单位圆与三角函数线

合集下载

单位圆与三角函数线,诱导公式

单位圆与三角函数线,诱导公式

课题:三角函数线和诱导公式学习目标:1、理解单位圆、有向线段的概念2、学会用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来。

学习重点:用三角函数线表示任意角的三角函数值。

学习难点:正确地用于单位圆有关的三角函数线表示三角函数值。

自主学习1、单位圆:半径等于的圆叫做单位圆。

2、三角函数线设单位圆的圆心在原点,角a的顶点在圆心o,始边与x轴的正半轴重合,终边与单位圆相交于点P,点P在x轴上的正射影为M,过点A(1,0)作单位圆的切线交直线OP或其反向延长线于点T,如图,设角α为第一象限角,其终边与单位圆的交点为P(x,y),(1)为正弦线,有向线段的方向是规定与y轴正方向相同为,反之为。

(2)为余弦线,有向线段的方向是规定与x轴正方向相同为,反之为。

(3)为正切线,有向线段的方向是规定与y轴正方向相同为,反之为。

点P的坐标与角a的正余弦的关系为。

点T的坐标与角a的正切的关系为。

(2)(3)(4)注意:三角函数线的位置,三角函数线的方向,三角函数线的正负。

典型例题:例1 分别作出334ππ和-的正弦线、余弦线和正切线。

练习课本P21,练习A ,1例2、在单位圆中画出适合下列条件的角a 的终边的范围,并由此写出角a 的集合。

练习: 1. 利用正弦线比较sin 1,sin 1.2,sin 1.5的大小关系是 ( )A .sin 1>sin 1.2>sin 1.5B .sin 1>sin 1.5>sin 1.2C .sin 1.5>sin 1.2>sin 1D .sin 1.2>sin 1>sin 1.52.设a =sin(-1),b =cos(-1),c =tan(-1),则有( ) A .a <b <c B .b <a <c C .c <a <b D .a <c <b例3、当α∈⎝⎛⎭⎫0,π2时,求证:sin α<α<tan α. 当堂检测:(1)已知角a 的正弦线的长度为单位长度,那么角a 的终边( )A 在x 轴上B 在y 轴上C 在直线y=x 上D 在直线y=-x 上(2)利用正弦线比较a=sin1,b=sin1.2,c=sin1.5的大小关系A a>b>cB a>c>bC c>b>aD b>a>c(3)在02π在(,)内,使得sinx>cosx 成立的角x 的取值范围是( )(4)已知角a 的终边和单位圆的交点为P ,则点P 的坐标为( )A (sina ,cosa )B (cosa ,sina )C (sina ,tana )D (tana ,sina )课后巩固(1)满足 的a 的集合为 。

高中数学必修4 1.2.2单位圆与三角函数线

高中数学必修4  1.2.2单位圆与三角函数线

利用三角函数线比较函数值大小课后作业:一、选择题1.对三角函数线,下列说法正确的是( ) A .对任何角都能作出正弦线、余弦线和正切线 B .有的角正弦线、余弦线和正切线都不存在C .任何角的正弦线、正切线总是存在,但余弦线不一定存在D .任何角的正弦线、余弦线总是存在,但是正切线不一定存在2.角α(0<α<2π)的正弦线与余弦线长度相等且符号相同,那么α的值为( )A.π4或34πB.5π4或74πC.π4或54πD.π4或74π 3.若角α的正切线位于第一象限,则角α属于( )A .第一象限B .第一、二象限C .第三象限D .第一、三象限 4.下列命题中为真命题的是( )A .三角形的内角必是第一象限的角或第二象限的角B .角α的终边在x 轴上时,角α的正弦线、正切线都变成一个点C .终边在第二象限的角是钝角D .终边相同的角必然相等5.若-3π4<α<-π2,则sin α、cos α、tan α的大小关系是( )A .sin α<tan α<cos αB .tan α<sin α<cos αC .cos α<sin α<tan αD .sin α<cos α<tan α6.在[0,2π]上满足sin x ≥12的x 的取值范围是( )A .[0,π6]B .[π6,5π6]C .[π6,2π3]D .[5π6,π]7.在(0,2π)内使cos x >sin x >tan x 成立的x 的取值范围是( )A .(π4,3π4)B .(5π4,3π2)C .(3π2,2π)D .[3π2,7π4]8.如果cos α=cos β,则角α与β的终边除可能重合外,还有可能( )A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于原点对称9.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c 10.函数x x y cos sin -+=的定义域是( )A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈ D .[2k π,(2k+1)π],Z k ∈二、填空题11.不等式cos α≤12的解集为________.12.若θ∈(3π4,π),则下列各式错误的是________.①sin θ+cos θ<0;②sin θ-cos θ>0;③|sin θ|<|cos θ|;④sin θ+cos θ>0.13.若0≤sin θ<32,则θ的取值范围是________.14.函数y =sin x +cos x -12的定义域是____________.。

第一章 1.2.2单位圆与三角函数线

第一章 1.2.2单位圆与三角函数线
当 α 的终边不落在坐标轴上时,sin α=MP,cos α=OM. 在 Rt△OMP 中,|MP|2+|OM|2=|OP|2=1. ∴sin2α+cos2α=1.
综上所述,对于任意角 α,都有 sin2α+cos2α=1.
研一研·问题探究、课堂更高效
[典型例题]
1.2.2
1 例 1 在单位圆中画出满足 sin α= 的角 α 的终边,并求角 α 2 的取值集合.
本 课 时 栏 目 开 关
π π {x|2kπ-2<x<2kπ+2,k∈Z} (3)函数 y=lg cos x 的定义域为__________________________.
研一研·问题探究、课堂更高效
1.2.2
探究点二
三角函数线的作法
问题 1 请叙述正弦线、余弦线、正切线的作法? 答 过任意角 α 的终边与单位圆的交点 P, 过点 P 向 x 轴作垂线,
本 小,线段的方向表示了三角函数值的正负.仔细观察单位圆中三 课 时 角函数线的变化规律,回答下列问题. 栏 目 问题1 若α为任意角,根据单位圆中正弦线和余弦线的变化规律 开 关 可得:sin α的范围是 -1≤sin α≤1 ;cos α的范围是 -1
≤cos α≤1 .
研一研·问题探究、课堂更高效
本 课 时 栏 目 开 关
研一研·问题探究、课堂更高效
1.2.2
(2)因为角 α 的正切值等于-1,所以 AT=-1, 在单位圆上过点 A(1,0)的切线上取 AT=-1,
本 课 时 栏 目 开 关
连接 OT,OT 所在直线与单位圆交于 P1、P2 两点,OP1,OP2 是角 α 的终边,则角 α 的取值 3π 7π 集合是{α|α=2kπ+ 或 α=2kπ+ ,k∈Z}= 4 4 3π {α|α=nπ+ ,n∈Z}. 4

课件10:1.2.2 单位圆与三角函数线

课件10:1.2.2 单位圆与三角函数线

得 sin α=ON=MP,tan α=AT,又α= 的长,
所以 S△AOP= 1 ·OA·MP= 1 sin α,
2
2
1 S 扇形 AOP= ·
的长·OA= 1 ·
的长= 1 α,
2
2
2
S△AOT= 1 ·OA·AT= 1 tan α.
2
2
又因为 S△AOP<S 扇形 AOP<S△AOT,所以 sin α<α<tan 圆于 C、D 两点,连接 OC 与 OD,则 OC 与 OD 2
围成的区域(图②阴影部分)即为角α的终边的范围.故满足条件的角α
的集合为{α|2kπ+ 2π≤α≤2kπ+ 4π,k∈Z}.
3
3
方法技巧 利用三角函数线根据三角函数值的范围求角α的范围.
变式训练 2-1:角 x 在[0,2π]上满足 sin x≥ 1 ,则 x 的取值范围是( ) 2
(2)以A为原点建立y′轴与y轴同向,y′轴与α的终边(或其反向延长 线)相交于点T(或T′)(图②所示),则tan α=AT(或AT′).
我们把轴上向量 OM , ON 和 AT (或 AT )分别叫做α的 余弦线 、 正弦线 和 正切线 .
【拓展延伸】 理解三角函数线应注意的问题 对三角函数线的图形,要弄清以下几点: (1)三角函数线的位置:正弦线在y轴上,余弦线在x轴上,正切线在 过单位圆与x轴正方向的交点的切线上,三条有向线段中两条在 坐标轴上,一条与单位圆相切. (2)三角函数线的方向:正弦线与余弦线由原点指向垂足;正切线 由切点指向α终边(或其反向延长线)与切线的交点. (3)三角函数线的正负,即三条有向线段的正负:凡与x轴或与y轴同 向的为正值,反向的为负值.

单位圆与三角函数线已经更新

单位圆与三角函数线已经更新

(2)y=lg sinx+ cos x .
解:(1)如图.
3 ∵2cosx- 3 ≥0,∴cosx≥ 2 ,∴定义域为[2kπ - 6 ,2kπ + 6 ] (k∈Z).
课堂互动
利用三角函数线比较三角函数值的大小
例4.确定下式的符号
x P
sin 1 cos 1
解: 因为1
由三角函数线得
(2)在单位圆过点A(1,0)的切线上取 AT=-1连续OT,OT所在直线与单位圆交于P1, P2两点,OP1、OP2是角a的终边,则角a的取值 集合是{α|α=2kπ+3π/4,或α=2kπ+7/4π,k∈Z} ={α|α=kπ±3/4π,k∈Z}
课堂互动
利用三角函数线解三角不等式 例3.在单位圆中画出适合下列条件的 角α终边的范围,并写出角α的集合。
1 2
变式:求函数 y 2 sin x 3的定义域
解:要使 2 sin x 3 有意义, 只需2 sin x 3 0, 3 , 2 由三角函数线,得 即sin x
3 2 3 2
y
3 2
3 2
x O
2 x 2 k x 2 k , k Z 3 3
4
O
M
y
sin 1 cos10
课堂互动
练习:比较大小:
(1) sin1和sin1.5; (2) cos1和cos1.5;
(3) tan2和tan3. 解:由三角函数线得 sin1<sin1.5
cos1>cos1.5
tan2<tan3
利用三角函数线证明有关不等式
例5.利用三角函数线证明|sinα|+|cosα|≥1. 证明:在△OMP中,

单位圆与三角函数线(说案)

单位圆与三角函数线(说案)

单位圆与三角函数线(说课)一、教材分析1、教材的地位和作用著名数学家欧拉提出三角函数与三角函数线的对应关系以后,使得对三角函数的研究大为简化。

《单位圆与三角函数线》是人教版B版高中数学必修四第一章第二单元的第二课时,安排在“角的概念的推广”、“弧度制”和“三角函数的概念”之后。

通过本节课的学习,把三角函数的代数定义和几何定义有机地结合起来,由“数”转化为“形”,又为继续学习三角函数的各种关系式、诱导公式、三角函数的图像及性质等提供了另一种工具,具有承前启后的重要作用。

由于三角函数线是三角函数定义的几何表示,所以应用三角函数线解决三角问题显得非常直观,有利于提高学生自主地分析问题和解决问题的能力。

2、教学目标:根据教学大纲要求、新课程标准精神,本节课的知识特点以及高一学生已有的知识储备状况和学生心理认知特征,我确定了本节课的教学目标如下:(1)知识与技能:能借助于单位圆理解三角函数线的定义;会画出任意角的三角函数线;能根据三角函数线总结出三角函数值随角度变化的规律;能运用三角函数线解决简单的实际问题。

(2)过程与方法:通过三角函数线的作图,掌握用数形结合的思想解决数学问题的方法。

提高学生自主分析地分析问题和解决问题的能力。

(3)情感、态度、价值观:通过本节课的作图、分析、展示,体验数学的美,感受学习的快乐;通过学生之间、师生之间的交流与合作,创设共同探究、教学相长的教学氛围;通过给学生及时、恰当的评价和鼓励激发学生对数学学习的热情,培养学生勇于发现、勇于探索、勇于创新的精神。

通过情景的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

3、教学的重点和难点:根据本节课的地位与作用及教学目标,我认为本节课的重点、难点、关键分别是:重点:正确地用三角函数线表示任意角的三角函数值,培养学生数形结合的良好的思维习惯。

难点:理解三角函数和三角函数线间的关系,准确作图。

浅谈三角函数与单位圆

浅谈三角函数与单位圆

,即xy =a tan浅谈三浅谈三角函数角函数与单位圆与单位圆三角函数是三角函数是高中数学高中数学的重要内容,对培养学生的数形结合能力以及严密的逻辑推理能力都起着很大的作用。

尤其是单位圆在研究三角函数方面起着灵魂的作用,让每一位数学教学者不得不另眼相待。

学者不得不另眼相待。

一、我对教材编排的一点看法:一、我对教材编排的一点看法:1、不同版本的教材对三角函数的内容编排有很大差异:人教A 版中,三角函数采用了版中,三角函数采用了 “单位圆定义法”。

“单位圆定义法”。

如图,设α是一个任意角,它的终边与单位圆交于点P(x P(x,,y)y),那么:,那么:,那么:(1)y 叫做α的正弦,记作sin α,即sin α=y =y;;(2)x 叫做α的余弦,记作cos α,即cos α=x =x;; (3)xy 叫做α的正切,记作tan α(x≠0).(x≠0).可以看出,当α=2pp +k (k∈Z)时,α的终边在y 轴上,这时点P 的横坐标x 等于0,所以xy=a tan 无意义.除此之外,对于确定的角α,上述三个值都是唯一确定的.所以,正弦、余弦、正切都是以角为正弦、余弦、正切都是以角为自变量自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.”我们将它们统称为三角函数.”人教B 版教材采用的是终边定义法,即在角α的终边上任取一点P(x P(x,,y)y),,P 到原点的距离为r ,比值xyr x r y ,,分别定义为角α的正弦函数、余弦函数和正切函数。

而在后续的内容中又加入了正弦线、余弦线、正的内容中又加入了正弦线、余弦线、正切线切线,并且得到了结论“角α的正弦和余弦分别等于角α的终边与单位圆的的终边与单位圆的交点交点的纵坐标和横坐标。

的纵坐标和横坐标。

””而α的正切没有进行明确说明,的正切没有进行明确说明,只是只是讲了正切线,并在图中标注了T(1,tan α)。

y O x p 2、结合教学实践,我认为两种版本均有一些缺憾。

新教材2023版高中数学新人教B版必修第三册:单位圆与三角函数线课件

新教材2023版高中数学新人教B版必修第三册:单位圆与三角函数线课件

3
;cos
2
1
α≤- .
2
3
,cos
2
1
α=- 的角的终边,然后根据已
2
状元随笔 作出满足sin α=
知条件和三角函数的单调性确定角α终边的范围.
(2)设a=cos
A.a<c<b
C.b<c<a
【答案】
B
2
3
2
,b=sin ,c=tan ,则(
5
5
5
B.a<b<c
D.b<a<c
)
方法归纳
(1)通过解答本题,我们可以总结出用三角函数线来探讨三角函数不
6
2
6
课堂探究·素养提升
题型1 三角函数线的概念
例1 作出下列各角的正弦线、余弦线、正切线:


3
14
(1) ;(2)- ;(3)- ;(4)
.
4
6
4
3
方法归纳
(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后
过此交点作x轴的垂线,得到垂足,从而得到正弦线和余弦线.
(2)作正切线时,应从A(1,0)点引单位圆的切线交角的终边于一点T,
(0, ) ∪ ( ,2π)
到α的取值范围是_______________;
3
3
解析:利用单位圆作出正弦线、余弦线,
π
3

3
所以α的范围是0<α< 或 <α<2π.
3
,cos
2
1
α> ,利用三角函数线得
2
(2)已知0≤x≤2π,且sin x<cos x,则x的取值范围是(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)当角α的终边在y轴上时,正弦线MP=或,余弦线变成了,它表示的数量为,正切线。
3.探究
1.当角 改变时,P、M、T三点位置如何变化?三条三角函数线的值如何变化?能否得到三角函数的值域?
2.利用三角函数线探究下列问题
① , 有何关系?
② , 有何关系?
③ , 有何关系?
题型一:作任意角的三角函数线
高一数学导学案
编号:04课型:新授课编制人:审核人:年级主任:
1.2.2单位圆与三角函数线
一、学习目标:
1、理解单位圆、有向线段的概念。
2、学会用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来。
二、教学重难点
重点:理解单位圆中的三角函数线
难点:正切线,三角函数线的应用
A、cosθ<tanθ<sinθB、sinθ<cosθ<tanθ
C、tanθ<sinθ<cosθD、cosθ<sinθ<tanθ
3、在(0,2π)内,使sinx>cosx成立的x的取值范围是()
A、 B、
C、 D、
4、若0≤θ<2π且不等式cosθ<sinθ和tanθ<sinθ成立,那么角θ的取值范围是()
③ , , ;(由大到小排列).
题型六:利用三角函数线证明不等式
例6、已知 ,求证:sinα+cosα>1.
课堂小结:
巩固练习:
1、已知MP,OM,AT分别是60o角的正弦线、余弦线和正切线,则一定有()
A、MP<OM<ATB、OM<MP<ATC、AT<OM<MPD、OM<AT<MP
2、如果 ,则下列各式正确的是()
A、 B、 C、 D、
5、利用三角函数线证明不等式:当 ,求证:sinα< <tanα.
个性笔记
例1、分别作出下列各角的正弦线、余弦线和正切线
(1) (2) (3)
题型二、.已知角的范围,求三角函数值的范围
例2.已知 ,求 , , 的范围
题型三、已知函数值的范围,求角的范围(解三角不等式)
例3.已知 , ,根据三角函数线找到 的终边,求出 的值
去掉条件 ,写出 组成的集合
若 的 终边位置如何变化? 的取值范围如何?写出 组成的集合
三、自学指导:
1、单位圆:
一般地,我们把的圆叫做单位圆。
2、三角函数线:
设任意角α的顶点在坐标原点O,始边与x轴的重合,
终边与单位圆(圆心在原点,半径为单位长度1)相交于点P,
过P作x轴的垂线,垂足为M,过P作y轴的垂线,垂足为N,
过单位圆与x轴正半轴的交点A(1,0)作单位圆的切线,这条
切线与角α的终边(当α为第一、四象限角时)或其反向延长线
(当α为第二、三象限角时)有向线段的方向是,规定与y轴正方向,反之为负;
(2)为余弦线,有向线段的方向是,规定与x轴正方向,反之为负;
(3)为正切线,有向线段的方向是,规定与y轴正方向,反之为负。
注意:(1)当角α的终边在x轴上时,点与点重合,点与点
重合,此时,正弦线和正切线都变成了,它们的数量为,而余弦线OM=,或;
变式:(1)求 的解集(2)解不等式 ,求 的范围
题型四:利用三角函数线求定义域
例4、求函数 的定义域.
题型五:利用三角函数线比较大小
例5:借助三角函数线比较下列各组值的大小:
① , , ;____ _____(由大到小排列);
②cos1,cos1.2,cos1.5;________ __(由大到小排列);
相关文档
最新文档