初一数学有理数加减法混合运算(1)学习任务单 (25)
七年级数学上期《有理数加减混合运算》教案

七年级数学上期《有理数加减混合运算》教案一、教学目标:知识与技能:1. 掌握有理数的加减混合运算法则;2. 能够正确进行有理数的加减混合运算。
过程与方法:1. 通过实例分析,引导学生发现有理数加减混合运算的规律;2. 利用图形、符号等辅助工具,帮助学生理解有理数加减混合运算的过程。
情感态度与价值观:1. 培养学生的逻辑思维能力;2. 激发学生对数学的兴趣,培养学生的自信心。
二、教学重点与难点:重点:1. 有理数的加减混合运算法则;2. 能够正确进行有理数的加减混合运算。
难点:1. 有理数加减混合运算中符号的变化规律;2. 复杂的有理数加减混合运算的计算方法。
三、教学方法与手段:教学方法:1. 实例分析法:通过具体例子,引导学生发现有理数加减混合运算的规律;2. 符号表示法:利用数学符号,帮助学生理解有理数加减混合运算的过程;3. 练习法:通过大量练习,巩固学生的有理数加减混合运算能力。
教学手段:1. 投影仪:展示实例和图形,引导学生观察、思考;2. 练习册:提供大量练习题,巩固学生的有理数加减混合运算能力。
四、教学过程:1. 导入:通过简单的实例,引导学生复习有理数的加法和减法,为新课的学习做好铺垫。
2. 新课讲解:讲解有理数加减混合运算法则,引导学生发现符号的变化规律。
3. 实例分析:分析具体的有理数加减混合运算,让学生通过观察、思考,理解运算过程。
4. 练习巩固:让学生通过练习册上的题目,巩固有理数加减混合运算的能力。
5. 课堂小结:对本节课的内容进行总结,强调重点和难点。
五、课后作业:1. 完成练习册上的相关题目;2. 总结有理数加减混合运算的规律,并结合实例进行说明;3. 预习下一节课的内容。
六、教学反思:在本节课的教学过程中,我发现部分学生在理解有理数加减混合运算的规律时存在一定的困难。
针对这一情况,我应在教学中更加注重符号表示法,通过图形、符号等辅助工具,帮助学生深入理解有理数加减混合运算的过程。
七年级数学上期《有理数加减混合运算》教案

一、教学目标:1. 让学生掌握有理数的加减混合运算的运算方法。
2. 培养学生的运算能力和逻辑思维能力。
3. 培养学生独立思考和合作交流的能力。
二、教学内容:1. 有理数的加法:同号相加,异号相加。
2. 有理数的减法:减去一个数等于加上这个数的相反数。
3. 有理数的加减混合运算:先算乘除,后算加减;同级运算,从左到右依次进行;如果有括号,先算括号里面的。
三、教学重点与难点:1. 教学重点:让学生掌握有理数的加减混合运算的运算方法。
2. 教学难点:理解加减混合运算的运算顺序,能够正确进行计算。
四、教学方法:1. 采用实例讲解法,通过具体例子让学生理解有理数的加减混合运算。
2. 采用分组讨论法,让学生分组进行练习,培养学生的合作交流能力。
3. 采用问答法,教师提问,学生回答,激发学生的思维能力。
五、教学过程:1. 导入:通过生活实例引入有理数的加减混合运算,激发学生的兴趣。
2. 讲解:讲解有理数的加法、减法的运算方法,并通过示例进行演示。
3. 练习:学生独立进行练习,教师巡回指导,解答学生的疑问。
4. 分组讨论:学生分组进行讨论,分享解题心得,互相学习。
5. 总结:教师总结本节课的重点内容,强调加减混合运算的运算顺序。
6. 布置作业:布置适量的作业,让学生巩固所学知识。
六、教学评价:1. 通过课堂练习和作业,评价学生对有理数加减混合运算的掌握程度。
2. 观察学生在分组讨论中的表现,评价学生的合作交流能力和独立思考能力。
3. 通过对学生回答问题的准确性,评价学生的理解能力和逻辑思维能力。
七、教学策略:1. 采用循序渐进的教学方法,从简单到复杂,让学生逐步掌握有理数加减混合运算。
2. 运用多媒体教学,通过动画和图片,直观展示运算过程,帮助学生理解。
3. 针对不同学生的学习情况,给予个性化的指导,帮助学生克服困难。
八、教学准备:1. 准备相关的教学PPT,展示运算过程和实例。
2. 准备练习题,包括不同难度的题目,以满足不同学生的学习需求。
七年级数学上册《有理数的加减混合运算》教案、教学设计

-定期进行教学反思,调整教学策略,提高教学质量。
四、教学内容与过程
(一)导入新课
1.创设情境:通过一个关于温度变化的实际问题,引入有理数加减混合运算的学习。例如,某地区一周内的气温变化情况如下:周一比标准温度高3℃,周二比周一低2℃,周三比周二高4℃,周四比周三低3℃,周五比周四高2℃。请问周五的气温与标准温度相比如何?
针对以上情况,教师应充分了解学生的认知水平和学习特点,因材施教。在教学过程中,关注学生的个体差异,对基础薄弱的学生给予更多关注和指导,帮助他们巩固基础知识;对能力较强的学生,适当提高难度,激发他们的学习潜能。通过分层教学,使全体学生都能在原有基础上得到提高,增强学习信心。同时,注重培养学生的数学思维能力,引导他们从实际问题中发现数学规律,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-有理数的加减法则及其在实际运算中的应用;
-加减混合运算的顺序和运算技巧;
-将实际问题转化为有理数加减混合运算模型的能力。
2.教学难点:
-对有理数加减法则的理解和运用,特别是负数的运算;
-在复杂的加减混合运算中,正确把握运算顺序和符号处理;
-将实际问题抽象成数学模型,进行有效求解。
-提高题:包含括号、乘除等,考查学生的运算顺序和技巧;
-应用题:将实际问题转化为有理数加减混合运算模型,求解答案。
2.教师及时批改和反馈,指导学生纠正错误,提高解题能力。
(五)总结归纳
1.让学生回顾本节课所学内容,总结有理数加减混合运算的法则、顺序和技巧;
2.强调在解决实际问题时,要将问题转化为数学模型,并正确运用所学的运算方法;
有理数加减混合运算_七年级数学教案

有理数加减混合运算_七年级数学教案篇一:七年级数学上册有理数加减混合运算2.11有理数加减混合运算一、教学目标1、掌握有理数混合运算的法则,并能熟练的按有理数运算顺序进行有理数加、减、乘、除、乘方、的混合运算。
2、在运算过程中合理的使用简化运算,培养良好的运算能力。
3、通过玩“24点”游戏开拓思维,更好掌握有理数的混合运算。
二、重点、难点1、重点:熟练进行有理数的混合运算。
2、难点:在运算中灵活使用运算律并且能准确掌握符号问题。
三、教学过程1、(幂),a是底数,n是指数,叫做幂,他表示n个a相乘。
在前面几节课我们一共学习了5种运算,分别是那些运算呢?(学生回答:加法、减法、乘法、除法、乘方),注意乘方也是一种运算,我们学习了这五种运算所总结归纳出的法则再有理数的范围内都是适用的。
下面我们来检测一下大家,自己在练习23+我们一起检验一下自己做的对不对。
首先看第一题:这一题是那种运算(学生答:加法)。
那么前面我们学习的有理数加法的法则是?学生答:同号两数相加,取相同的符号,并把绝对值相加:异号两数相加,绝对值相等时和为0,绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较2、讲授新知通过练习我们复习了前面学过的有理数的加法、减法、乘法、除法、乘方这五种运323则,知道了如何分别进行这些法则的运用,今天我们就来学习有理数的混合运算。
大家来看一下这个算式:思考该如何解决这个问题,3+2某(-)=?提示:在学习了乘方之后,我们说乘方是更高一级的运算在有乘方的算式中先算乘我们一起来解决这个问题:首先我们先来判断一下这个式子包含了哪几种运算?(加法、乘方、乘法),=4那么这个式子我们可以把它变成。
3+4某(-)=?这样的话同学们是不是就见过了呢?接下来应该算乘法最后再算加法。
例1、3+2某()215解:原式=3+4某()=3+(=154)5115现在我们自己总结一下有理数加减混合运算的顺序:先算乘方,再算乘除,最后算加减,如果有括号先算括号的话,先算括里面的。
人教版初中七年级数学上册《有理数的加、减、乘、除混合运算》教案

1.4.2 有理数的除法第4课时有理数的加、减、乘、除混合运算教学目标:掌握有理数加、减、乘、除运算的法则及运算顺序,能够熟练运算.教学重难点:如何按有理数的运算顺序,正确而合理地进行计算.教与学互动设计:(一)创设情境,导入新课观察式子×(-)×÷里有哪种运算,应该按什么运算顺序来计算较简便?(二)合作交流,解读探究引导首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.另外带分数进行乘除运算时,必须化成假分数.注意有理数混合运算的步骤:先乘除,后加减,有括号先算括号里面的.(三)应用迁移,巩固提高【例1】(1)-3÷2÷(-2);(2)-×(-1)÷(-2);(3)-÷×(-)÷(-);(4)20÷(-4)×5+5×(-3)÷15-7.【例2】某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?(四)总结反思,拓展升华引导学生一起小结:①有理数的运算顺序:先乘除,后加减,有括号的先算括号里面的;②要注意认真审题,根据题目意思正确选择途径,仔细运算,注意检查,使结果无误.(五)课堂跟踪反馈夯实基础1.选择题(1)下列各数中互为倒数的是()A.4和-B.-0.75和-C.-1和1D.-5和(2)若a<b<0,那么下列式子成立的是()A.<B.ab<1C.>1D.<12.若a、b互为倒数,c、d互为相反数,m为最大的负整数,则+ab+= .提升能力3.计算题(1)(-4)÷(-2)÷(-1);(2)(-5)÷(-1)××(-2)÷7;(3)1÷(-1)+0÷(-5.6)-(-4.2)×(-1);(4)÷(+-).4.已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求3x-(a+b+cd)-x.良好的学习态度能够更好的提高学习能力。
七年级数学上册1.3《有理数的加减法》有理数的加减混合运算教案+新人教版

精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
有理数的加减混合运算教学目的和要求:1.使学生理解有理数的加减法可以互相转化,并了解代数和概念。
2.使学生熟练地进行有理数的加减混合运算。
3.培养学生的运算能力。
教学重点和难点:重点:准确迅速地进行有理数的加减混合运算。
难点:减法直接转化为加法及混合运算的准确性。
教学工具和方法:工具:应用投影仪,投影片。
方法:分层次教学,讲授、练习相结合(并采取尝试指导法)。
教学过程:一、复习引入:1.叙述有理数加法法则。
2.叙述有理数减法法则。
3.叙述加法的运算律。
4.符号“+”和“―”各表达哪些意义?5.化简:+(+3);+(―3);―(+3);―(―3)。
6.口算:(1)2―7; (2)(―2)―7; (3)(―2)―(―7); (4)2+(―7);(5)(―2)+(―7); (6)7―2; (7)(―2)+7;(8)2―(―7)。
二、讲授新课:1.加减法统一成加法算式:以上口算题中(1),(2),(3),(6),(8)都是减法,按减法法则可写成加上它们的相反数。
同样,(―11)―7+(―9)―(―6)按减法法则应为(―11)+(―7)+(―9)+(+6),这样便把加减法统一成加法算式。
几个正数或负数的和称为代数和。
再看16―(―2)+(―4)―(―6)―7写成代数和是16+2+(―4)+6+(―7)。
既然都可以写成代数和,加号可以省略,每个括号都可以省略,如:(―11)―7+(―9)―(―6)=―11―7―9+6,读作“负11,负7,负9,正6的和”,运算上可读作“负11减7减9加6”;16+2+(―4)+6+(―7)=16+2―4+6―7,读作“正16,正2,负4,正6,负7的和”,运算上读作“16加2减4加6减7”。
七年级数学上册 第二章 有理数及其运算 2.6 有理数的加减混合运算教案 (新版)北师大版-(新版)

2.6有理数的加减混合运算(第1课时)一、学生知识状况分析学生的知识技能基础:学生在前面几节课中已经学习过有理数的加法、减法的法则,并利用其解决了一些问题,但前面的运算比较简单且多为单纯的加法运算或减法运算,而少有加法减法的混合运算.学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力;经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力;同时在本章前面的数学学习中学生已经具备了一定的运算技能,能够解决一些简单的实际问题.这些为本节课的学习作了很好的奠基和知识准备.二、教学任务分析本节课是学生在前两节学习整数加法、减法运算的基础上自然地过渡到含有小数、分数的加减混合运算. 为了避免学生对单纯的运算产生厌烦情绪,所以利用游戏来训练有理数的加减混合运算,以增加学习的趣味性.本课时的教学目标如下:1.让学生熟练地按照运算顺序进行有理数加减混合运算.2.熟练运用有理数加法、减法运算法则进行加减混合运算.掌握有理数的加减混合运算及其运算顺序.三、教学过程分析本节课设计了六个教学环节:第一环节:问题引入;第二环节:讲授新课;第三环节:巩固练习;第四环节:合作学习;第五环节:课堂小结;第六环节:布置作业.第一环节问题引入活动内容:通过游戏来引入有理数的加减混合运算(课前每人准备红色卡片和白色卡片共20X,在每X卡片上写上任意数字).游戏规则如下:四人一组,每组选一学生当代表,在同组的80X卡片中,抽取4X,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.活动目的:复习旧知识的同时,引出新的知识.活动的实际效果:熟练写出加减混合运算的算式.第二环节:讲授新课活动内容:利用各小组写出的算式引导学生分析有理数的混合运算应该怎么算. 活动目的:既然是混合运算,自然联想到小学学习的运算顺序,要让学生明白,并不是学习有理数的运算就要抛弃小学的知识和方法.活动的实际效果:通过对运算顺序的回忆,学生尝试混合运算,体会运算顺序的重要性.教师要引导学生重视初小衔接,领悟知识的连贯和延续.第三环节:巩固练习 活动内容: 例1、计算: (1)5451)53(-+- (2)377)21()5(-+--- 随堂练习: 1.计算: (1)21)43(41--+; (2); (3)3)5.4(5.11----;(4))52()352(71---+-. 活动目的:让学生体会根据运算顺序,进行有理数的加减混合运算.活动的实际效果: 例1由教师指定几名学生板演,其余学生在笔记本上解答,教师巡视,发现问题及时解决,在复习有理数的加法、减法法则的同时,训练学生熟练进行有理数的加减混合运算.第四环节:合作学习活动内容: 通过游戏来进一步熟练有理数的加减混合运算). 游戏规则如下:(1)四人一组,每组选一学生当代表,在同组的80X 卡片中,抽取4X ,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)每组四人都计算,然后看结果的正确与否,再看一看谁用的计算方法最简便,交流经验.活动目的:利用游戏训练有理数的加减混合运算,以激发学生学习数学的兴趣,增加学习的趣味性.活动的实际效果:学生参与教学活动,从而使学生积极主动的学习,学生学习的热情高涨,气氛热烈.第五环节:课堂小结活动内容:师生共同完成.1.有理数的加减混合运算可以利用运算顺序进行计算.2.熟练进行含有整数、小数、分数的加减混合运算.活动目的:鼓励学生结合本节课的学习,谈谈自己的收获和感想,学会及时的反思和总结.活动的实际效果:学生畅所欲言自己的切身感受和实际的收获,在愉快的氛围中结束本节课的学习.第六环节:布置作业习题 2.7四、教学反思有理数的加减混合运算共两个课时.这一课时的重点一是体会混合运算中运算顺序的重要性,在运算顺序的指引下巩固加法和减法的法则;二是熟练含有整数、小数、分数等各种数据的加减混合运算.教材对本节两个课时内容调整的用意应该也在于此,先按部就班计算;再考虑灵活简便.2.6有理数的加减混合运算(第2课时)一、学生知识状况分析学生的知识技能基础:在上一节课的学习中学生已经学习了有理数的加减混合运算,初步接触了含有小数或分数的有理数的加减混合运算,知道加减混合运算可以利用运算顺序从左往右依次进行运算,但还不够熟练,同时对在混合运算中如何运用加法交换律和结合律简化计算还不了解.学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力;经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力;同时在本章前面的数学学习中学生已经具备了一定的运算技能,能够解决一些简单的实际问题.这些为本节课的学习作了很好的奠基和知识准备.二、教学任务分析本节课就是在前面学习的基础上进一步熟练有理数的加减混合运算,体会可以适当地运用加法交换律和结合律来简化运算.通过对一架特技飞机起飞的高度变化这个实际问题的讨论,引导学生从减法法则与实际问题两个方面回答两种算法的关系.对两种算法比较的同时,学生将体会到加减混合运算可以统一成加法,以及加法运算可以省略括号及前面加号的形式(即“代数和”的问题),使学生进一步熟悉有理数加减混合运算. 具体教学目标如下:1.使学生理解有理数的加减法可以互相转化,并了解代数和概念;2.使学生熟练地进行有理数的加减混合运算;3.培养学生的运算能力.三、教学过程分析本节课设计了六个教学环节:第一环节:问题引入;第二环节:讲授新课;第三环节:巩固练习;第四环节:合作学习;第五环节:课堂小结;第六环节:布置作业.第一环节:问题引入活动内容:一架飞机进行特技表演,飞行的高度变化由表格给出.对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?4.5+(-3. 2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)还可以这样计算:=1(千米)活动目的:通过对身边的数学问题的讨论,学生将回顾有理数的运算法则,加深对法则的认识,并用以进行有关复杂数据的运算.活动的实际效果:对于这一实际问题,学生特别是男同学很感兴趣,都瞪大眼睛仔细听讲.通过学生的合作探讨,培养学生与他人合作交流的习惯与意识,改变他们的学习方式,争取让每个学生都在同伴的交流中获益.第二环节:讲授新课活动内容: 比较以上两种算法,你发现了什么?有理数的加减混合运算可以统一成加法运算.如算式“4.5-3.2+1.1-1.4”可以看作4.5、-3.2、1.1、-1.4这4个数的和,因此在进行加减混合运算时可运用加法交换律和结合律简化运算.如4.5+(-3.2)+1.1+(-1.4) =4.5+1.1+[(-3.2)+(-1.4)] =5.6+(-4.6) =1活动目的:学生参与教学活动,从而使学生积极主动的学习,学生学习的热情高涨,气氛热烈.活动的实际效果:通过对两种算法的比较,学生将体会加减法混合运算可以统一成加法,以及加法运算可以写成省略括号及前面加号的形式(即“代数和”问题).对“代数和”的学习,重点是让学生通过具体情境加以体会,无须出现“代数和”的名称.学生在学会混合运算运算顺序的前提下,理解利用运算律可以改变运算顺序,从而达到简化计算的目的.第三环节:巩固练习 活动内容:计算:(1) (8)(15)(9)(12)---+--- (2)12()15()33--+- (3)67(18)()(8)()510---++-+(4)2111()()3642-+---- 活动目的: 让学生能进行包括小数、分数在内的有理数的加减混合运算.活动的实际效果: 本例由教师指定几名学生板演,其余学生在笔记本上解答,教师巡视,发现问题及时解决,这样让学生在运算的过程中逐步熟练掌握有理数的加减混合运算.第四环节:合作学习活动内容:做一做下表是某年某市汽油价格的调整情况:与上一年年底相比,11月9日汽油价格是上升了还是下降了?变化了多少元?活动目的:在具体情境中体会混合运算的作用,在进行加减混合运算时,可以适当运用加法交换律和结合律来简化运算.活动的实际效果:本例由教师板演,在复习加减混合运算的同时,为下一小节的学习埋下伏笔.第五环节:课堂小结活动内容:师生共同完成.1.通过本节课的学习研究,我们进一步巩固和掌握有理数的加减混合运算,并能根据具体问题适当运用加法交换律和结合律简化运算.2.在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.活动目的:鼓励学生谈自己的收获和感想,让学生总结本节所学内容的同时,学会及时的反思和总结.活动的实际效果:学生畅所欲言自己的切身感受和实际的收获,在愉快的氛围中结束本节课的学习.第六环节:布置作业习题 2.8四、教学反思这一课时的重点是继续帮助学生实现减法向加法的转化与加减法互化,了解运算符号和性质符号之间的关系.把任何一个含有有理数加、减混合运算的算式都看成和式,这一点对学生熟练掌握有理数运算非常重要,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.因此在教学中要让学生真正理解加法和减法的关系.2.6 有理数的加减混合运算(第3课时)一、学生起点分析知识技能基础:学生在前面已经学习了有理数加减混合运算,能够综合运用有理数的意义及其加法、减法的有关知识,解决简单的实际问题.活动经验基础:在相关知识的学习过程中,学生已经经历了观察、抽象、计算等活动,解决了一些简单的现实问题,感受到了有理数的意义和作用,体会到数学与现实生活的联系;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节设置了一个丰富的现实情境一—流花河的水文资料,并据此资料,提出相关问题,综合运用有理数及其加法、减法的有关知识对现实问题进行讨论,进一步体会数学和现实生活的联系.通过对流花河一周内的水位变化的数据信息进行分析,判断一周中每天河流水位情况,继而用折线统计图表示本周的水位情况,让学生体会用数学的方法对生活中的问题进行合理判断,并学会用数学工具直观地表示事物的变化情况.它对学生进一步理解有理数加减运算,提高运用知识解决实际问题能力,激发学习数学的热情具有重要作用.本节教学目标为:教学目标:(1)培养学生的动态观察、对比、分析生活问题的能力;让学生能综合运用有理数及其加、减法的有关知识灵活地解决简单的实际问题.(2)在师生、生生的交流活动中,复习巩固加减运算,逐步把学生牵引到对较复杂数据的灵活处理.使学生感受到折线统计图确实可以直观地反映事物的变化情况.(3)让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到有理数运算的实用性,增强学生学好数学的信心.三、教学过程设计本节课设计了六个教学环节:第一环节:课前准备一一收集资料;第二环节:情境引入;第三环节:合作学习;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业.第一环节课前准备活动内容:对学生有理数的加减运算的掌握情况进行检测,,并让学生收集一些与上课相关的资料(新闻与水文资料).活动目的:复习的目的是让学生对已有知识进行补充与完善,为新一次的挑战作好准备.收集资料的目的是丰富学生对背景资料的学习,减少学习的障碍.活动的实际效果:通过前面的学习学生对有理数的加减运算普遍掌握得不错,并收集了丰富的新闻和水文资料.第二环节:情境引入引例1:大湖水库平均水位为62.6米,今年七月,由于久旱无雨,大湖水库水位降到了历史最低水位51.5米,而八月的连续降雨又使水位创历史新高75.3米.若取警戒水位73.4米记作O点,那么最高水位75.3米可记作米,最低水位51.5米可以记作米,平均水位62.6米可以记作米.引例 2:小华是一个理财小能手,上周末他数了数自己的零花钱共有120元,下表是小华本周零花钱记录情况,+号表示当天的零花钱有节余,-号表示当天的零花钱超出预算:(2)本周末小华的零花钱总数比上周末多还是少?活动目的:创设丰富的现实情境,让学生体验所学知识与现实世界的联系,引起学生对学习内容的兴趣.活动的实际效果:学生独立观察思考后与交流组内的同学交流,然后全组内发表看法进行交流.有助于培养学生独立思考、善于与人合作的习惯和语言表达能力,运用数学解决简单问题的能力.第三环节:合作学习上图是流花河的水文资料(单位:米)流花河的警戒水位记为0点,那么其他数据可以分别记为什么?2.下表是小明记录的今年雨季流花河一周内的水位变化情况(上周末的水位达到警戒水位).(1)本周哪一天流花河的水位最高?哪一某某位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少?(2)与上周末相比,本周末流花河水位是上升了还是下降了?(3)请完成下面的本周水位记录表:活动目的:通过老师指导,学生之间的交流,讨论,思维水平及思维方法灵活多样,促进思维的提高,培养学生的“数感”.活动的实际效果:学生分组讨论,相互交流,取得一致意见,并做汇报.培养学生语言表达能力,运用有理数的加减法解决实际问题,培养学生学习兴趣.学生表现得都非常出色,积极地动脑筋思考问题,能大胆表明自己的观点.第四环节:练习提高1.光明中学初一(1)班学生的平均身高是160厘米.(1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表:(3)最高和最矮的学生身高相差多少?2. 9.11事故后,美国股市出现狂跌,股市指数一度跌到历史最低点,后经政府宏观调控,稍有反弹,下表是某周的股市指数升跌情况,+号表示指数比头一天上升,-号表示指数比头一天下跌:(2)本周五的股市指数比上周五的股市指数高还是低?(3)若将上周五的股市指数即为O点,请你画出本周的股市指数折线图。
第二章 有理数的运算 综合实践 学案 2024—2025学年人教版数学七年级上册

学案设计(一)学习目标1.理解进位制的基本概念,包括十进制和其他进制的表示方法.2.能够运用进位制解决实际问题,如货币计算、时间换算等.3.培养团队协作能力,通过小组合作实践,提高问题解决能力和沟通能力.自主学习二进制是逢二进一,其各数位上的数字为0或1.请把二进制数1011表示成各数位上的数字与基数的幂的乘积之和的形式,从而转换成十进制数.课堂探究活动1认识进位制,探究不同进位制的数之间的转换任务1把89转换为二进制数和八进制数.任务2通过研究二进制数及十进制数之间的转换,你有哪些发现?进一步地,你能进行其他不同进制数之间的转换吗?活动2探究进制数的加法运算任务1查阅资料,分析计算机运算选择二进制的原因,从多个角度分析选择二进制的优越性.任务2小组合作,研究二进制数的加法运算法则,并填写表1中的活动记录单.表1活动记录单加0011数加0101数和(1)根据上面的加法运算法则,计算(10010)2+(111)2,并交流一下计算方法.(2)①计算45+23;②把45,23分别转换为二进制数,利用二进制数的加法运算法则计算它们的和,再把和转换为十进制数;③比较①②的计算结果是否相同.任务3计算机的存储容量是指存储器能存放二进制代码的总位数,用于计量存储容量的基本单位是字节.请研究手机、计算机等电子存储设备的容量以及它们存储的一些电子文件的大小,它们通常以什么单位表示?这些单位之间有什么关系?任务4古人在研究天文、历法时,也曾经采用七进制、十二进制、六十进制记数法.至今,我们仍然使用一星期7天、一年12个月、一小时60分钟的记时方法.结合角度、时间等实际问题,分小组讨论一下六十进制数的加法运算法则.活动3任选教材第65~66页主题之一进行研究综合与实践活动研究报告的参考形式报告主题:年级班组报告时间:1.活动名称2.研究小组成员与分工3.选题的意义4.研究方案5.研究过程6.研究结果7.收获与体会8.对此研究报告的评价(由评价小组或教师填写)学以致用基础达标1.二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13.将(10111)2转换成十进制数是()A.23B.15C.18D.312.我们常用的数是十进制数,大多数计算机程序使用的是二进制(只有数码0和1).十进制数和二进制数可以互相换算,例如将(101)2换算成十进制数为(101)2=1×22+0×21+1×20=4+0+1=5;按此方式,将(1010)2换算成十进制数为()A.10B.9C.11D.183.计算机内部使用的是二进制(共有两个数码0,1).将一个十进制数转化为二进制数,只需将该数写为若干个2n的数字之和,依次写出1或0即可.如十进制数19可以写为二进制数10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20;37可以写为二进制数100101,因为37=32+4+1=1×25+0×24+0×23+1×22+0×21+1×20,则十进制数70是二进制下的()A.7位数B.6位数C.5位数D.4位数4.日常生活中我们使用的数是十进制数,数的进位方法是“逢十进一”.而计算机内部使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0、1,如二进制数1101记为1101(2),1101(2)通过式子1×23+1×22+0×2+1可以转换为十进制数13.仿照上面的转换方法,将11101(2)转换为十进制数是()A.15B.29C.30D.335.计算机的二进制数据是用0和1两个数码来表示的数,进位规则是“逢二进一”,二进制数和十进制数可以互换,例如,二进制数“01011011”换成十进制数为0×27+1×26+0×25+1×24+1×23+0×22+1×21+1×20=91.依此算法,二进制数“01001001”换成十进制数为.素养提升1.阅读材料:现在我们常用的数的进制是十进制,如4 657=4×103+6×102+5×101+7×100.该进制需用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9.在电子计算机中用的是二进制,只需用两个数码:0和1.两种进制的数可以互相换算,如二进制的数110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.(注意:对于任何非零数a 都有a0=1,即20=1)解决问题:二进制的数101011等于十进制的哪个数?应用拓展:我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量.由图可知,她一共采集到的野果数量为个.2.日常生活中,我们通常用到的数,称之为十进制数.在表示十进制数时,我们需要用到10个数码:0,1,2,…,8,9.例如:9 812=9 000+800+10+2=9×10×10×10+8×10×10+1×10+2×1.而在计算机中,常使用二进制数,即使用两个数码:0,1.例如:1011.如果想要知道这个二进制数等于十进制中的哪个数字,我们可以这样计算: (1011)2=(1×2×2×2+0×2×2+1×2+1×1)10=(11)10即二进制数1011等于十进制数11.阅读以上资料后,(1)请你把二进制数10101转换为十进制数的过程补充完整:(10101)2=()10=()10;(2)现在,请你尝试把六进制数421转化为十进制数,并写出转换过程.参考答案自主学习二进制数1011表示成各数位上的数字与基数的幂的乘积之和的形式如下:1×23+0×22+1×21+1×20.这个数转换成十进制数为11.课堂探究活动1认识进位制,探究不同进位制的数之间的转换任务1解:首先,对89进行不断除以2的整除操作,直到商为0,然后将每次的余数按相反的顺序组合起来,即得到二进制数.89÷2=44,余144÷2=22,余022÷2=11,余011÷2=5,余15÷2=2,余12÷2=1,余01÷2=0,余1将余数按相反的顺序组合起来,得到二进制数:1011001将89转换为八进制数:同样,对89进行不断除以8的整除操作,直到商为0,然后将每次的余数按相反的顺序组合起来,即得到八进制数.89÷8=11,余111÷8=1,余31÷8=0,余1将余数按相反的顺序组合起来,得到八进制数:131因此,89的二进制表示为1011001,八进制表示为131.任务2通过研究二进制数和十进制数之间的转换,可以得到以下发现:1.二进制到十进制的转换:二进制数的每一位代表2的幂,从右向左依次增加.将每位的值与对应的2的幂相乘,再相加,即可得到十进制数.2.十进制到二进制的转换:使用除2取余法,不断将十进制数除以2,将余数按相反的顺序组合,即可得到对应的二进制数.3.其他进制数的转换:类似地,可以研究不同进制数之间的转换,例如八进制到十进制、十六进制到十进制等.转换的基本思想是一致的,只需根据不同进制的基数进行相应的运算.4.十进制到其他进制的转换:使用除基数取余法,将十进制数不断除以目标进制的基数,将余数按相反的顺序组合,即可得到对应的进制数.5.其他进制到二进制的转换:首先将其他进制数转换为十进制数,然后再将十进制数转换为二进制数.总体来说,不同进制数之间的转换基于相似的原理,只需注意不同进制的基数和相应的幂次关系.进一步地,可以研究其他进制数之间的转换,例如八进制到十六进制、十六进制到八进制等.活动2探究进制数的加法运算任务1略任务2(1)首先,我们按照二进制数的加法运算的规则逐位相加,从右向左进行.10010+11110101在二进制数的加法运算中,对应位相加时,0+1的结果为1,1+1的结果为0并进位.因此,计算过程如下:·在最右边的位上,0+1=1.·接下来的位上,1+1=0(写下0),并向左进位1.·然后,进位的1与下一个位相加,1+1=0,再次产生进位1.·接着,进位的1与下一位相加,0+1=1.·最后,最左边的位上,1+0(进位)=1.因此,二进制数10010与二进制数111的和为10101.在交流计算方法时,强调了二进制数的加法运算的规则,尤其是0+1和1+1的情况,并通过逐位相加的方式展示了计算过程.(2)①68②将45转换为二进制数:45=(101101)2将23转换为二进制数:23=(10111)2利用二进制数的加法运算规则计算它们的和:101101+101111000100(45的二进制表示)(23的二进制表示)(和的二进制表示)将和转换为十进制数:(1000100)2=68③相同任务3略任务4略活动3略学以致用[基础达标]1.A2.A3.A4.B5.73[素养提升]1.解:∵101011=1×25+0×24+1×23+0×22+1×21+1×20=43,∴二进制数101011等于十进制数43.应用拓展:1×64+2×63+3×62+0×61+2×60=1 838(个),故她一共采集到的野果数量为1 838个.2.解:(1)(10101)2=(1×2×2×2×2+0×2×2×2+1×2×2+0×2+1)10=(21)10,故答案为1×2×2×2×2+0×2×2×2+1×2×2+0×2+1,21.(2)(421)6=(4×6×6+2×6+1)10=(157)10.学案设计(二)学习目标1.理解进位制的基本概念,包括十进制和其他进制的表示方法.2.能够运用进位制解决实际问题,如货币计算、时间换算等.3.培养团队协作能力,通过小组合作实践,提高问题解决和沟通能力.自主学习查阅资料,准备一个与时间有关的小故事,为何钟表分为六十分钟?为何我们有7天一周等.一小时60分钟的来历.课堂探究1.二进制数的加法运算练习题:a.11012+1012b.100112+11012c.11102+101012d.1100102+1011102e.110112+11011022.将下列二进制数转换为十进制数a.11012b.1001102c.111112d.10101012e.110110123.将下列八进制数转换为十进制数a.348b.1278c.5438d.74268e.652178学以致用基础达标1.生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例:12=1×10+2,212=2×10×10+1×10+2;计算机也常用十六进制来表示字符代码,它是用0~F 来表示0~15,满十六进一,它与十进制对应的数如表:十进012…891011121314151617…制十六012…89A B C D E F1011…进制例:十六进制的数2B对应十进制的数为2×16+11=43,10C对应十进制的数为1×16×16+0×16+12=268,那么十六进制的数16F对应十进制的数为()A.28B.62C.367D.3342.2021年7月,第十四届国际数学教育大会在上海召开,本次大会会徽主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力.如图,右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,由0~7共8个基本数字组成.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2 021,则八进制数2023换算成十进制数是()A.1 041B.1 043C.2 023D.3 7473.计算机是将信息转换成二进制数处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13.将(10111)2转换成十进制数是()A.23B.15C.18D.314.我们常用的数是十进制数,大多数计算机程序使用的是二进制(只有数码0和1).十进制数和二进制数可以互相换算,例如将(101)2换算成十进制数为(101)2=1×22+0×21+1×20=4+0+1=5.按此方式,将(1010)2换算成十进制数为()A.10B.9C.11D.18素养提升1.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些记数符号与十进制的数之间的对应关系如下表:十六0123456789A B C D E F进制十0123456789101112131415进制例如:十进制中的26=16+10,可用十六进制表示为1A;在十六进制中,E+D=1B等.由上可知,在十六进制中,3×E=()A.42B.2AC.A2D.3E2.(多选)八进制是以8作为进位其数的数字系统,有0~7共8个基本数字.如:八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2 021.以下说法正确的是()A.若八进制数最后一位是偶数,换算成十进制依然是偶数B.八进制数111与十进制数111相等C.八进制数2023换算成十进制数是1 045D.十进制数2 023换算成八进制数是3747参考答案自主学习略课堂探究1.a.11012+1012=100102b.100112+11012=111002c.11102+101012=1001112d.1100102+1011102=10110002e.110112+1101102=101000122.a.11012=1310b.1001102=3810c.111112=3110d.10101012=8510e.11011012=109103.a.348=2810b.1278=8710c.5438=35510d.74268=388210e.652178=2709510学以致用[基础达标]1.C2.B3.A4.A [素养提升]1.B2.AD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
再次尝试解决:(-4)+(+18)-(-3)-(+13)+(-2)
【学习任务五】
巩固练习:
1.读出下列代数和:
(1)16-7+4-5
(2)
2.将下列各算式统一为加法, 再写成省略加号的代数和形式.
(1)(+5)-(-3)+(-7)-(+12)
(2)
3.计算:
(1)(+5)-7-(-4)+(-5)+10
3.积极参与数学活动,体验获得成功的乐趣,建立自信心。
课前学习任务
回顾有理数加法法则和有理数减法法则
课上学习任务
【学习任务一】
思考:
1.既然减法可以转化为加法,那么加减法的混合运算可以怎样进行?
【学习任务二】
尝试解决例1:(-4)+(+18)-(-3)-(+13)+(-2)
【学习任务三】
思考:
2.有理数加减法的混合运算统一为加法以后,是否可能产生简洁的形式和更方便的算法?
(2)(+0.65)+(-1.9)+(-0.1)+(+0.65)
(3)
课程基本信息
课例编号
学科
数学
年级
初一
学期
第一学期
课题
有理数加减法混合运算(1)
教科书
书名:义务教育教科书 数学 七年级 上
出版社:北京出版社 出版日期: 2013年6月
学生信息
姓名
学校
班级
学号
学习目标
1.理解代数和的概念,会利用代数和进行有理数加减法的混合运算;
2.在解决问题的过程中,合理使用简化运算,培养良好的运算能力,体会有理数减法可以转化为加法进行运算,体会转化思想;