初中数学函数助记口诀

合集下载

函数口诀.doc

函数口诀.doc

1.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号;同类项、合并好,再把系数来除掉;两边除(以)负数时,不等号改向别忘了。

2.特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。

3.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。

4.对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反, Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。

5.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

6.函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀:“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。

7.一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。

8.二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象限;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y 轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。

若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。

9.反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限;k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减;图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。

初中数学函数口诀

初中数学函数口诀

初中数学助记口诀 (函数部分)1、 一元一次不等式解题的一般步骤: 去分母、去括号,移项时候要变号; 同类项、合并好,再把系数来除掉;两边除(以)负数时,不等号改向别忘记。

2、 特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后; X 轴上y 为0,x 为0在Y 轴。

3、 平行某轴的直线:平行某轴的直线,点的坐标有讲究, 直线平行X 轴,纵坐标相等横不同; 直线平行于Y 轴,点的横坐标仍照旧。

4、 对称点坐标:对称点坐标要记牢,相反数位置莫混淆, X 轴对称y 相反, Y 轴对称x 前面添负号; 原点对称最好记,横纵坐标皆变符号。

5、 自变量的取值范围:求自变量有讲究,四项原则须留意。

分式分母不为零,偶次根下负不行; 分数指数底正数,数零没有零次幂。

6、 函数图像的移动规律:若把一次函数解析式写成y=k (x+0)+b , 二次函数的解析式写成()k h x a y +-=2的形式,则用下面的口诀:“左右平移在括号,上下平移在末稍, 左正右负须牢记,上正下负错不了”。

7、 一次函数图像与性质口诀: 一次函数是直线,图像经过仨象限; 正比例函数更简单,经过原点一直线; 两个系数k 与b,作用之大莫小看, k 是斜率定夹角,b 与Y 轴来相见, k 为正来右上斜,x 增减y 增减; k 为负来左下伸,变化规律正相反; k 的绝对值越大,线离横轴就越远。

8、 二次函数图像与性质口诀: 二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象限; 开口、大小由a 断,c 与Y 轴来相见, b 的符号较特别,符号与a 相关联;顶点位置先找见,Y 轴作为参考线, 左同右异中为0,牢记心中莫混乱; 顶点坐标最重要,一般式配方它就现, 横标即为对称轴,纵标函数最值见。

若求对称轴位置, abx 2-=要牢记, 一般、顶点、交点式,不同表达能互换。

初中二次函数知识点记忆口诀

初中二次函数知识点记忆口诀

初中二次函数知识点记忆口诀
二次函数是初中数学中一个很重要的知识点,下面整理了一些二次函数的相关知识点,供大家参考。

二次函数图像与性质
二次方程零换y,二次函数便出现;
全体实数定义域,图像叫做抛物线;
抛物线有对称轴,两边单调正相反;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与Y轴来相见;
b的符号较特别,符号与a相关联;
顶点非高即最低。

上低下高很显眼,
如果要画抛物线,平移也可去描点;
提取配方定顶点,两条途径再挑选,
若要平移也不难,先画基础抛物线,
列表描点后连线,平移规律记心间,
左加右减括号内,号外上加下要减。

二次函数的三种表达式
一般式:y=ax²+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)²+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B (x₂,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a
k=(4ac-b²)/4a
x₁,x₂=(-b±√b²-4ac)/2a
二次函数的平移规律口诀
加左减右,加上减下。

意思就是当二次函数写成下面这个样子时:
y=a(x+b)²+c,只要将y=ax²的函数图像按以下规律平移。

(1)b>0时,图像向左平移b个单位(加左)。

(2)b<0时,图像向右平移b个单位(减右)。

(3)c>0时,图像向上平移c个单位(加上)。

(4)c<0时,图像向下平移c个单位(减下)。

巧用顺口溜熟记初中数学公式和规律

巧用顺口溜熟记初中数学公式和规律

巧用顺口溜熟记初中数学公式和规律数学公式和规律在初中阶段是非常重要的,它们是解题的基础和指导,也是理解数学概念和思维的关键。

然而,对于许多学生来说,记住这些公式和规律并不容易。

为了帮助学生更好地掌握数学知识,我整理了一些巧妙的顺口溜,通过这些顺口溜,学生能够轻松地记住一些重要的数学公式和规律。

一、顺口溜记代数公式:1. 一元二次方程求根法,b²-4ac你得掌握。

一大再小两个根,<0无实根,=0一个根。

2. x = (-b ± √(b²-4ac))/(2a)二次方程求解都留下。

3.(a+b)(a-b)=a²-b²平方差公式背下来。

4.a²-b²=(a-b)(a+b)平方差公式很容易。

5.二项式展开好简单,我的名字叫齐考公式。

(a+b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + ... + C(n,n-1)abⁿ⁻¹ +C(n,n)bⁿ。

二、顺口溜记几何公式:1.长方形底乘高,得到面积的好帮手。

A=l×w,四边都相对。

2.正方形的面积,直接边长相乘。

A=s²,正方形停不住。

3.三角形面积公式,底边高你有。

A=1/2×b×h,底高更容易。

4.圆的面积公式,先半径,再面积。

A=πr²,记住吗?5.圆的弧长、扇形和正圆角,顺口溜心中藏。

L=2πr,S=1/2πr²,360度它很逆。

三、顺口溜记运算规律:1.交换律、结合律勿忘,运算啥都变得容。

a+b=b+a,a+(b+c)=(a+b)+ca×b=b×a,a×(b×c)=(a×b)×c。

2.分配律快记清,a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c,加减乘除好朋友。

初中二次函数知识点详解助记口诀

初中二次函数知识点详解助记口诀

关于y轴对称,x变成-x,y不变 。
关于原点对称,x变成-x,y变 成-y。
伸缩变换规律
横向伸缩
自变量的系数变化。系数大于1是横向压缩;系数 小于1是横向拉伸。
纵向伸缩
函数值的系数变化。系数大于1是纵向拉伸;系数 小于1是纵向压缩。
04
二次函数与一元二次方程关系
Chapter
一元二次方程根与系数关系
01
一元二次方程 $ax^2 + bx + c = 0$($a neq 0$)的根 $x_1, x_2$ 与系数 $a, b, c$ 的关系为:$x_1 + x_2 = -frac{b}{a}, quad x_1 times x_2 = frac{c}{a}$
02
判别式 $Delta = b^2 - 4ac$,当 $Delta > 0$ 时,方程有两个不相等的实根 ;当 $Delta = 0$ 时,方程有两个相等的实根;当 $Delta < 0$ 时,方程无实 根。
平移规律要记牢,左加右减常 数项。
伸缩变换看系数,横纵坐标同 比例。
图像变换规律助记口诀
01
02
03
04
抛物线平移规律清,左 加右减纵不变。
伸缩变换看系数,横坐 标变纵不变。
对称轴和顶点变,开口 方向和宽窄见。
实际应用多体验,数形 结合思维显。
THANKS
感谢观看
初中二次函数知识点详解助记口诀
汇报人:XXX 2024-01-28
目录
• 二次函数基本概念与性质 • 二次函数解析式与求法 • 二次函数图像变换规律 • 二次函数与一元二次方程关系 • 二次函数在实际问题中应用 • 助记口诀及学习技巧分享

中考公式口诀(函数部分)

中考公式口诀(函数部分)

初中数学助记口诀(函数部分)特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。

对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。

自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍, 同左上加异右下减一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。

二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。

若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k 为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。

图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。

正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x 增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。

反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。

初中数学助记口诀

初中数学助记口诀

初中数学助记口诀有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。

【注】“大”减“小”是指绝对值的大小。

合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。

(a-b)2n+1=-(b - a)2n+1(a-b)2n=(b - a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

初中二次函数知识点助记口诀编辑

初中二次函数知识点助记口诀编辑

二次函数知识点详解知识点一、二次函数的概念和图像1、二次函数的概念一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

知识点二、二次函数的解析式二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)两根 当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

如果没有交点,则不能这样表示。

a 的绝对值越大,抛物线的开口越小。

(3)三顶点 顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,知识点三、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学助记口诀 (函数部分)
1、 一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号; 同类项、合并好,再把系数来除掉;
两边除(以)负数时,不等号改向别忘记。

2、 特殊点坐标特征:
坐标平面点(x,y),横在前来纵在后;
(+,+),(-,+),(-,-)和(+,-),四个象限分前后; X 轴上y 为0,x 为0在Y 轴。

3、 平行某轴的直线:
平行某轴的直线,点的坐标有讲究, 直线平行X 轴,纵坐标相等横不同; 直线平行于Y 轴,点的横坐标仍照旧。

4、 对称点坐标:
对称点坐标要记牢,相反数位置莫混淆, X 轴对称y 相反, Y 轴对称x 前面添负号; 原点对称最好记,横纵坐标皆变符号。

5、 自变量的取值范围:
求自变量有讲究,四项原则须留意。

分式分母不为零,偶次根下负不行; 分数指数底正数,数零没有零次幂。

6、 函数图像的移动规律:
若把一次函数解析式写成y=k (x+0)+b , 二次函数的解析式写成()k h x a y +-=2
的形式,
则用下面的口诀:
“左右平移在括号,上下平移在末稍, 左正右负须牢记,上正下负错不了”。

7、 一次函数图像与性质口诀:
一次函数是直线,图像经过仨象限; 正比例函数更简单,经过原点一直线; 两个系数k 与b,作用之大莫小看, k 是斜率定夹角,b 与Y 轴来相见, k 为正来右上斜,x 增减y 增减; k 为负来左下伸,变化规律正相反; k 的绝对值越大,线离横轴就越远。

8、 二次函数图像与性质口诀:
二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象限; 开口、大小由a 断,c 与Y 轴来相见, b 的符号较特别,符号与a 相关联; 顶点位置先找见,Y 轴作为参考线, 左同右异中为0,牢记心中莫混乱; 顶点坐标最重要,一般式配方它就现, 横标即为对称轴,纵标函数最值见。

若求对称轴位置, a
b
x 2-
=要牢记, 一般、顶点、交点式,不同表达能互换。

9、 反比例函数图像与性质口诀:
反比例函数有特点,双曲线相背离的远; k 为正,图像出在一、三(象)限; k 为负,图像出在二、四(象)限;
图在一、三函数减,两个分支分别减; 图在二、四正相反,两个分支分别增; 线越长越近轴,永远与轴不沾边。

10、 函数学习口决:
正比例函数是直线,图象一定过原点, k 的正负是关键,决定直线的象限, 负k 经过二四限,x 增大y 在减, 上下平移k 不变,由引得到一次线, 向上加b 向下减,图象经过三个限, 两点决定一条线,选定系数是关键; 反比例函数双曲线,待定只需一个点, 正k 落在一三限,x 增大y 在减, 图象上面任意点,矩形面积都不变, 对称轴是角分线x 、y 的顺序可交换; 二次函数抛物线,选定需要三个点, a 的正负开口判,c 的大小y 轴看, △的符号最简便,x 轴上数交点, a 、b 同号轴左边,a 、b 异号轴右边 抛物线平移a 不变,顶点牵着图象转, 三种形式可变换,配方法作用最关键。

11、解一元一次不等式:
先去分母再括号,移项别忘要变号。

同类各项去合并,系数化“1”注意了。

同乘除正无防碍,同乘除负要变号。

12、 解一元一次不等式组:
同小相对取较小
同大就要取较大
大小小大就是它
小小大大哪有哇
13、解一元二次不等式:
首先化成一般式,构造函数第二站。

判别式值若非负,曲线横轴有交点。

a正开口它向上,大于零则取两边。

代数式若小于零,解集交点数之间。

方程若无实数根,口上大零解为全。

小于零将没有解,开口向下正相反。

13.1 用公式法解一元二次方程
要用公式解方程,首先化成一般式。

调整系数随其后,使其成为最简比。

确定参数abc,计算方程判别式。

判别式值与零比,有无实根便得知。

有实根、套公式,没实根、要告之。

14、用常规配方法解一元二次方程:
左未右已先分离,二系化“1”是其次。

一系折半再平方,两边同加没问题。

左边分解右合并,直接开方去解题。

该种解法叫配方,解方程时多练习。

15、用间接配方法解一元二次方程:
已知未知先分离,因式分解是其次。

调整系数等互反,和差积套恒等式。

完全平方等常数,间接配方显优势
【注】恒等式
16、解一元二次方程:
方程没有一次项,直接开方最理想。

如果缺少常数项,因式分解没商量。

b、c相等都为零,等根是零不要忘。

b、c同时不为零,因式分解或配方,
也可直接套公式,因题而异择良方。

17、正比例函数的鉴别:
判断正比例函数,检验当分两步走。

一量表示另一量,有没有。

若有再去看取值,全体实数都需要。

18、正比例函数的图象与性质:
正比函数图直线,经过坐标的原点。

K正一三负二四,变化趋势记心间。

K正左低右边高,同大同小向爬山。

K负左高右边低,一大另小快下山。

19、一次函数:
一次函数图直线,经过坐标轴两点要牢记。

K正左低右边高,越走越高向爬山。

K负左高右边低,越来越低很明显。

K称斜率b截距,截距为零变正函。

20、反比例函数:
反比函数双曲线,经过(k、1)和(1、k)点。

K正一三负二四,两轴是它渐近线。

K正左高右边低,一三象限滑下山。

K负左低右边高,二四象限如爬山。

21、二次函数:
二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

A定开口及大小,绝对值大开口小。

开口向上A正数,开口向下是负数。

抛物线、有对称,增减特性可看图。

线轴交点叫顶点,顶点非高即最低。

顶点横标是对称,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

22、列方程解应用题:
列方程解应用题,审设列解双检答。

审题弄清已未知,设元直间两办法。

列表画图造方程,解方程时守章法。

检验准且合题意,问求同一才作答。

23、两点间距离公式:
同轴两点求距离,大减小数就为之。

与轴等距两个点,间距求法亦如此。

平面任意两个点,横纵标差先求值。

差方相加开平方,距离公式要牢记。

相关文档
最新文档