带时间窗物流配送车辆路径问题
带时间窗快递车辆路径问题模型及算法研究

给定分拨中心的网络结构及其服务时间窗口约束和各个分拨中 心之间的货物流量结构及其时效约束的快递车辆路径规划,是实 际中最为常见的一类问题。本文主要研究了带时间窗的快递车 辆路径问题的建模及求解,具体工作包括以下两项内容:1.固定 时间窗快递车辆路径问题建模及求解固定时间窗快递车辆路径 问题就是研究在收件时间窗和派件时间窗固定的情况下,如何安 排班车路由使得班车花费的总成本最小。
带时间窗快递车辆路径问题模型及算 法研究
随着电子商务的飞速崛起,快递企业如何合理安排运输车辆以降 低运输成本成为一个迫切需要解决的问题。快递车辆路径问题 是经典的车辆路径问题(Vehicle Routing Problem, VRP)的变 种,也是一个NP难问题。
因此,快速的启发式求解算法及解好坏的评估是研究中的难点和 关键。该问题的研究及应用,可以显著地降低快递行业的运输成 本,同时也减少车辆的二氧化碳排放量,对经济和环境产生积极 影响。
还将两种班车安排方法得到的结果进行对比,说明了本文提出的 新班车安排方法优于原有班车安排方法。此外,对于9城市数据 和21城市数据,求解算法总的计算时间分别为1秒和54秒。
2.可变时间窗快递车辆路径问题建模及求解通过分析发现时间 窗对于班车运输成本影响较大,为此需要将时间窗作为可变参数 纳入到模型中,我们将该问题称之为可变时间窗快递车辆路径问 题。本文在固定时间窗问题的基础上,采用环线班车+单边车的 班车安排方法,建立了该问题的数学模型。
本文首先建立了此问题的数学模型,然后设计了基于贪心启发式 方法的快速求解算法,并提出了一种新的班车安排方法:环线班 车+单边车,以此代替原有的效果较差的对称班车安排方法,最后 还给出了评估该行计算实验,将提出算法的求解结果与下界模型得 到的下界进行比较,从而表明了求解算法的精确程度。
带时间窗的物流配送路线优化节约算法

带时间窗的物流配送路线优化节约算法算法原理是以连接后节省里程最多且满足时间窗约束为原则,逐步把客户连接在一起,直到形成一条完整的运输路线。
传统的节约算法是只考虑总里程的最优化,在本文论述的带时间窗的配送路线优化中显然是不合适的,改进后的算法将综合考虑时间窗和总里程的约束,更加贴合实际。
由于在上面一小节中已经对每个应急物资中心所负责的灾区配送进行划分,本小节将主要对个应急物资中心所负责的线路进行优化,此时,将应急物资中心表示为0;(,)s i j 表示将i ,j 连接在一起后的节约里程数,则(,)io oj ij s i j l l l =+-。
由于i 、j 连接后将会使车辆到达灾区j 出现时间的变化,由于时窗的约束,需要考虑连接后到达灾区时间的变化量,即j i ij j EF S t S =+-,其中i S 、j S 表示未连接时车辆到达灾区i 、j 的时间,ij t 为两灾区间车辆行驶时间,当j EF 小于、等于、大于0时,分别表示连接后时间提前、不变或推迟。
同样,受时间窗最早时间和最迟时间的限制,当j EF <0时,即时间提前时,提前的幅度不得大于j 后面灾区的最早时间限制的最小值,用j EF TB ≤表示;当j EF >0,即时间推迟后,推迟的幅度不得大于j 后面灾区的最迟时间限制的最小值,用j EF TA ≤表示。
步骤如下:第一步:计算(,)io oj ij s i j l l l =+-,(i ,j=1,2,…,m ); 第二步:令集合{}(,)(,)0M s i j s i j =>,并将其内元素按降序排列;第三步:若M ϕ=,则终止;否则,考察M 内第一项(,)s i j 中对应的i 、j ,满足下列条件之一,则转第四步,否则转第:(1)灾区点i 、j 均不在已构造的路线上,考虑连接“00i j →→→”;(2)灾区i 、j 在已构造的路线上,且i 或j 与应急物资中心相连,考虑连接“0...0i j →→→”或“0...0i j →→→”;(3)灾区i 、j 在已构造的不同路线上,且一个是起点,一个是终点,考虑连接“0......0i j →→→”或“0......0j i →→→”第四步:计算j i ij j EF S t S =+-,若j EF =0,转第五步;若j EF <0,计算TB ,当j EF TB ≤,转第五步;若j EF >0,计算TA ,当j EF TA ≤,转第五步,否则转第六步。
带时间窗物流配送车辆路径问题

带时间窗物流配送车辆路径问题摘要本题是一个带有时间窗的车辆路径安排问题(VRPTW问题)。
根据题目条件,本文建立了一个求解最小派送费用的VRPTW优化模型,采用遗传算法,给出了该模型的求解方法。
然后,对一个实际问题进行求解,给出了一个比较好的路线安排方式。
模型一(见5.1.2)针对问题一,在需求量、接货时间段、各种费用消耗已知的情况下,决定采用规划模型,引入0-1变量,建立各个约束条件,包括车辆的容量限制,到达每个客户的车辆和离开每个客户的车辆均为1的限制,总车辆数的限制,目标函数为费用的最小化,费用包括车辆的行驶费用,车辆早到或晚到造成的损失。
模型一的求解采用遗传算法(见5.1.3),对题目给出的实际问题进行求解,首先按照需求期望根据模型一得到一个比较好的方案,然后按照这一方案进行送货,在送货过程中,如果出现需求量过大的情况,允许车辆返回仓库进行补充。
模型一的思路清晰,考虑条件全面。
但最优解解决起来困难,遗传算法只是一种相对好的解决方法,可以找出最优解的近似解。
模型二的想法比较合理,易于实施,但还有待改进。
关键词:规划 时间窗 物流 车辆路径 遗传算法一、 问题重述一个中心仓库,拥有一定数量容量为Q 的车辆,负责对N 个客户进行货物派送工作,客户i 的货物需求量为i q ,且i q Q <,车辆必须在一定的时间范围[],i i a b 内到达,早于i a 到达将产生等待损失,迟于i b 到达将处以一定的惩罚,请解决如下问题:(1)给出使派送费用最小的车辆行驶路径问题的数学模型及其求解算法。
并具体求解以下算例:客户总数N=8,每辆车的容量Q=8(吨/辆), 各项任务的货运量i q (单位:吨)、装货(或卸货)时间i s (单位:小时)以及要求每项任务开始执行的时间范围[],i i a b 由附录1给出,车场0与各任务点以及各任务点间的距离(单位:公里)由附件二给出,这里假设车辆的行驶时间与距离成正比,每辆车的平均行驶速度为50公里/小时,问如何安排车辆的行驶路线使总运行距离最短; (2)进一步请讨论当客户i 的货物需求量i q 为随机参数时的数学模型及处理方法。
带硬时间窗的车辆路径问题求解算法研究

2.针对改进型烟花算法在求解客户聚类测试集时存在行驶总距 离较长问题,提出了一种基于模因算法的求解方法。考虑到初始 解的好坏影响算法的收敛速度,首先通过模糊聚类生成初始可行 解以保证种群多样性和算法后期的收敛性,然后对进化模块的进 化算子进行改进,采用边缘交叉重组算子进行全局搜索以产生更 多较优个体,最后在局部优化模块采用节点交换和k-opt作为模 因算子,对较优个体进行局部优化以快速收敛到
随着现代经济飞速发展,尤其是电子商务平台的快速崛起,使物 流配送成为其不可或缺的一部分,人们对物流配送服务的需求也 日益增加,而车辆路径规划问题作为物流配送行业的重要问题, 自提出以来就吸引了运筹学和组合优化等领域工作者的广泛研 究。随着客户日趋严格的及时交付要求,带硬时间窗车辆路径问 题越来越突出,而该问题的研究由于自身的复杂性目前还没有得 到很好的解决。
因此,本文基于此开展研究,具体研究内容如下:1.针对带硬时间 窗车辆路径问题提出了一种改进型烟花算法进行求解,该算法能 够利用信息交互进行资源分配。首先在传统烟花算法的基础上 结合构造算法产生初始烟花和路径解决方案,然后对传统烟花算 法的爆炸算子进行改进,使得烟花种群中适应度值最优烟花的爆 炸搜索半径能够根据个体适应度值自适应地调整,增强算法后期 局部搜索能力,再利用交叉重组完成爆炸火花的邻域搜索,并通 过变异操作来增强种群多样性,最后通过烟花算法的分布式信息 共享机制来避免算法早熟。
3.Solomon标准测试集作为当前国际通用的车辆路径规划问题参 考标准,方便各算法的集中比较,本文基于该测试集对上述主要 研究方法开展相关实验研究,对所获结果与当前已公布最优解进 行比较,以验证所提算法的有效性和可行性。4.最后,以顺丰快 递兰州集散中心为各营业点配送快递为例,本文基于Flexsim仿 真软件进行仿真实验研究,实验结果表明所提出的算法对求解带 硬时间窗车辆路径问题具有一定的理论意义和应用价值。
带车辆时间窗的多车场车辆路径问题研究

2.对带客户时间窗的多车场车辆路径问题进行研究。在阐述基 本车辆路径问题构成要素、分类、模型及算法的基础上,引入多 车场和客户时间窗两类约束条件,对带客户时间窗的多车场车辆 路径的问题(MDVRPTW)进行描述分析,进而对其模型及常用的求 解算法进行归纳总结。
3.构建带车辆时间窗的多车场车辆路径问题的数学模型。在详 细介绍车辆时间窗概念的基础上,对带车辆时间窗的多车场车辆 路径问题进行描述及定义,最终构建带车辆时间窗、带客户时间 窗的多车场车辆路径的数学模型。
4.求解带车辆时间窗的多车场车辆路径问题的算法研究。在详 细介绍聚类分析、模拟退火算法理论的基础上,基于“先聚类后 路线”的方法,首先通过k-means聚类算法对配送区域进行划分, 将多车场车辆路径问题转化为单车场车辆路径问题,再利用模拟 退火算法求解单车场问题,并进行算例分析。
本文所研究的带车辆时间窗的多车场车辆路径问题,主要是从企 业成本控制和优化资源配置角度出发,在调配车辆时考虑正在运 行中的车辆资源,从而将车辆时间窗概念引入到车辆路径问题中, 同时结合实践运作中调度的情况、特点,最终建立带车辆时间窗, 带客户时间窗的多车场车辆路径的数学模型。本文主要做了以 下几个方面的工作:1.概述本文研究背景、研究意义及创新点, 总结国内外相关问题的研究现状等内容。
带车辆时间窗的多车场车,许多物流公司往往拥有多个配送中心 (车场)。配送中心之间如何进行合理的任务分配及恰当的车辆 行驶路线安排以实现企业配送成本的降低和服务质量的提升,就 成为企业非常关心的问题。
多车场车辆路径问题也是车辆路径问题领域的研究热点之一。 目前多车场车辆路径问题中关于时间窗的研究,主要都是从客户 角度出发,旨在提高服务质量的同时保证成本最低。
带时间窗车辆路径问题的最优解

带时间窗车辆路径问题的最优解带时间窗的车辆调度问题是物流配送系统的关键之关键,对它的研究越来越重视。
本文将建立物流管理中的带时间窗车辆路径问题的模型,并得到此模型的最优解,有一定的实用意义。
标签:带时间窗车辆路径问题物流管理组合优化一、提出问题在许多物流配送系统中,管理者需要采取有效的配送策略以提高服务水平、降低货运费用。
其中车辆路径问题是亟待解决的一个重要问题,此问题可描述如下:有一个货物需求点(或称顾客),已知每个需求点的需求量及地理位置,至多用K辆汽车从中心仓库(或配送中心)到达这批需求点,每辆汽车载重量一定,安排汽车路线使运输距离最短并且满足每条线路不超过汽车载重量和每个需求点的需求量且必须只能用一辆汽车来满足。
带时间窗车辆路径问题(VRPTW,vehicle routing problem with time windows)是在车辆路径问题中加入了客户要求访问的时间窗口,由于在现实生活中许多问题都可以归结为VRPTW来处理,但处理的好坏将直接影响到一个企业的效益和顾客的服务质量,所以对它的研究越来越受到人们的重视,目前对它的求解主要集中在启发式算法上。
20世纪90年代后,遗传算法、禁忌搜索算法、模拟退火算法、人工神经网络算法和动态蚁群算法等启发式算法的出现,为求解VRPTW提供了新的工具。
但是,遗传算法存在“早熟性收敛”问题,禁忌搜索算法、人工神经网络算法也存在一些不尽人意的地方,如何针对VRPTW的特点,构造简单、寻优性能优异的启发式算法,这不仅对于物流配送系统而且对于许多可转化为VRPTW求解的优化组合问题均具有十分重要的意义。
实际数据表明动态蚁群算法行之有效,不失为一种求解VRPTW的性能优越的启发式算法。
二、问题描述VRPTW可以描述如下:给定车辆集合V,需求点集合C和有向图G。
此有向图有|C|+2个顶点,顶点1,2,K,n表示需求点,顶点0表示离开时的中心仓库,顶点n+1表示返回时的中心仓库,把顶点0,1,2,3,K,n+1记作集合N。
物流配送路径规划中的时间窗问题研究与应用

物流配送路径规划中的时间窗问题研究与应用摘要:在物流配送系统中,时间窗问题是一个重要的研究方向。
时间窗指的是物流配送过程中,每个客户对送货时间的限定。
在进行路径规划时,必须考虑到这些时间窗的限制,以确保配送的准时和高效。
本文将探讨时间窗问题的研究背景、定义、分类以及应用,并讨论相关研究的最新进展和未来发展方向。
1. 引言物流配送是现代经济运作中不可或缺的一环,它涉及到从供应商到客户的商品运输。
为了确保商品能够按时送达,保证供应链的顺利运作,物流配送路径规划成为一个十分复杂的问题。
在实际配送中,客户的送货时间限制成为了一项不可忽视的因素。
因此,研究如何在配送过程中合理安排时间窗成为了一项重要的课题。
2. 时间窗问题的定义与分类时间窗问题是指在物流配送过程中,每个客户对送货时间的限定问题。
通常来说,每个送货点都会对送货的时间窗进行要求,以确保送货的合理性和高效性。
时间窗问题可以分为硬性时间窗和软性时间窗。
硬性时间窗是指送货时间窗必须严格遵守,若送货晚于时间窗,则被视为违约,不符合客户的需求。
软性时间窗则允许在一定范围内有所延迟,但延迟时间越长,对配送成本和客户满意度的影响也越大。
3. 时间窗问题的应用研究时间窗问题在物流配送领域有着广泛的应用研究。
主要包括以下几个方面:3.1 路径规划优化时间窗问题的一个重要应用是在路径规划中进行优化。
通过考虑送货点的时间窗限制,并采用合适的算法和模型,可以在尽量减少配送成本的同时保证配送的准时性。
研究者提出了多种求解算法,例如遗传算法、模拟退火算法等,并结合实际场景进行验证和优化。
3.2 送货路线调整在实际配送过程中,由于各种原因(道路拥堵、天气等),送货路线需要进行调整。
时间窗问题可以帮助配送员进行及时调整,选择最优的路线以保证送货的准时性。
3.3 仓库和配送中心的布局规划仓库和配送中心的布局规划也需要考虑时间窗的因素。
通过合理规划仓库和配送中心的位置,可以减少配送距离和时间,提高配送效率,降低成本。
带时间窗的车辆路径问题数学建模

带时间窗的车辆路径问题(VRPTW)是一种重要的组合优化问题,在许多实际的物流配送领域都有着广泛的应用。
该问题是对经典的车辆路径问题(VRP)进行了进一步扩展,考虑了车辆在每个节点进行配送时的时间窗约束。
VRPTW的数学建模和求解具有一定的复杂性,需要综合考虑车辆的路径规划和时间限制方面的因素。
本文将对带时间窗的车辆路径问题进行数学建模,并探讨一些常见的求解方法和算法。
一、问题描述带时间窗的车辆路径问题是一个典型的组合优化问题,通常可以描述为:给定一个具有时间窗约束的有向图G=(V,E),其中V表示配送点(包括仓库和客户),E表示路径集合,以及每个节点v∈V都有一个配送需求q(v),以及一个时间窗[Tmin(v),Tmax(v)],表示了可以在节点v进行配送的时间范围;另外,给定有限数量的车辆,每辆车的容量有限,且其行驶速度相同。
问题的目标是设计一组最优的车辆路径,使得所有的配送需求都能够在其对应的时间窗内得到满足,且最小化车辆的行驶距离、行驶时间或总成本,从而降低配送成本和提高配送效率。
二、数学建模针对带时间窗的车辆路径问题,一般可以采用整数规划(IP)模型来进行数学建模。
以下是一个经典的整数规划模型:1. 定义决策变量:设xij为车辆在节点i和节点j之间的路径是否被选中,若被选中则为1,否则为0;di表示节点i的配送需求量;t表示车辆到达每个节点的时间;C表示车辆的行驶成本。
2. 目标函数:目标是最小化车辆的行驶成本,可以表示为:minimize C = ∑(i,j)∈E cij*xij其中cij表示路径(i,j)的单位成本。
3. 约束条件:(1)容量约束:车辆在途中的配送总量不能超过其容量限制。
∑j∈V di*xij ≤ Q, for i∈V(2)时间窗约束:Tmin(v) ≤ t ≤ Tmax(v), for v∈Vtij = t + di + dij, for (i,j)∈E, i≠0, j≠0(3)路径连通约束:∑i∈V,x0i=1; ∑j∈V,xji=1, for j∈V(4)路径闭合约束:∑i∈V xi0 = ∑i∈V xi0 = k其中k表示车辆数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带时间窗物流配送车辆路径问题摘要本题是一个带有时间窗的车辆路径安排问题(VRPTW问题)。
根据题目条件,本文建立了一个求解最小派送费用的VRPTW优化模型,采用遗传算法,给出了该模型的求解方法。
然后,对一个实际问题进行求解,给出了一个比较好的路线安排方式。
模型一(见5.1.2)针对问题一,在需求量、接货时间段、各种费用消耗已知的情况下,决定采用规划模型,引入0-1变量,建立各个约束条件,包括车辆的容量限制,到达每个客户的车辆和离开每个客户的车辆均为1的限制,总车辆数的限制,目标函数为费用的最小化,费用包括车辆的行驶费用,车辆早到或晚到造成的损失。
模型一的求解采用遗传算法(见5.1.3),对题目给出的实际问题进行求解,首先按照需求期望根据模型一得到一个比较好的方案,然后按照这一方案进行送货,在送货过程中,如果出现需求量过大的情况,允许车辆返回仓库进行补充。
模型一的思路清晰,考虑条件全面。
但最优解解决起来困难,遗传算法只是一种相对好的解决方法,可以找出最优解的近似解。
模型二的想法比较合理,易于实施,但还有待改进。
关键词:规划 时间窗 物流 车辆路径 遗传算法一、 问题重述一个中心仓库,拥有一定数量容量为Q 的车辆,负责对N 个客户进行货物派送工作,客户i 的货物需求量为i q ,且i q Q <,车辆必须在一定的时间范围[],i i a b 内到达,早于i a 到达将产生等待损失,迟于i b 到达将处以一定的惩罚,请解决如下问题:(1)给出使派送费用最小的车辆行驶路径问题的数学模型及其求解算法。
并具体求解以下算例:客户总数N=8,每辆车的容量Q=8(吨/辆), 各项任务的货运量i q (单位:吨)、装货(或卸货)时间i s (单位:小时)以及要求每项任务开始执行的时间范围[],i i a b 由附录1给出,车场0与各任务点以及各任务点间的距离(单位:公里)由附件二给出,这里假设车辆的行驶时间与距离成正比,每辆车的平均行驶速度为50公里/小时,问如何安排车辆的行驶路线使总运行距离最短; (2)进一步请讨论当客户i 的货物需求量i q 为随机参数时的数学模型及处理方法。
二、 问题分析本题主要在两种不同情况下,研究使派送费用最小的车辆行驶路径问题。
车辆行驶派送的费用主要包括运输成本、车辆在客户要求到达时间之前到达产生的等待损失和车辆在客户要求到达时间之后到达所受惩罚等等。
为满足派送费用最小的需求,即要使所选行车路径产生的总费用最小,从而确定出最佳的车辆派送方案。
当客户i 的货物需求量i q 固定时,首先,我们根据题意,取若干辆车进行送货,然后,主要考虑每辆车各负责哪些客户的送货任务,我们可以给出满足题中限制条件的很多参考方案供选用,并考虑以所选行车路径产生的总费用最小为目标的情况下,建立最优化模型确定最佳的车辆派送方案。
进一步讨论,当客户i 的货物需求量i q 为随机参数时,我们首先可以简化随机模型,根据客户i 的货物需求量的期望与方差,确定每天应该运送给客户i 的货物量,即i q ,再根据第一题,确定最佳的车辆派送方案。
但考虑到客户的储存能力有限及货物在客户处的储存费用,客户不需要将一天的货物一次性接收完,只要满足缺货的情况出现的概率很低,客户可以让配送中心一天几次送货,这样可以得到很多满足约束的方案,考虑以单位时间的储存费用最小为目标,建立最优化模型,确定配送中心给每位客户每次的配送量、配送周期与最有车辆行驶路径。
三、模型假设(1)每个客户的需求只能由一辆配送车满足;(2)每辆车送货时行驶的路程不超过它所能行驶的最远路程;(3)中心仓库的车辆总数大于或等于当派送费用最小时所需的车辆数;(4)从配送中心到各个用户、各个用户之间的运输距离已知;(5)配送中心有足够的资源以供配送。
四、符号说明五、模型的建立和求解5.1 问题一模型的建立及求解:5.1.1问题的分析中心仓库为了给N个客户派送货物,供发出m辆车,为了派货的节约和方便,每辆车载着适量的货物出发,可以给某一片的若干个满足约束条件的客户派送货物,见图一:图一中心仓库派送货物图中心仓如上图库派送货物时,必须满足约束条件:(1)各个客户群的总需求小于或等于运输车的装载量;(2)每个客户都必须且只能由一辆运输车运输所需货物;(3)运输车为每位客户开始服务的时间必须尽可能在时间窗内。
根据如上的约束条件,我们可以得到很多可行解,但考虑到以所选行车路径产生的总费用最小为目标的情况下,我们可以建立最优化模型确定最佳的车辆派送方案,最优路径产生图如下:图二 最优路径产生图5.1.2模型的建立(1)中心仓库使用车辆数量的确定 设配送中心需要向N 个客户送货,每个客户的货物需求量是gi (i =1,2,…..N ),每辆配送车的载重量是Q ,且gi<Q 。
首先为了安排路线需要对要使用的车辆数有一个估计。
在现实情况中,货物装(卸)车越复杂,约束条件越多,一辆车的实际载货量就越小。
在本文中使用文献[1]的公式来确定需要的车辆数m :1/Ni i m g aQ ==∑[ ]表示取整,a 为参数,0<a<1。
约束条件越多,货物装(卸) 越复杂,a 值越小。
参考文献[2],取a 为0.85。
(2)引入0—1变量:1)ijs x 表示车辆s 是否从客户i 行驶到客户j 。
定义其为0—1变量,则⎩⎨⎧=01x ijs否则行驶到客户从客户车辆j i s 1,,s m =2)is y 表示客户i 的任务由车辆s 完成。
同样定义其为0—1变量,则⎩⎨⎧=01is y否则完成的任务由车辆客户s i 1,,s m =(3) 非线性规划模型的建立: a .目标函数的确定。
题目要求所选行车路径产生的总费用最小,我们确定总费用为目标函数,记为Z 。
总费用由运输成本A 、等待损失B 和迟到所收惩罚C 组成,根据题意有:111NN mij ijsi j s A c c x====∑∑∑1*max{,0}Ni i B d D ==∑1*max{,0}Ni i C e X ==∑所以,总费用Z 最小化为:00111min *max{,0}*max{,0}NN mN Nij ijsi i i j s i i Z c c xd De X ======++∑∑∑∑∑b .约束条件的确定。
约束1:车辆k 的运送总重量应不超过车辆的最大载重,即车辆有一定的运送能力,则可引入约束条件,1Ni isi q yQ =≤∑ (},,2,1{m k ∈∀)约束2:每个客户只能由一辆车来配送,则可引入约束条件,11mis s y m=⎧=⎨⎩∑ 1,2,3,...0i N i == 约束3:保证到达一个客户的车辆也离开该客户,则可引入约束条件,111m Nijss i x===∑∑ (1,2,3,,;j N =)111m Nijks j x===∑∑ (1,2,3,,;i N =)c .变量之间关系的确定由上可确定等待时间i D ,超时时间i X 为:i i ii i iD a t X t b =-=- 1,2,....1,2,....i Ni N ==车辆k 从客户i 到客户j 需经过两段时间ij t 为:/ij ij t c v = ,1,2,....i j N =设车辆为客户i 运送完货物后即为客户j 运送,则到达客户i 处时间i t 和到达客户j 处时间j t 之间的关系为:11(max{,0})Nmj ijs i i ij i i s t x t D t s ===+++∑∑d .此非线性规划模型为:00111min *max{,0}*max{,0}NN mN Nij ijsi i i j s i i Z c c xd De X ======++∑∑∑∑∑..t s1Ni isi q yQ =≤∑ m s ,,2,1 =11miss y m=⎧=⎨⎩∑ 1,2,3,...0i N i == 111m Nijss i x===∑∑ 1,2,3,,;j N =111mNijks j x===∑∑ 1,2,3,,;i N =i i ii i iD a t X t b =-=- 1,2,....1,2,....i Ni N ==/ij ij t c v = ,1,2,....i j N =11(max{,0})N mj ijs i i ij i i s t x t D t s ===+++∑∑5.1.3模型的求解我们采用遗传算法解决上面的问题: 1.编码采用自然数编码,即序数编码。
货物运输路线可以编成长度为N+m 的染色体11121s 21210,,,,0,,,0,,0,,,)t m mw i i i i i i i (,,其中,ik i 表示第ik i 项任务。
0表示车场,m 表示完成任务所需的车辆数。
2.出生初始群体初始群体随机产生,即产生N 项货物运输任务点的全排列,如12,,,N i i i ,如果11s ijj qQ -=≤∑,且1sij j q Q =>∑,将s 至N 的数向后移动一位,将0插入第s 位。
接着,继续上述操作,直到m 个0全部插入为止。
这样就构成了一条初始染色体。
用这种方法构造一个群体的染色体。
如:82576314,该编码插零之后变成0825*******。
它代表着需要三辆车运输货物。
其中,第1辆车行走路线为08250,即从仓库出发到依次到8、2、5商店再回到仓库。
第2辆车行走路线为07630,第3辆车行走路线为0140。
3.适应度函数适应度函数取'k kbz f z =,其中k f 为染色体k v 的适应度,b 为常数,'z 为初始种群中最好的染色体的运输成本,k z 为染色体k v 对应的运输成本。
4.遗传算子选取最佳保留的轮盘赌复制法进行染色体的复制。
变异算子采用反转变异。
交叉算子用最大保留交叉,其操作过程为:a) 若染色体交叉点处的两个基因都为0,则直接进行顺序交叉运算; b) 若染色体交叉点处的基因不全为0,则将交叉点左移(右移),直到左右两个交叉处的基因都为0,再进行顺序交叉运算。
5.算法的实现步骤Step1:采用自然数编码的方式,构造表示可行车路线的染色体;Step2:设置控制参数,包括交叉率0.7c p =、变异率0.1m p =、群体规模10n =; Step3:初始化,令0d =,随机产生初始群体(0)p ,群体中包括n 个染色体,每个染色体代表一条行车线路;Step4:令1i =;Step5:将群体()p d 中的第i 个染色体译为线路长度; Step6:计算适应度;Step7:若满足算法终止条件,则停止,否则继续; Step8:1ii =+;Step9:若i n ≤,回到step5,否则,转step10;Step11:进行最大保留交叉、基于位的变异和倒位操作; Step12: 1dd =+;Step13:若满足算法终止条件,则停止,否则转step4。