软件可靠性模型综述(完整资料).doc

合集下载

基于神经网络的软件可靠性模型共3篇

基于神经网络的软件可靠性模型共3篇

基于神经网络的软件可靠性模型共3篇基于神经网络的软件可靠性模型1基于神经网络的软件可靠性模型随着计算机技术的发展,软件已经成为了人们生活中不可或缺的一部分。

然而,由于软件开发者可能会疏忽或者存在代码漏洞,软件出现故障的情况时有发生。

软件的故障不仅会给用户带来不便,还可能导致巨大的经济损失,因此如何提升软件的可靠性成为了大家的关注点。

近年来,基于神经网络的软件可靠性模型逐渐成为了研究的热点。

神经网络是一种模拟人脑神经元的计算模型,它由大量的节点和连接线组成,并采用反向传播算法进行训练,以实现对数据的自主分类和预测。

基于神经网络的软件可靠性模型使用神经网络来建模,将软件运行中的数据作为输入,通过训练使其能够准确地预测软件的可靠性。

为了准确预测软件的可靠性,需要选取合适的输入数据。

一般来说,可以从软件的运行日志、编译代码、测试集等方面获得数据。

在选择输入数据之后,需要对数据进行预处理,比如去除异常值、归一化等,以便神经网络更好地学习和预测。

接下来,需要设计神经网络的结构和参数,通常包括输入层、隐藏层和输出层。

其中,输入层的节点数为软件的特征数目;输出层的节点数为软件可靠性的类别数目;隐藏层的节点数根据数据的复杂程度和预测目标而定。

在设计神经网络的结构和参数时,需要使用交叉验证、过拟合检测等方法来评估模型的性能,以确保模型具有较好的泛化能力。

建立基于神经网络的软件可靠性模型的过程需要注意以下几个问题。

首先,需要确保选择的数据质量高,能够反映出软件实际运行中的情况。

其次,需要合理选择神经网络的结构和参数,以确保模型具有较好的性能和泛化能力。

此外,需要合理选择训练方法和评估方法,以确保模型的收敛性和可靠性。

基于神经网络的软件可靠性模型具有许多优点。

首先,它能够自动学习和调整模型参数,使得模型的预测结果更加准确。

其次,它能够应对复杂的软件环境和多变的运行数据,减少人工干预的成本。

同时,基于神经网络的软件可靠性模型具有一定的扩展性,可以通过增加节点或层数等方式进行扩展,以适应更多的软件应用场景。

《可靠性模型》课件

《可靠性模型》课件

确定失效后果和影响
评估每种失效模式可能导致的后果和影响,以便在 可靠性模型中考虑相应的可靠性参数和指标。
进行失效模式和影响分析 (FMEA)
通过FMEA方法,对每种失效模式进行风险 优先度评估,以便优先处理对系统可靠性影 响较大的失效模式。
确定可靠性参数和模型假设
选择合适的可靠性参数
根据系统特性和需求,选择适合的可靠性参数,如平均故 障间隔时间(MTBF)、故障率等。
模型评估指标
准确率
衡量模型正确预测的比例。
召回率
衡量模型发现真正正例的能力。
F1分数
准确率和召回率的调和平均数,综合衡量模型性能。
AUC-ROC
衡量模型在所有可能阈值下的性能,常用于分类问题。
04 可靠性模型的应用
在产品设计中的应用
故障模式影响分析(FMEA)
通过分析产品中潜在的故障模式,评估其对产品可靠性的影响,从而在设计阶段预防和减少故障。
在维修决策中的应用
维修计划制定
根据可靠性模型预测设备或系统的故障 率,制定合理的维修计划,降低维修成 本。
VS
维修策略优化
通过分析设备或系统的可靠性数据,优化 维修策略,提高维修效率和设备可用性。
在可靠性预测和评估中的应用
可靠性评估
通过可靠性模型对产品或系统的可靠性进行 评估,为产品设计、生产和维修提供依据。
确定系统的边界和约束条件
02 确定系统的边界和约束条件有助于将可靠性模型的范
围和限制条件明确化。
建立系统结构图
03
通过建立系统结构图,可以直观地表示系统中各组成
部分之间的连接和依赖关系。
确定失效模式和影响分析
分析可能的失效模式
分析系统可能出现的各种失效模式,包括硬 件故障、软件错误、人为操作失误等。

可靠性建模

可靠性建模

可靠性模型1、概述用于定量分配、估算和评价产品可靠性的一种数学模型叫“可靠性模型”。

可靠性模型包括可靠性方框图和可靠性数学模型二项内容。

可靠性方框图与产品的工作原理图相协调。

产品的工作原理图表示产品各单元之间的物理关系,而可靠性方框图表示产品各单元之间的功能逻辑关系。

两者不能混淆。

例如:某振荡电路,由电感L和电容C组成,缺一不可,其工作原理图和可靠性方框图如图1所示:LC L C工作原理图可靠性方框图图1 LC 振荡电路的工作原理图和可靠性方框图从图1可以看出,工作原理图中,电感L和电容C 是并联的关系,而可靠性方框图中,它们却是串联关系。

产品的可靠性数学模型是定量描述产品可靠性的各种参数,如:失效率λ,可靠度R(t) ,平均故障间隔时间MTBF等。

λ——产品的故障总数与工作时间和寿命单位总数之比。

R(t)——产品在规定的条件下和规定的时间内完成规定功能的概率。

MTBF——产品的总工作时间与发生的故障次数之比。

对于寿命服从指数分布的电子产品,MTBF=1/λ。

2、典型的可靠性模型典型的可靠性模型有四种:串联模型,并联模型,r/n表决模型和旁联模型。

设产品由n个单元组成,各单元寿命服从指数分布,产品和各单元失效率分别为λs和λi ,平均故障间隔时间分别为MTBF S=1/λs和MTBF i=1/λi,可靠度分别为Rs(t) =e-λS t和Ri (t)=e-λi t,i=1,2,...n,t为产品的工作时间。

⑴串联模型——组成产品的所有单元中任一单元失效都会导致整个产品失效的模型。

①可靠性方框图②数学模型Rs(t)=R1(t) R2(t)…R n(t)=e-( λ1+λ2+…+λn ) t=e-λst;λs= λ1+λ2+…+λnMTBF S=1/λs=1/(1/MTBF1+1/MTBF2+…+1/MTBF n)若λ1=λ2=…=λn=λ(MTBF1=MTBF2=…=MTBF n=MTBF)则λs= n λMTBF S= MTBF /n⑵ 并联模型——组成产品的所有单元都失效时产品才失效的模型, 为工作储备模型。

软件可靠性模型

软件可靠性模型
P (ti ) = Φ[ N − (i − 1)]e − Φ[ N −( i −1)]ti
λ (t ) = NΦe − Φt
c)
参数估计 由 P(ti ) 可得似然函数:
L(t1 , t 2 , , t n ) = ∏ Φ[ N − (i − 1)]e −Φ[ N −(i −1)]ti
i =1 n
Rξ (t ) = Pr {ξ > t} = 1 − Fξ (t )
2.2 MTBF(Mean Time Between failure)平均 无故障工作时间(平均失效间隔时间)
是指两次相邻失效时间间隔的均值。假设当 两次相邻失效时间间隔为 ξ ,ξ 具有累计概率密 度函数 F (t ) = P(ξ ≤ t ) ,即可靠度函数
3.软件可靠性模型
软件可靠性模型的基本假设:
软件的运行剖面与可靠性测试剖面一致。 ② 一旦发现错误,立即修正,并不引入新的错误。 ③ 错误被查处和失效是独立的。 ④ 每个错误被发现的概率相等。 定义: 1. M(t):软件失效数目函数,即到t时刻软件的失效数目。 2. u(t):M(t)的均值函数,u(t)=E[M(t)]。 3. λ (t ) :错误的失效密度函数 4. z(t):危险率函数,表示一个还没有被激活的故障在其被激 活时,立即引起一个失效的概率。经常被假设为常数 ϕ
R(t ) = 1 − F (t ) = P(ξ > t )

MTBF = ∫ R(t )dt
0 ∞
2.3.MTTR(Mean Time to Repair)平均修复 时间
从一次故障产生到故障恢复的间隔的平均时 间。
2.4.A(Availability)可用度
定义:在要求的外部资源得到保证的前提下, 产品在规定的条件下和规定的时间区段内 可执行规定功能的能力。 A = ( MTBF )/( MTBF + MTTR )

软件可靠性模型综述

软件可靠性模型综述

软件可靠性模型综述可靠性是衡量所有软件系统最重要的特征之一。

不可靠的软件会让用户付出更多的时间和金钱, 也会使开发人员名誉扫地。

IEEE 把软件可靠性定义为在规定条件下, 在规定时间内, 软件不发生失效的概率。

该概率是软件输入和系统输出的函数, 也是软件中存在故障的函数, 输入将确定是否会遇到所存在的故障。

软件可靠性模型,对于软件可靠性的评估起着核心作用,从而对软件质量的保证有着重要的意义。

一般说来,一个好的软件可靠性模型可以增加关于开发项目的效率,并对了解软件开发过程提供了一个共同的工作基础,同时也增加了管理的透明度。

因此,对于如今发展迅速的软件产业,在开发项目中应用一个好的软件可靠性模型作出必要的预测,花费极少的项目资源产生好的效益,对于企业的发展有一定的意义。

1软件失效过程1.1软件失效的定义及机理当软件发生失效时,说明该软件不可靠,发生的失效数越多,发生失效的时间间隔越短,则该软件越不可靠。

软件失效的机理如下图所示:1)软件错误(Software error):指在开发人员在软件开发过程中出现的失误,疏忽和错误,包括启动错、输入范围错、算法错和边界错等。

2)软件缺陷(Software defect):指代码中存在能引起软件故障的编码,软件缺陷是静态存在的,只要不修改程序就一直留在程序当中。

如不正确的功能需求,遗漏的性能需求等。

3)软件故障(Software fault):指软件在运行期间发生的一种不可接受的内部状态,是软件缺陷被激活后的动态表现形式。

4)软件失效(Software failure):指程序的运行偏离了需求,软件执行遇到软件中缺陷可能导致软件的失效。

如死机、错误的输出结果、没有在规定的时间内响应等。

从软件可靠性的定义可以知道,软件可靠性是用概率度量的,那么软件失效的发生是一个随机的过程。

在使用一个程序时,在其他条件保持一致的前提下,有时候相同的输入数据会得到不同的输出结果。

软件系统的可靠性模型

软件系统的可靠性模型

过 程 的相 互关 联方 式来 判 断系 统 的可靠性 ,这一 点将 在后 面讨 论 . 4 )从工 程 学角度 看 , 件可 靠度 不应 该是 一个 灰 色概 念或 灰色 数据 , 不应 该是 一个 模糊 概念 或模糊 软 也
数据 , 不应 该是 一个 概率 概念 或 概率值 ,可靠 概率 为 9 的软 件仍 然是 不可 靠 的软件 ,因此研 究软 件可 更 5 靠度 时应 该主 要考 虑软 件 的可靠性 而 不是 可靠 度 , 在许 多文 献 中 已经 有所 体现 . 这 5 )在一个 软 件系 统 中 ,除 了过 程之 外 , 往还 需要 变量 的声 明与 引用 、函数声 明与调 用 、接 口的 声 明 往
2 )其可靠 度 取决 于 函数 的值 ,运行 的 可靠度 不 是 0 1之间 的 中间数 , 程 i 么正 确 ,取值 为 1 要 与 过 要 , 么不正 确 ,取值 为 0 ,此 时需要 修正 ; 3 )软件 总体 的可靠 度 与软件 中的过程 可 靠度 一样 只能 取 0 1 取 0 或 , 时不 可靠 , 1 ,还得根 据 系统 取 时
第 3 5卷 第 6期
Vo.3 No 6 1 5 .
西 南 师 范 大 学 学 报 ( 自然科 学版 )
J un l f o t wetC iaNoma ies y ( trl ce c dt n o r a o u h s hn r lUnv ri Nau a S in eE io ) S t i
16 0
西 南师 范大 学学报 ( 自然科 学版 )
投 稿 网址 h t :/ b j tS . n t / x gx. WU a p
第 3 5卷
与 引用 等 等.本 文 为使 问题简化 , 它 们视为 过 程.如 果 某个 过 程 中 同时 又嵌 入 了 函数调 用 ,子 过程 调用 将 等等 , 则仍 看作 是一个 过 程.这样 , 究软件 的可靠性 就转 化为对 所有 过程 ( rcd r ) 靠性 的研 究 .虽 研 P o e ue 可 然软 件可靠 性不应 该是 一个 概率 概念 或概率 值 , 但本 文将 借助 于一些 概 率思想 建立 软件 系统 可靠 性模 型.

软件可靠性工程综述

软件可靠性工程综述

收稿日期:2004207214;修回日期:2005202205.作者简介:党涛立(1976-),男,主要从事鱼雷总体技术研究.软件可靠性工程综述党涛立1,潘新祥2,赵海涛2(1.西安鱼雷工程办公室,陕西西安710075;2.江苏自动化研究所军代室,江苏连云港222006)摘 要:综述了软件可靠性工程研究和实践的内容和国内外现状,从软件可靠性模型、软件可靠性设计、软件可靠性测试几个方面进行了论述,指出了软件可靠性的重要性,并从工作实践出发阐述了软件可靠性测试过程和特点,最后对软件可靠性工程研究和实践进行了展望。

关键词:可靠性工程;模型;可靠性设计;软件可靠性测试中图分类号:TP311.5 文献标识码:A 文章编号:167321948(2005)022*******A Su mmary of Software Reli a b ility Eng i n eer i n gDAN G Tao 2li ;PAN X in 2xiang;ZHAO Hai 2tao (1.Xi ′an T or pedo Engineering Office,Xi ′an 710075,China;2.Rep resentative Office,J iang Su Aut omati on ResearchI nstitute ,L ianyungang 222006,China )Abstract:This paper intr oduces the s oft w are reliability engineering and its current situati on .It addresses the models,design,test p r ocess and feature of s oft w are reliability and points out its i m portance based on p ractical engineering devel opment .It als op resents the advances in engineering research and p ractice of this domain .Key words:s oft w are reliability engineering;s oft w are reliability models;s oft w are reliability design;s oft w are reliability testing0 引言目前,大多数设备和系统的主要功能都是由软件规定的,技术与信息社会正越来越依赖于软件。

软件可靠性模型研究综述

软件可靠性模型研究综述

软件可靠性模型研究综述作者:王二威来源:《软件工程》2016年第02期摘要:本文对软件可靠性经典模型、模型选择、普适模型的研究进行了归纳和述评,提出了软件可靠性综合预测框架,给出了软件可靠性综合预测进一步的研究方向。

关键词:软件可靠性;经典模型;综合预测;框架研究中图分类号:TP311 文献标识码:A1 引言(Introduction)软件已经成为影响国民经济、军事、政治乃至社会生活的重要因素。

自20世纪60年代“软件危机”出现之后,越来越多的学者开始关注软件可靠性的定量评估和预测。

软件可靠性覆盖整个软件开发过程,与软件工程密切相关,它源于工程,又服务于工程。

在新技术、新应用(如web软件、移动APP等等)不断涌现的当前,重新审视软件开发和应用环境,开展软件可靠性预测研究,有助于推动软件工程项目的实践,降低软件错误率,提升软件质量,从而保障软件所支撑的工程项目的高效完成,推动我国软件产业的持续发展。

本文对软件可靠性模型研究的相关文献进行了梳理,对前人的研究成果进行了归纳,构建了新计算范式下软件可靠性综合预测框架,提出了软件可靠性综合预测的研究方向。

2 经典软件可靠性模型(Classical software reliabilitymodel)软件可靠性建模的基本方法是:以历史失效数据为基础,对软件失效规律进行趋势拟合,进而预测未来的失效可能。

早期软件可靠性的研究是基于概率统计的思想,将软件失效过程看作一个随机过程,从Hudson的工作开始,到1971年J-M模型的发表,再到今天,已公开发表了几百种模型[1](此类模型称之为“经典模型”)。

经典模型存在两个明显的缺陷:第一,在对软件可靠性进行评估预测时都有些固定不变的假设,而这些假设无从证明;第二,模型只考虑输入的随机性,而软件在实际运行时却可能受到各种随机因素影响,使得软件失效出现的情况比较复杂多变。

而用某一个固定的失效模式去解释复杂多变的情况,显然是不合适的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】软件可靠性模型综述可靠性是衡量所有软件系统最重要的特征之一。

不可靠的软件会让用户付出更多的时间和金钱, 也会使开发人员名誉扫地。

IEEE 把软件可靠性定义为在规定条件下, 在规定时间内, 软件不发生失效的概率。

该概率是软件输入和系统输出的函数, 也是软件中存在故障的函数, 输入将确定是否会遇到所存在的故障。

软件可靠性模型,对于软件可靠性的评估起着核心作用,从而对软件质量的保证有着重要的意义。

一般说来,一个好的软件可靠性模型可以增加关于开发项目的效率,并对了解软件开发过程提供了一个共同的工作基础,同时也增加了管理的透明度。

因此,对于如今发展迅速的软件产业,在开发项目中应用一个好的软件可靠性模型作出必要的预测,花费极少的项目资源产生好的效益,对于企业的发展有一定的意义。

1软件失效过程1.1软件失效的定义及机理当软件发生失效时,说明该软件不可靠,发生的失效数越多,发生失效的时间间隔越短,则该软件越不可靠。

软件失效的机理如下图所示:1)软件错误(Software error):指在开发人员在软件开发过程中出现的失误,疏忽和错误,包括启动错、输入范围错、算法错和边界错等。

2)软件缺陷(Software defect):指代码中存在能引起软件故障的编码,软件缺陷是静态存在的,只要不修改程序就一直留在程序当中。

如不正确的功能需求,遗漏的性能需求等。

3)软件故障(Software fault):指软件在运行期间发生的一种不可接受的内部状态,是软件缺陷被激活后的动态表现形式。

4)软件失效(Software failure):指程序的运行偏离了需求,软件执行遇到软件中缺陷可能导致软件的失效。

如死机、错误的输出结果、没有在规定的时间内响应等。

从软件可靠性的定义可以知道,软件可靠性是用概率度量的,那么软件失效的发生是一个随机的过程。

在使用一个程序时,在其他条件保持一致的前提下,有时候相同的输入数据会得到不同的输出结果。

因此,在实际运行软件时,何时遇到程序中的缺陷导致软件失效呈现出随机性和不稳定性。

所有的软件失效都是由于软件中的故障引起的,而软件故障是一种人为的错误,是软件缺陷在不断的测试和使用后才表现出来的,如果这些故障不能得到及时有效的处理,便不可避免的会造成软件失效。

而一个软件中存在的软件错误和缺陷总数是无法确定的,也不可能被完全排除掉,有时候排除掉一个故障甚至会引起更多的故障。

所以在软件开发周期中,软件错误是不可避免的,但可以通过学习改进,不断吸取经验教训,尽量减少程序中的错误特别是重大错误的数量。

在测试阶段,测试人员应尽可能多的检测并排除掉软件中的故障,从而减少软件失效强度,提高软件的可靠性和质量。

1.2提高软件可靠性的途径软件中的故障会导致软件功能不能正常实现,降低了软件的可靠度。

软件故障一般是软件开发各阶段人为造成的,大概包括需求分析定义错误、设计错误、编码错误、测试错误和文档错误等。

因此要想获得高可靠性的软件,就要和软件中的故障做斗争。

有以下三种直接的方式来减少软件故障,提高软件可靠性:1)软件故障预防软件故障预防是指预防或者避免错误的发生或引入,从而减少故障检测和排除造成的花费。

加强软件开发员的教育和培训可以对减少故障起到一定的作用,另外在软件开发中可以利用下面几个故障预防技术:软件开发方法,软件配置管理,软件可靠性安全性设计和自动化故障预防等。

2)软件故障的检测和排除故障检测和故障排除是指从数量上和严重程度上减少软件中的故障。

这在软件测试中用得最多,测试人员要在限定的时间和费用内发现并排除掉尽可能多的故障,这是提高软件可靠性的主要途径。

故障检测和排除技术可以分为静态方法和动态方法。

静态方法是在不实际运行软件的条件下检测软件的故障并进行排除,包括软件人工审查技术,软件静态分析技术和软件可靠性分析技术。

动态方法主要是通过运行软件来观测软件的失效,从而消除故障。

动态测试技术主要包括:白盒测试技术,黑盒测试技术与软件可靠性测试技术。

3)软件故障的遏制软件故障遏制也称容错技术,是指在错误存在的情况下,不导致软件失效,并仍能完成系统功能的能力。

主要的软件容错技术主要包括恢复块技术和N 版本编程技术。

2 软件可靠性模型的概述软件可靠性工程使用的模型有两大类型:2.1可靠性结构模型靠性结构模型是指用于反映系统结构逻辑关系的数学方程。

借助这类模型,在掌握软件单元可靠性特征的基础上,可以对系统的可靠性特征及其发展变化规律做出评价。

软件可靠性结构模型包括串联系统模型、并联系统模型,以及硬-软件复合系统模型等。

软件可靠性结构模型是软件系统可靠性分析的重要工具,既可以用于软件系统的可靠性综合,也可用于软件系统的可靠性分解。

2.2可靠性预计模型可靠性预计模型本质上是一些描述软件失效与软件错误的关系,描述软件失效与运行剖面的关系的数学方程。

借助这类模型,可以对软件的可靠性特征做出定量的预计或评估。

例如,可以预计开发过程中的可靠性增长,预计或评估软件在预定工作时间的可靠度,预计软件在任意时刻发生的失效数的平均值、软件在规定的时间间隔内发生失效次数的平均值、软件在任意时刻的失效率、软件失效时间间隔的概率分布和软件预期的交付时间等。

评估和预计是两个有区别又有联系的概念。

评估是指对软件现有的可靠性水平做出评价。

预计是指对软件未来的可靠性特征进行预计。

必须指出,在使用数学模型进行预计时,蕴含的假定是,事物发展规律在未来的一段时间内保持不变。

对于短期预测这个假设是合理的。

但是,随着预测期的延长,其近似性减弱。

用可靠性模型进行预计时,为了得到较准确的结果,如果发现软件的失效规律有明显改变,应该对参数加以修正或重新收集失效数据,重新确定模型参数。

一般所说的软件可靠性模型均指软件可靠性预计模型。

本文中,软件可靠性模型均是指软件可靠性预计模型。

3 软件可靠性模型的特点(1)与使用的程序设计语言无关。

软件可靠性的应用与选用什么程序设计语言来编写软件之间没有什么直接关系。

但对于根据同一个规格说明书,不管你用什么程序设计语言软件来编写软件,同一个软件可靠性模型应给出同样的估测结果。

(2)与具体用到的软件开发方法无关。

软件开发是一个十分复杂的过程,涉及到许多的人为因素,从而使得对软件的质量难以进行预测。

为了保证预测的精度,不妨假设待估测的软件系统是用最坏的软件开发方法开发出来的。

(3)测试方法的选择问题。

实际上是无法通过彻底的测试来获得完全可靠的软件,所以不得不采用有限的测试,那么目标就是用最少的测试以求最大限度的软件可靠性。

可以用例如边界值测试法、分类测试法、路径测试法等方法来达到。

几乎所有的软件可靠性模型都假定测试环境就是将来软件的运行环境,这限制了高可靠性估计情况下的这些模型的可用性。

(4)改错过程。

实际上改正老的错误时往往会引人新的错误。

(5)模型要表述的内容。

模型应该指出测试的输入是否已足够地覆盖了输入域,测试的条件和数据是否已准确地模拟了操作系统、是否已足以查出那些类似的错误等。

软件可靠性模型假定测试的条件和数据与操作环境有着同样的分布,也就简捷地假设了上述要表述的内容。

(6)输入的分布问题。

可靠性估计紧密地依赖于模型假设的输入分布。

作为一个极端的情况,如果输入是一个常数(比如说只用到一个输入),软件将或者出错或者成功的执行,于是就给出可靠性相应地为0 或为1。

(7)关于软件复杂性问题。

大多数现有的软件可靠性模型都没有考虑这个问题。

实际上,复杂的软件应该比简单的软件要求更多的测试。

(8)模型的验证问题。

常常由于缺乏实际可用的足够数据,使得对模型的验证无法进行,且在整个软件寿命周期内,软件几乎呈常数倍数地增加,导致可靠性也相应地变化,软件可靠性的验证工作也就更加复杂化。

(9)关于时间问题。

在软件可靠性量测与硬件可靠性量测综合起来对一定的系统环境进行考核时,将CPU 时间作为时间单位是必要的。

(10)考虑模型所要求的数据是否容易收集。

否则,由于数据问题,将会限制软件可靠性的应用范围。

4 软件可靠性模型的分类到目前为止,软件可靠性模型的研究已有40 多年的历史,国内外已发表的软件可靠性模型有近百种,但由于对软件可靠性模型的研究还处在一个初步阶段,目前并没有一个完整、系统的科学分类方法。

但是为了研究这些模型,又需要作些必要的分类。

所以,不少专家学者提出了许多不同的分类。

总的来说,模型可以按照它们的假设、测试空间、软件结构、处理的方式方法等进行分类,或者根据模型本身的数学结构及使用的参数估计方法进行分类。

一些常见的分类方法有:●按随机分类法:根据随机过程的假设,如过程的确定性和非确定性、马氏过程、泊松过程等进行分类。

●按软件出现的故障数进行分类:主要有错误计数模型和非计数模型,可数性或不可数(无穷)模型。

●按模型参数的估计方法进行分类:主要有Bayes 方法或非Bayes 方法,最大似然估计或最小二乘法,另外还有线性模型等。

●按模型使用的时间方式分类:主要有日历时间和执行时间模型。

●按修复过程分类:主要指对软件系统修复过程的一类模型,如完全修复型和不完全修复型,完全排错型和不完全排错型。

●按对软件的内部结构是否了解进行分类:可分为黑箱模型和白箱模型。

对它们的分类主要根据对软件的内部结构的了解程度以及对它们的结构能加以利用的程度来区分。

根据Shanthikumar 的观点,与软件可靠性有关的模型可分为四类:第一类是软件可靠性模型。

第二类是软件释放时间模型。

用于确定软件何时可以释放,交付用户使用。

软件可靠性是其考虑因素之一。

第三类是软件可用性模型。

用于确定软件处于正常状态的机会大小,模型不仅考虑软件可靠性,还要考虑软件维护性。

第四类是硬件/软件模型。

用于确定混合硬件-软件系统的可靠性行为。

软件可靠性模型通常遵循以下四条准则之一进行分类,目的在于系统、深刻的理解软件可靠性模型。

(1)建模对象建模对象指软件可靠性数据及软件其他有关信息,譬如与时间有关的信息(数据),与时间无关的信息(数据)等。

依据建模对象软件可靠性模型总的来说分为两大类:静态模型和动态模型。

(2)模型建设可假定软件原有软件缺陷为一确定的有限值,也可假定它是服从Poisson 分布的随机变量,甚至假定它为无限量,这样可得到不同类型的模型。

(3)模型适用性适用于测试阶段的模型称为增长模型,适用于确认阶段的模型称为确认模型。

(4)数学方法采用概率方法的模型称为概率模型。

采用模糊方法的模型称为模糊模型。

另外还有Bayes 模型与非Bayes 模型等。

软件可靠性模型的分类方法很多,这里我们采用综合模型的假设、测试环境以及数理统计的分类方法,将模型大致分为:随机过程类模型和非随机过程类模型。

具体分类如图:5 软件可靠性模型的建模过程为了满足软件可靠性指标要求,需要对软件进行测试-可靠性分析- 再测试- 再分析-修改的循环过程。

相关文档
最新文档