Huang, J., Local search with annealing-like restarts to solve VRPTW [J]. European Journal ofOperational Research, 2003, 150(1): 115-127[40] Tavakkoli-Moghaddam , R. Safaei, N., Gholipour, Y., A hybrid simulated annealing for capacitated vehiclerouting problems with the independent route length [J]. Applied Mathematics and Computation, 2006, 176(2): 445-454[41] 㜑 Տ, , 㜑 . 䖖䖶䐟 䰞仈Ⲵ⁑ 䘰⚛㇇⌅[J]. ѝ 䐟 , 2006, 19(4): 123-126[42] Breedam, A.V., Improvement heuristics for the vehicle routing problem based on simulated annealing [J].European Journal of Operation Research, 1995, 86(3): 480-490[43] Glover, F. Future paths for integer programming and links to artificial Intelligence [J]. Computers andOperations Research, 1986, 13:533-549[44] Willard, J.A.G., Vehicle routing using r-optimal tabu search [M]. London: The Imperial College, 1989[45] Pureza, V.M., and Franca, P.M., Vehicle routing problems via tabu search metaheuristic [R].Technical ReportCRT-347, Centre for Research on Transportation, Montreal, Canada, 1991[46] OsmanˈI., and Wassan, N., A reactive tabu search metaheuristic for the vehicle routing problem with back-hauls [J]. Journal of Scheduling, 2002, 5(4): 263-285[47] Gendreau, M., Hertz, A., L aporte, G., A tabu search heuristic for the vehicle routing problem [J].Management Science, 1994, 40: 1276-1290[48] Rochat, Y., and Taillard, E.D., Probabilistic diversification and intensification in local search for vehiclerouting [J].Journal of Heuristics, 1995, 1: 147-167[49] Toth, P., and Vigo, D., The granular tabu search and its application to the vehicle routing problem[R].Technical Report OR19819, DEIS, Italy, 1998[50] Brandao, J., A new tabu search algorithm for the vehicle routing problem with backhauls [J]. EuropeanJournal of Operation Research, 2006, 173(2): 540-555[51] Brandao, J., and Eglese, R., A deterministic tabu search algorithm for the capacitated arc routing problem [J].Computers and Operations Research, 2008, 35(4): 1112-1126[52] Holland, J., Adaptation in natural and artificial systems [D]. University of Michigan Wesley, 1975[53] Colorni, A., Dorigo, M., Maniezzo, V., Distributed optimization by ant colonies [J]. In: Proc of the FirstEuropean Conference of Artificial Life. Paris, France Elsevier Publishing, 1991: 134-142[54] Bullnheimer, B., Hartl, R.F., and Strauss, C., Applying ant system algorithm to the vehicle routing problem[A]. Advances and Trends in Local Search Paradigms for Optimizaiton [C], Kluwer Acedenics, 1998: 109-120[55] Gambardella, L.M., Taillard, E., Agazzi, G., MACS-VROTW: a multiple ant colony system for vehiclerouting problems with time window [A]. New ides in optimization [C], London, U.K.: McGraw-Hill, 1999: 63-76[56] Donati, A.V., Montemanni, R., Casagrande, N., Rizzoll, A.E., and Gambardella, L.M., Time dependentvehicle routing problem with a multi ant colony system [R]. Technical Report TR-17-03, IDSIA, Galleria2, Manno, 6928, Switzerland, 2003[57] Montemanni, R., Gambardella, L.M., Rizzoll, A.E., and Donati, A.V., A new algorithm for a dynamic vehiclerouting problem based on ant colony system [R]. Technical Report TR-23-02, IDSIA, Galleria2, Manno, 6928, Switzerland, 2004[58] Pellegrini, P., Favaretto, D., Moretti, E., Multiple ant colony optimization for a rich vehicle routing problem:a case study [J]. Lecture Notes in Computer Science, 2007, 4639: 627-634[59] Gajpal, Y., and Abad, P.L., Multi-ant colony system (MACS) for a vehicle routing problem with backhauls[J]. European Journal of Operation Research, 2009, 196: 102-117[60] Ugur, A., and Aydin, D., An interactive simulation and analysis software for solving TSP using ant colonyoptimization algorithms [J]. Advances in Engineering Software, 2004, 40: 341-349[61] Glover, F., Kelly, J.P., and L aguna, M., Genetic algorithms and tabu search: hybrids for optimization [J].Computers Operation and Research, 1995, 22(1): 111-134[62] 䛾㤲⾕, 㜑 㔗. ⭘␧ 䚇Ր㇇⌅≲䀓⢙⍱䝽䘱䐟 Ո 䰞仈Ⲵ⹄ウ[J]. ѝ ㇑⨶、 , 2002, 10(5): 51-56[63] 䛡 , ẵ. Ҿ 䘋㋂ 㗔㇇⌅Ⲵ ս-䘀䗃䐟㓯䰞仈⹄ウ[J].ѝ Ỡ 〻, 2006, 17(22):2359-2361[64] . 䖖䖶䐟 䰞仈Ⲵ㋂ 㗔㇇⌅⹄ウо ⭘[D]. ⎉⊏: ⎉⊏ ъ , 2007[65] б⿻䴧, 㜑⾕ , ≨ . ≲䀓 䰤デⲴ䖖䖶䐟 䰞仈Ⲵ␧ 㲱㗔㇇⌅[J]. ㌫㔏 〻⨶䇪о 䐥, 2007,10: 98-104[66] Saez, D., Cortes, C.E., and Nunez, A., Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering. Computers and Operations Research, 2008, 35: 3412-3438。

相关文档
最新文档