稀土掺杂在光催化中的应用..
稀土在催化材料中的应用现状及发展趋势

废FCC 催化剂中稀土的回收,REO = 3-
ReZel
1 稀土在石油化工催化材料方面的应用
在烯烃的氨氧化、低碳烷烃的芳构化、芳烃类化合物的异构化 等催化剂中也发挥了较大的作用。
例如,在甲烷氧化偶联制乙烯方面,现在也用上了稀土催化剂。 CH4+CO2(或其他氧化剂) C2H4+H2O
9
3 稀土催化材料在高分子材料方面的应用
20世纪60年代,在高分子材料中掺杂稀土化合物出现的特殊功
效引起了科学界和工业界的高度关注。20世纪70年代日本学者发
现轻稀土化合物可作为PVC热稳定剂,有明显的稳定效果,并且无
毒无害、性价比高。法、俄等国在这方面也做了大量的研究。
稀土化合物在高分子材料合成、加工及功能化方面均具有独特而
3 在催化剂中应用的稀土元素主要是轻稀土:钪( Sc)、钇(Y )、 镧( La)、铈( C e)。
4 近年来因在军工、新能源、新材料等领域应用突出的中、重稀 土需求量的增加,导致Ce、La等高丰度轻稀土的大量积压,造 成了稀土利用的不平衡,La、Ce的价格一直很低。因此,大力 推进稀土催化新材料的研究和发展,对于实现我国稀土资源全 面、高效和平衡利用,推进新能源的利用和环境治理技术的进 步,具有重大的科学和社会意义,也能带来重大经济效益。
目前,主要应用在:挥发性有机废气治理、烟气脱硫、 燃烧过程脱氮、纳米稀土TiO2光催化、以及焦化污水催化 净化等方面。
2020/1/8
ReZel
8
2 稀土催化材料在环保方面的应用
稀土催化材料由于其独特的催化氧化性质,显示出越来越优越 的开发应用前景。其中稀土复合中孔催化材料具有大表面积、 合适孔径分布、结构稳定等特点,已经成为工业有机废气净化 中最有前景的催化材料之一。此外,通过纳米水平的设计,开 发出先进的稀土催化材料,可以在降低90%贵金属用量的情况 下仍能保证催化净化效率提高1倍。
稀土元素掺杂对纳米TiO2光催化剂性能的影响(1)

性 % 本文中的数据不能证实上述观点 %
第>期
冯良荣等: 稀土元素掺杂对纳米 !*RG 光催化剂性能的影响 表! !"#$ % 催化剂微晶结构与催化活性的关系
E%@
&’(")*+,-.*/- #’)0’’, ).’ "1)*2*)*’- ",3 4*15+156-)"((*)’ -)571)75’ +8 1")"(6-)" 9 ,4 %B $ B %B %G $ A %A $ C %> $ % %C $ > %E $ @ %@ $ E %A $ B %> $ D %:: # 9 ; % $ :%@ % $ :E% % $ >:% : $ DA% % $ :GC % $ %% % $ :%B : $ DBB % $ :D@ % $ GCC $ 9 ,4 > $ ACC > $ ACC > $ AC > $ AC@ > $ AD% > $ ACG > $ AC@ > $ ACC > $ ACC > $ ADG % 9 ,4 D $ A:E D $ B@> D $ E>@ D $ B@E D $ @> D $ @%> D $ B:G D $ B@G D $ BBB D $ A:A [ (, (%( ) ] <(, 9 %< & ) : $ BAB % $ :>G : $ DGE : $ BDA : $ B>A : $ A>C : $ AE> : $ A>G : $ BE% : $ BE%
稀土发光材料的应用

稀土发光材料的应用
稀土发光材料是指通过稀土元素掺杂后引入的缺陷能级,使材料在光激发下发生能级跃迁而发光的材料。
下面是稀土发光材料的应用:
一、发光材料
稀土发光材料可以应用于照明、显示、信息传输等领域。
比如,氧化铈中的氧空位能被Eu3+、Tb3+、Sm3+等元素作为宿主掺入,形成的材料可发出蓝、绿、红光,可以用于制备白光发光材料。
二、激光材料
稀土发光材料可以用于制备激光器。
比如,利用掺铒光纤和掺铒光纺织品,可以制备出具有985nm高能量激光输出的掺铒光纤激光器和几乎纯绿光输出的掺铒光纺织品激光器。
三、太阳能电池材料
稀土发光材料还可以用于制备太阳能电池。
比如,利用掺钕低聚物复合电解质,在太阳光的作用下,钕离子能够吸收能量,从而提高太阳能电池的转化效率。
四、光催化材料
稀土发光材料可以用于制备光催化材料。
比如,添加掺铈或掺钕的TiO2材料,在紫外光作用下能够吸收氧气,形成氧化亚氮和羟基自由基,从而具有良好的光催化性能。
五、生物传感材料
稀土发光材料还可以用于生物传感。
比如,利用荧光探针的特性,可以在细胞分子层面上进行生物分析和检测,稀土发光体系中的长发射寿命和独特的能量级分布也使其在分子分析中具有广泛的应用前景。
综上所述,稀土发光材料的应用领域十分广泛,具有重要的科学研究价值和应用前景。
稀土元素掺杂TiO_2光催化剂的制备与性能研究动态

2. 2 Ce4 +掺杂 TiO2 光催化活性及掺杂机理的探讨 Ce元素具有 + 3和 + 4两个价态 ,经高温焙烧后主
要以 4价的 CeO2 形式存在 ,少量 Ce掺杂后 TiO2 光催 化活性的提高主要是由于 Ce4 + 能成为光生电子捕获 剂 。由于 Ce4 + /Ce3 + 还 原反 应 所 具 有 的 势 能 级 为 1. 61V ,在紫外光照射下 , Ce4 +很容易捕获光生电子生成 Ce3 + ,起到光生电子捕获剂的作用 ,电子被捕获后 ,因 难以与空穴结合而分离 ,提高了 TiO2 的光催化活性 。 但随着 Ce4 +的增加 ,界面上 Ti4 +进入 CeO2 晶格的量也 随之增多 。 Ti4 + 进入 CeO2 晶格后被 8 个氧原子“锁 定 ”,价态不变 ,不能象 3 价稀土离子掺杂可捕获空穴 产生活性羟基 ,掺杂量增加的同时催化剂中电子捕获 剂表面 Ti4 +也减少 ,以上现象的同时发生造成了光生 电子 ———空穴对的快速复合 。这种影响要大于 Ce4 +的 正贡献 ,因而随着掺杂量的增加 ,催化剂活性降低 [10 ] 。 2. 3 其它稀土元素掺杂 TiO2 光催化活性及掺杂机理 探讨
环境和能源是 21 世纪人类面临和亟待解决的问 题 。能直接利用太阳能在常温下来驱动的光催化反应 技术成为一种较为理想的环境污染治理和清洁生产的 方式 ,在环保 、能源 、医药 、建材和食品等行业具有广阔 的应用前景 ,因而倍受科学界 、政府部门和企业界的重 视 。 TiO2 凭借其价廉 、无毒 、高稳定性 、耐腐蚀性 、可循 环利用等特点 ,成为一种极具发展前景的光催化剂主 体材料 ,已被广泛用于空气净化 、废水处理 、抗菌和表 面清洁等领域 。然而 , TiO2 本身存在光吸收范围窄 、光 电子 - 空穴对寿命短等缺点 ,限制了 TiO2 的实际应用 范围 。因此 , TiO2 的光催化活性必须得到充分提高 ,拓 展其可见光响应范围 ,使其具有更高光催化活性 。为 此 ,各国科研工作者采取了多种办法如贵金属沉积 、半 导体复合 、离子掺杂 、光敏化 、表面还原处理等 [1 - 4 ]来
稀土元素在发光材料中的应用

稀土元素在发光材料中的应用稀土元素是指原子序数为57至71的元素,它们在周期表的镧系元素中。
这些元素在自然界中非常稀少,因此被称为稀土元素。
稀土元素具有独特的性质和各种应用,其中在发光材料中的应用尤为广泛。
一、稀土元素的特性及其在发光材料中的重要性稀土元素的电子结构相对复杂,使其在吸收、发射光子等过程中表现出特殊的物理和化学性质。
这些性质使稀土元素在发光材料中具有重要的应用潜力。
1. 发光性能的调控稀土元素的能级结构决定了其光谱特性,不同的能级跃迁将产生不同波长的发光。
通过控制稀土元素的化学配合物,可以实现对发光性能的精确调控。
这使得稀土元素成为了发光材料的重要组成部分。
2. 发光量子效率的提高稀土元素对于吸收和发射光子的高效率转换,使其在提高发光量子效率方面具有独特优势。
发光材料中引入稀土元素能够提高发光效果,使光源更加明亮且具有较长的寿命。
3. 宽波长范围的发射光谱稀土元素可以通过调控能级结构实现发光波长的精确控制,这在发光材料中具有重要意义。
通过组合不同稀土元素,可以实现宽波长范围的发射光谱,从紫色至红外波段均可覆盖。
这使得发光材料可适用于不同的应用场景。
二、常见的稀土元素发光材料及其应用领域1. 镧系荧光粉镧系元素的荧光性能优越,常被用于制备荧光粉。
通过掺杂不同的稀土元素,可以得到不同颜色的荧光粉。
这些荧光粉广泛应用于LED照明、显示器、荧光屏等领域,能够提供清晰明亮的发光效果。
2. 稀土元素掺杂的半导体材料稀土元素掺杂的半导体材料被广泛应用于激光器、光纤通信等领域。
例如,钇铝石榴石中掺杂镝离子可产生红光,被用作红光激光器的激活剂。
这些稀土元素激发的发光材料在信息传输和高精度测量中具有重要作用。
3. 稀土元素掺杂的荧光薄膜稀土元素掺杂的荧光薄膜被广泛应用于平板显示、荧光标识等领域。
荧光薄膜的发光性能决定了显示效果的清晰度和色彩鲜艳度。
赤兔石中掺杂钆离子的荧光薄膜,能够产生红、绿、蓝三原色的发光,被用于显示器的背光源。
稀土Ce掺杂对ZnO结构和光催化性能的影响

稀土Ce掺杂对ZnO结构和光催化性能的影响一、本文概述本文旨在探讨稀土元素Ce掺杂对ZnO结构和光催化性能的影响。
ZnO作为一种宽禁带半导体材料,因其优异的物理和化学性质,在光催化、太阳能电池、气体传感器等领域具有广泛的应用前景。
然而,ZnO的光催化效率常常受到其光生电子-空穴对复合速率快的限制。
为了提高ZnO的光催化性能,研究者们常常采用元素掺杂、构建异质结等方法来改善其光生载流子的分离和传输。
稀土元素Ce因其独特的电子结构和光学性质,在掺杂改性中展现出巨大的潜力。
Ce的引入不仅可以调控ZnO的能带结构,提高其对可见光的吸收能力,还可以通过Ce的4f电子与ZnO的导带和价带之间的相互作用,抑制光生电子-空穴对的复合,从而提高ZnO的光催化活性。
本文首先通过文献综述,回顾了ZnO的光催化性能及其改性方法,重点介绍了稀土元素掺杂在ZnO改性中的应用。
随后,通过实验制备了不同Ce掺杂量的ZnO样品,并利用射线衍射、扫描电子显微镜、紫外-可见漫反射光谱等手段对样品的结构和光学性质进行了表征。
在此基础上,通过光催化降解有机污染物实验,评估了Ce掺杂对ZnO 光催化性能的影响,并探讨了其影响机制。
本文的研究结果将为进一步优化ZnO的光催化性能提供理论支持和实验依据,同时也为稀土元素在半导体材料改性中的应用提供新的思路和方法。
二、文献综述在过去的几十年里,氧化锌(ZnO)作为一种重要的半导体材料,在光电器件、气体传感器和光催化等领域受到了广泛的关注。
尤其是其优异的光催化性能,使得ZnO成为环境净化、能源转换等领域的研究热点。
然而,ZnO的宽带隙(约37 eV)限制了其只能吸收紫外光,限制了其在可见光催化领域的应用。
为了拓宽ZnO的光响应范围并提高其光催化活性,研究者们尝试了各种方法,其中稀土元素掺杂是一种有效的手段。
稀土元素,如铈(Ce),具有特殊的电子结构和光学性质。
Ce离子的引入不仅可以调节ZnO的能带结构,还可能引入新的缺陷能级,从而拓宽其光吸收范围。
稀土掺杂在光催化中的应用

现在共掺杂TiO2光催化剂中,0.1%La/0.3%Eu/TiO2的催化
活性最高。
稀土的共掺杂
• 掺杂改性是拓宽可见光谱范围和提高量子效率的重要方法, 然而研究发现,单元素掺杂往往只能够兼顾到其中的一面, 因此,共掺杂得到逐步的发展。
• 选择两种或多种离子对TiO2共掺杂改性,期望利用共掺杂离
子间的协同作用提供电子和空穴陷阱,抑制电子-空穴的复 合,提高光催化活性;同时,利用各掺杂离子的优势互补来 拓宽TiO2的吸收光谱范围,提高其在可见光下的光催化能力 。
Байду номын сангаас 稀土与金属元素的共掺杂
• 稀土元素半径较大,易造成晶格畸变,形成氧空位,而金属
和稀土元素都可以充当电子或空穴的捕获中心,因此二者的
协同作用共掺杂TiO2,有助于提高其光催化性能。
• 王东升等采用溶胶-凝胶法制备了Ag和Sm共掺杂的TiO2,当掺
杂1.0%Sm-1.2%Ag(摩尔分数)时,产物的光催化效果最佳, 经400W的高雅汞灯照射45min,对甲基橙的降解率达99.4%。
稀土单元素掺杂
• 谷科成等以TNT为降解物研究了镧掺杂纳米TiO2的光催化活 性,发现镧的掺杂减小了晶粒尺寸,并使TiO2的晶型转变温 度升高,其中2%(摩尔分数)La—TiO2的光催化效果最好, 紫外光下照射30 min能去除76.8%的TNT有机物。 • 赵伟伟等以钛酸丁酯为前驱体,采用溶胶一凝胶法制备掺铈 的TiO2粉末,结果表明,铈的掺杂会造成晶格不同程度的膨 胀,并影响光催化材料的比表面积,当掺杂量为0.3%且焙 烧温度为400℃时,紫外光下对甲基橙的降解率最高,1h能 达到98%左右。
化领域中得到广泛应用。
稀土作为催化剂,适用范围很广。几乎涉及所有的催化反 应。无论是氧化还原型,还是酸碱性,均相或多相,都充分显示了 稀土催化剂性能的多样。
稀土材料在光催化反应中的应用

稀土材料在光催化反应中的应用1. 引言光催化反应是一种利用光能转化化学能的技术。
稀土材料由于其特殊的光物理和化学性质,在光催化反应中展现出了广泛的应用潜力。
本文将重点介绍稀土材料在光催化反应中的应用,并讨论其优势和挑战。
2. 稀土材料概述稀土材料是指由稀土元素(镧、铈、钕等)组成的化合物或合金。
这些材料在光催化反应中的应用主要基于它们的特殊能带结构和光吸收能力。
稀土材料的能带结构可以调控其光电性能,使其能够吸收特定波长范围的光线,并转化为电子和空穴对,从而参与催化反应。
3. 稀土材料在水处理中的应用水处理是光催化反应的一个重要领域,稀土材料在其中扮演着重要的角色。
稀土材料可以被用于水中污染物的降解和氧化。
例如,铈氧化物(CeO2)是一种常用的稀土材料,具有优异的光催化性能。
它可以将水中的有机污染物转化为无害的物质,如二氧化碳和水。
钕掺杂铈氧化物(Nd-CeO2)则能够增强光催化反应的效果,提高降解污染物的速率。
4. 稀土材料在二氧化碳还原中的应用稀土材料在二氧化碳还原中也显示出了巨大的应用潜力。
二氧化碳是一种重要的温室气体,利用光催化反应将其转化为高值化学品或燃料是一种可持续的能源解决方案。
稀土材料可以作为光催化剂,将光能转化为化学能,促进二氧化碳的还原反应。
铈钕氧化物(CeNdOx)是一种常见的稀土材料,具有优异的光催化还原二氧化碳的能力。
5. 稀土材料在光电子器件中的应用除了在光催化反应中的应用,稀土材料还可以用于光电子器件制造。
稀土材料具有窄的能带结构和优异的光发射性能,因此被广泛用于LED(发光二极管)、荧光材料和激光器等领域。
其中,铈掺杂氧化锌(Ce-ZnO)是一种常用的稀土材料,具有良好的光电性能和稳定性。
6. 稀土材料的挑战与展望尽管稀土材料在光催化反应中显示出了巨大的应用潜力,但仍然存在一些挑战。
首先,稀土材料的合成和制备过程较复杂,增加了其生产成本。
其次,稀土元素的获取和处理也面临着环境和可持续性的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稀土单元素掺杂
• 谷科成等以TNT为降解物研究了镧掺杂纳米TiO2的光催化活 性,发现镧的掺杂减小了晶粒尺寸,并使TiO2的晶型转变温 度升高,其中2%(摩尔分数)La—TiO2的光催化效果最好, 紫外光下照射30 min能去除76.8%的TNT有机物。 • 赵伟伟等以钛酸丁酯为前驱体,采用溶胶一凝胶法制备掺铈 的TiO2粉末,结果表明,铈的掺杂会造成晶格不同程度的膨 胀,并影响光催化材料的比表面积,当掺杂量为0.3%且焙 烧温度为400℃时,紫外光下对甲基橙的降解率最高,1h能 达到98%左右。
稀土与稀土共掺杂
• 郭莉等采用溶胶一微波法成功制备了镧、铈共掺的纳米TiO2 粉末,其在400nm下有连续宽化的吸收带,极大地提高了对 光吸收的效率,当镧掺杂量为2%、铈掺杂量为0.04%(摩尔 分数)时.其共掺效果较好,自然光照下15 h后,COD的去除 率能达到86.11%。
参考文献
• Hangyan S.Bin G et a1.Effect of chloride doping concentration on enhancement of protonic conductivity of mesoporous A12O3[J].Solid State Ionics,2011,192:105. • Matsui T,Muroyama H,et al. Development of novel proton conductors consisting of solid acid/pyrophosphte composite for intermediate-temperature fule cells[J].J Jpn Petrol Inst,2010,53(1):1. • 王东升;廖运文;何平 双掺杂二氧化钛的制备及其在降解染料废水中的应 用[J]-西华师范大学学报(自然科学版) ,2011,32(02):180-183. • 吴俊明;王亚平;杨汉培 Ce及N共掺杂改性TiO2光催化性能及Ce组分的作用 [J]-无机化学学报,2010,26(02):203-210. • 郭莉;王丹军;李东升 La-Ce-TiO2纳米光催化剂的溶胶-微波法合成、谱学 表征及其活性研究[J]-光谱学与光谱分析 ,2009,29(08):2186-2189. • 郭莉,王丹军等. 稀土掺杂纳米TiO2光催化剂制备及其光催化性能[J],工业 催化,2011,19(6):27-32.
化领域中得到广泛应用。
稀土作为催化剂,适用范围很广。几乎涉及所有的催化反 应。无论是氧化还原型,还是酸碱性,均相或多相,都充分显示了 稀土催化剂性能的多样。
稀土的掺杂应用
• 离子掺杂修饰TiO2是以物理或化学的方法将离子引入到TiO2的晶格结
构中,改变电荷密度分布,形成缺陷或改变晶格类型,从而影响光生
稀土与非金属掺杂
• 非金属元素的掺杂可以在不降低光催化性能的同时增强可见 光响应,而稀土元素可形成捕获中心,影响电子一空穴对的 复合速率,因此两者协同提高TiO2的光催化效率。
• 吴俊明等以钛酸正丁酯、硝酸亚铈及氨水为前驱体,制备Ce
和N元素共掺杂改性TiO2,并研究了其光催化活性,发现所制 得的催化剂的紫外和可见光活性都有明显的提升。
稀土与金属元素的共掺杂
• 稀土元素半径较大,易造成晶格畸变,形成氧空位,而金属
和稀土元素都可以充当电子或空穴的捕获中心,因此二者的
协同作用共掺杂TiO2,有助于提高其光催化性能。
• 王东升等采用溶胶-凝胶法制备了Ag和Sm共掺杂的TiO2,当掺
杂1.0%Sm-1.2%Ag(摩尔分数)时,产物的光催化效果最佳, 经400W的高雅汞灯照射45min,对甲基橙的降解率达99.4%。
选择性等。
• 改性的方法上,以对TiO2进行掺杂改性以提高光催化性能的 研究居多,通过掺杂金属元素或非金属元素,TiO2的光催化 性能能够得到显著的提高。
Introduction
稀土元素具有特殊的电子结构,其内层的 4f 电子被外层
的 5s及 5p 电子所屏蔽,在原子中定域。决定元素性质的最
外层电子排布 4f 和 5d 形成导带,4f 电子的定域化和不完全 填充使稀土具有独特的光学和磁学特性,这些性质使稀土在催
稀土掺杂在光催化中的应用
前言:光电催化剂TiO2
• 在众多的半导体材料中,TiO2以其独特的性质和广泛的应用 受到全世界科学研究者的青睐,一直处于光催化研究中的核 心地位。然而,TiO2的光谱吸收范围窄,对光的利用率低以 及光量子效率低限制了其在实际中的应用。
• 为了获得更好的光催化效果,针对TiO2的应用局限性,开始 对TiO2光催化剂进行改性研究。如提高激发电荷分离,抑制 载流子复合提高量子效率,拓宽光波吸收范围,改变产物的
现在共掺杂TiO2光催化剂中,0.1%La/0.3%Eu/TiO2的催化
活性最高。
稀土的共掺杂
• 掺杂改性是拓宽可见光谱范围和提高量子效率的重要方法, 然而研究发现,单元素掺杂往往只能够兼顾到其中的一面, 因此,共掺杂得到逐步的发展。
• 选择两种或多种离子对TiO2共掺杂改性,期望利用共掺杂离
子间的协同作用提供电子和空穴 拓宽TiO2的吸收光谱范围,提高其在可见光下的光催化能力 。
• 郭莉,王丹军等采用溶胶-微波法制备掺杂不同稀土元素 纳米TiO2光催化剂,以甲基橙为模拟污染物,考察样品的
光催化性能;结果表明,适量的La3+,Nd3+,Eu3+,Gd3+和Y3+掺
杂可提高TiO2样品的光催化活性,其中掺杂0.1%La3+样品对 甲基橙脱色率最高;此外,实验还对共掺杂做了研究,发
电子-空穴的运动状况,调整其分布状态或改变能带结构,最终调变 光催化性能。稀土元素因具有丰富的能级、特殊的4f电子跃迁特性和
光学性能,不仅能够以离子掺杂或半导体复合的形式有效提升传统
TiO2光催化剂的性能,而且可以构造出多种新型的光催化剂体系。 • 目前,镧系中的多数元素都已被用作掺杂元素进行了研究,结果表明 稀土元素掺杂能够影响Ti02的光催化性能。