深圳市中考数学试题分类解析汇编专题实数

合集下载

2002-2019深圳中考数学试题分类汇编09实数的运算 教师版

2002-2019深圳中考数学试题分类汇编09实数的运算 教师版

近十五年深圳数学中考题分类汇编实数的运算1.(2002年)计算(﹣)﹣(﹣).【思路点拨】本题涉及零指数幂、乘方、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握正整数指数幂、零指数幂、二次根式、分母有理化等考点的运算.【详细解答】解:原式=+4×﹣1=﹣1+4×﹣1=.2.(2003年)计算:的结果是().C.2﹣3 D.根据特殊角的三角函数值计算.本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要熟练掌握.【详细解答】解:∵cot45°=1,cos60°=,cos30°=,tan60°=,∴原式=•=1.故选A.3、(2004年)计算:|1-2|+231++(π-2)0【思路点拨】本题涉及零指数幂、绝对值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、二次根式、绝对值等考点的运算. 【详细解答】解:原式 1 1.4. (2004年) 计算:3tan30º+cot45º-2tan45º+2cos60º=_______.【思路点拨】运用特殊角的三角函数值求解.本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.【详细解答】解:3tan30°+cot45°﹣2tan45°+2cos60° =31﹣2×1﹣2.5.(2005年)计算:(13-)+(31)-1-2)5(--|-1|【思路点拨】按照实数的运算法则依次计算:( )0=1,()﹣1=3, ,﹣|﹣1|=﹣1.将其代入原式易得答案.本题考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;互为相反数的绝对值相等.【详细解答】 解:原式=1+3 1=3 .6(2006年)计算:2102452(3.14)π---+-【思路点拨】按照实数的运算法则依次计算,注意:﹣22=﹣4,2﹣1,(3.14﹣π)0=1.本题需注意的知识点是:乘方的相反数的符号.a ﹣p.任何不等于0的数的0次幂是1. 【详细解答】 解:原式=﹣4+21=﹣4+2 1.7.(2007年)计算:01π3sin 4520073-⎛⎫+- ⎪⎝⎭【思路点拨】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算. 【详细解答】 解:原式1.8.(2008年)计算:【思路点拨】按照实数的运算法则依次计算:|﹣3|=3,tan30°,2,(2008﹣π)0=1.本题重点考查有理数的绝对值和求代数式值.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简. 【解答】 解:原式3+1﹣2﹣1 =1.(注:只写后两步也给满分.) 【详细解答】9.(2009年)计算:202( 3.14)45π---︒【思路点拨】本题主要考查实数及其运算。

2024年深圳市中考数学真题试卷及解析

2024年深圳市中考数学真题试卷及解析

2024年深圳市中考数学真题试卷第一部分 选择题一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1. 下列用七巧板拼成的图案中,为中心对称图形的是( ) A.B.C.D.2. 如图,实数a,b,c,d 在数轴上表示如下,则最小的实数为( )A. aB. bC. cD. d3. 下列运算正确的是( ) A. ()523m m -=- B. 23m n m m n ⋅= C. 33mn m n -=D. ()2211m m -=-4. 二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( ) A.12B.112C.16D.145. 如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A. 40︒B. 50︒C. 60︒D. 70︒6. 在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A. ①①B. ①①C. ①①D. 只有①7. 在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为( )A. ()7791x y x y +=⎧⎨-=⎩B. ()7791x yx y +=⎧⎨+=⎩C. ()7791x y x y -=⎧⎨-=⎩D. ()7791x y x y +=⎧⎨+=⎩8. 如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为( )(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A. 22.7mB. 22.4mC. 21.2mD. 23.0m第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)9. 已知一元二次方程230x x m -+=的一个根为1,则m =______.10. 如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是________.(写出一个答案即可)11. 如图,在矩形ABCD 中,2BC AB ,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为________.12. 如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0k y k x=≠上,则k =________.13. 如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=________.三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14. 计算:()112cos 45 3.1414π-⎛⎫-⋅︒+-++ ⎪⎝⎭.15. 先化简,再求值: 2221111a a a a -+⎛⎫-÷⎪++⎝⎭,其中 1a = 16. 据了解,“i 深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i 深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”. 小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B 两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数: 学校A:28,30,40,45,48,48,48,48,48,50,50 学校B:(1)(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.17.【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.18. 如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥(2)若AB =5BE =,求O 的半径.19. 为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x,CD 读数为y,抛物线的顶点为C .(1)(①)列表:(①)描点:请将表格中的(),x y 描在图2中(①)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程: 方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________①将点B '坐标代入2y ax =中,解得=a ________;(用含m,n 的式子表示) 方案二:设C 点坐标为(),h k ①此时点B 的坐标为________①将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A,B 两点,且1C 和2C 的顶点P,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.20. 垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD为“垂中平行四边形”,AF=,2CE=,则AE=________; AB=________(2)如图2,若四边形ABCD为“垂中平行四边形”,且AB BD=,猜想AF与CD的关系,并说明理由(3)①如图3所示,在ABC中,5BE=,212CE AE==,BE AC⊥交AC于点E,请画出以BC 为边的垂中平行四边形,要求:点A在垂中平行四边形的一条边上(温馨提示:不限作图工具)①若ABC关于直线AC对称得到AB C',连接CB',作射线CB'交①中所画平行四边形的边于点P,连接PE,请直接写出PE的值.2024年深圳市中考数学真题试卷解析一、选择题.8. 【解析】解:如图:延长DC 交EM 于一点G①90MEF EFB CDF ∠=∠=∠=︒ ①四边形EFDG 是矩形 ①90MEF EFB B ∠=∠=∠=︒ ①四边形EFBM 是矩形 同理得四边形CDBN 是矩形依题意,得 1.8m 1.5m EF MB CD ===,,4553AEM ACN ∠=︒∠=︒, ①()1.8 1.5m 0.3m CG =-=,5m FD EG == ①0.3m CG MN ==①设m GM x =,则()5m EM x =+在Rt tan AMAEM AEM EM∠=,, ①1EM AM ⨯= 即()5m AM x =+在Rt tan AN ACN ACN CN∠=,, ①4tan 533CN x AN ︒==即4m 3AN x =①()450.33MN AN AM x x =-=-+= ①15.9m x =①()15.9520.9m AM =+=①()20.9 1.822.7m AB AM EF AM MB =+=+=+= 故选:A. 二、填空题. 9. 【答案】210. 【答案】2(答案不唯一) 11. 【答案】4π 12. 【答案】8 13. 【答案】2021【解析】解:如图,过点A 作AH CB ⊥垂足为H①85BD DC =,AB BC = 设13AB BC x == ①85BD x DC x ==, ①5tan 12B ∠=,AH CB ⊥ ①512AH BH = ①13AB BC x ==①2222169AH BH AB x +==解得512AH x BH x ==,,①1284DH x x x =-=,54HC x x x =-=①AD ==,AC①cos DH ADC AD ∠== 过点C 作CM AD ⊥垂足为M①cos DM CD ADC x =⋅∠=,AM AD DM x =-= ①DE AD ⊥,CM AD ⊥①MC DE ∥①202141x CE DM AC AM === 故答案为:2021. 三、解答题.14. 【答案】415. 【答案】11a -,216. 【答案】(1)①48.3;①25;①47.5(2)小明爸爸应该预约学校A,理由见解析【小问1详解】解:①()1283040454848484848505048.310++++++++++= ①数据中出现次数最多的是25,故众数为25 ①数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=【小问2详解】小明爸爸应该预约学校A,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼.17. 【答案】任务1:()0.80.2L n m =+;任务2:一次性最多可以运输18台购物车;任务3:共有3种方案【解析】解:任务1:①一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m①()0.80.2L n m =+任务2:依题意,①已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车令2.60.80.2n ≥+解得:9n ≤①一次性最多可以运输18台购物车任务3:设x 次扶手电梯,则()5x -次直梯由题意①该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次可列方程为:()24185100x x +-≥解得:53x ≥ 方案一:直梯3次,扶梯2次方案二:直梯2次,扶梯3次:方案三:直梯1次,扶梯4次答:共有三种方案18. 【答案】(1)见解析 (2)【小问1详解】证明:连接BO 并延长,交AD 于点H ,连接OD①AB BD =,OA OD =①BO 垂直平分AD①BH AD ⊥,AH DH =①BE 为O 的切线①HB BE ⊥①AC 为O 的直径①90ADC ∠=︒①四边形BHDE 为矩形①DE BE ⊥【小问2详解】由(1)知四边形BHDE 为矩形,BH AD ⊥,AH DH = ①5AH DH BE ===①BH =设O 的半径为r ,则:,OA OB r OH BH OB r ===-=在Rt AOH △中,由勾股定理,得:()()2225r r =+解得:r =即:O 的半径为.19. 【答案】(1)图见解析,214y x =; (2)方案一:①1,2m n ⎛⎫ ⎪⎝⎭;①24n m ;方案二:①1,2h m k n ⎛⎫++ ⎪⎝⎭;①24n m; (3)a 的值为12或12-. 【小问1详解】解:描点,连线,函数图象如图所示观察图象知,函数为二次函数设抛物线的解析式为2y ax bx c =++由题意得04211644c a b c a b c =⎧⎪++=⎨⎪++=⎩解得1400a b c ⎧=⎪⎪=⎨⎪=⎪⎩①y 与x 的关系式为214y x =【小问2详解】解:方案一:①①AB m =,CD n = ①12D B m ''= 此时点B '的坐标为1,2m n ⎛⎫ ⎪⎝⎭故答案为:1,2m n ⎛⎫ ⎪⎝⎭①由题意得212m a n ⎛⎫= ⎪⎝⎭ 解得24n a m =故答案为:24n m方案二:①①C 点坐标为(),h k ,AB m =,CD n = ①12DB m = 此时点B 的坐标为1,2h m k n ⎛⎫++ ⎪⎝⎭故答案为:1,2h m k n ⎛⎫++ ⎪⎝⎭①由题意得212k n a h m h k ⎛⎫+=+-+ ⎪⎝⎭ 解得24n a m=故答案为:24n m 【小问3详解】解:根据题意1C 和2C 的对称轴为x h =-则()28A h k --+,,()28B h n -++,,1C 的顶点坐标为()P h k -, ①1C 顶点距线段AB 的距离为()88k k +-=①2C 的顶点距线段AB 的距离为1082-=①2C 的顶点坐标为()10Q h k -+,或()6Q h k -+, 当2C 的顶点坐标为()10Q h k -+,时,()2210y a x h k =+++ 将()28A h k --+,代入得4108a k k ++=+,解得12a =- 当2C 的顶点坐标为()6Q h k -+,时,()226y a x h k =+++ 将()28A h k --+,代入得468a k k ++=+,解得12a = 综上,a 的值为12或12-.20. 【答案】(1)1(2)AF =,理由见解析(3)①见解析;①4PE =或2.【小问1详解】解://AD BC ,F 为AD 的中点,AD BC =,AF =2CE =AEF CEB ∴∽,2BC AD AF ===AF AE BC CE ∴=,2AE =,解得1AE =22222216BE BC CE ∴=-=-=AB ∴===故答案为【小问2详解】解:AF =,理由如下:根据题意,在垂中四边形ABCD 中,AF BD ⊥,且F 为BC 的中点 ∴2AD BC BF ==,90AEB ∠=︒ 又AD BC ∥AED FEB ∴∽ ∴2AE AD DE EF BF EB=== 设BE a =,则2DE a =AB BD =∴23AB BD BE ED a a a ==+=+=∴AE ===,EF =∴AF AE EF =+==AB CD =∴3AF AF CD AB a ===AF ∴=【小问3详解】解:①第一种情况:作BC 的平行线AD ,使AD BC =,连接CD则四边形ABCD 为平行四边形延长BE 交AD 于点FBC ADAEF CEB ∴∽AF AE BC CE∴= AD BC =,2CE AE =12AF AE BC CE ∴==,即1122AF BC AD == ∴F 为AD 的中点故如图1所示,四边形ABCD 即为所求的垂中平行四边形:第二种情况:作ABC ∠的平分线,取CH CB =交ABC ∠的平分线于点H ,延长CH 交BE 的延长线于点D ,在射线BA 上取AF AB =,连接DF故A 为BF 的中点同理可证明:12AB CD = 则2BF AB AF AB CD =+==则四边形BCDF 是平行四边形;故如图2所示,四边形BCDF 即为所求的垂中平行四边形:第三种情况:作AD BC∥,交BE的延长线于点D,连接CD,作BC的垂直平分线在DA延长线上取点F,使AF AD=,连接BF则A为DF的中点同理可证明12AD BC=,从而DF BC=故四边形BCDF是平行四边形故如图3所示,四边形BCDF即为所求的垂中平行四边形:①若按照图1作图,由题意可知,ACB ACP∠=∠四边形ABCD是平行四边形ACB PAC∴∠=∠PAC PCA ∴∠=∠PAC ∴△是等腰三角形过P 作PH AC ⊥于H,则AH HC =5BE =,212CE AE ==5B E BE '∴==,6AE =111()(612)9222AH HC AC AE CE ∴===+=+= 963EH AH AE ∴=-=-=PH AC ⊥,BE AC ⊥CPH CB E '∴∽△△PH CH B E CE ∴=',即9515124CH B E PH CE '⋅⨯===①4PE === 若按照图2作图,延长CA ,DF 交于点G同理可得:PGC 是等腰三角形连接PAGF BC ∥GAF CAB ∴∽1AF AG AB AC∴== AG AC ∴=PA AC ∴⊥同理,CPA CB E '∽△△ 6AE =,12EC =,5B E BE '==B E CE PA AC '∴=,即51815122B E AC PA CE '⋅⨯===,PE ∴=== 若按照图3作图,则:没有交点,不存在PE (不符合题意)故答案为:PE =。

全国中考数学真题《实数》分类汇编解析

全国中考数学真题《实数》分类汇编解析

实数考点一、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a +b =0,a =—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点二、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

考点三、科学记数法和近似数 (3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

考点四、实数大小的比较 (3分)1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

中考数学专题01 实数-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

中考数学专题01 实数-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题01 实数一.选择题目1.(2021·湖南邵阳市·中考真题)3-的相反数是()A.3-B.0C.3D.π【答案】C【分析】根据相反数的概念求解即可.【详解】-(-3)=3,即-3的相反数是3,故选:C.【点睛】本题主要考查相反数.只有符号不同的两个数叫做互为相反数,在任意一个数的前面填上“-”号,新的数就表示原数的相反数.2.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是()A.4-B.4-C.0D. 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A.【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.3.(2021·浙江中考真题)实数2-的绝对值是()A.2-B.2C.12D.12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B.【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.4.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.5.(2021·四川凉山彝族自治州·中考真题)2021-=()A.2021B.-2021C.12021D.12021-【答案】A【分析】根据绝对值解答即可.【详解】解:2021-的绝对值是2021,故选:A.【点睛】此题主要考查了绝对值,利用绝对值解答是解题关键.6(2021·湖南怀化市·中考真题)数轴上表示数5的点和原点的距离是()A.15B.5C.5-D.15-【答案】B【分析】根据数轴上点的表示及几何意义可直接进行排除选项.【详解】解:数轴上表示数5的点和原点的距离是5;故选B.【点睛】本题主要考查数轴上点的表示及几何意义,熟练掌握数轴上点的表示及几何意义是解题的关键.7.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.2【答案】A【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.【详解】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.8.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x <0.9025x <0.91x <0.9375x 故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.9.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 10.(2021·湖南常德市·中考真题)阅读理解:如果一个正整数m 能表示为两个正整数a ,b 的平方和,即22m a b =+,那么称m 为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是( ) A .②④B .①②④C .①②D .①④【答案】C【分析】结合题意,根据有理数乘方、有理数加法的性质计算,即可得到答案.【详解】∵716=+或25+或34+ ∵7不是广义勾股数,即①正确;∵22134923=+=+ ∵13是广义勾股数,即②正确;∵22512=+,221013=+,15不是广义勾股数∵③错误;∵22512=+,221323=+,65513=⨯,且65不是广义勾股数∵④错误;故选:C .【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数乘方、有理数加法的性质,从而完成求解.11.(2021·湖北黄冈市·中考真题)2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A .74710⨯B .74.710⨯C .84.710⨯D .90.4710⨯ 【答案】C【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法,则8470000000 4.710=⨯,故选:C .【点睛】本题考查了科学记数法,熟记定义是解题关键.12.(2021·天津中考真题)计算()53-⨯的结果等于( )A .2-B .2C .15-D .15 【答案】C【分析】根据有理数的乘法法则运算即可求解.【详解】解:由题意可知:()5315-⨯=-,故选:C .【点睛】本题考查了有理数的乘法法则,属于基础题,运算过程中注意符号即可.13.(2021·新疆中考真题)下列实数是无理数的是( )A .2-B .1CD .2 【答案】C【分析】无理数是指无限不循环小数,据此判断即可.为无理数,2-,1,2均为有理数,故选:C .【点睛】本题考查无理数的辨别,理解无理数的定义以及常见形式是解题关键.14.(2021·湖南长沙市·中考真题)下列四个实数中,最大的数是( )A .3-B .1-C .πD .4 【答案】D【分析】根据实数的大小比较法则即可得.【详解】解: 3.14π≈,314π∴-<-<<,即这四个实数中,最大的数是4,故选:D .【点睛】本题考查了实数的大小比较法则,熟练掌握实数的大小比较法则是解题关键.15.(2021·湖南岳阳市·-1,0,2中,为负数的是( )A B .-1 C .0 D .2【答案】B【分析】利用负数的定义即可判断.【详解】解:A 是正数;B 、1是正数,在正数的前面加上“-”的数是负数,所以,-1是负数;C 、0既不是正数,也不是负数;D 、2是正数.故选:B【点睛】本题考查了实数的分类的知识点,熟知负数的定义是解题的关键.16.(2021·浙江台州市· )A .0个B .1个C .2个D .3个 【答案】B【详解】解:∵12<<,23<<,∵2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.17.(2021·浙江金华市·中考真题)实数12-,2,3-中,为负整数的是( )A .12-B .C .2D .3- 【答案】D【分析】按照负整数的概念即可选取答案.【详解】解:12-是负数不是整数;2是正数;3-是负数且是整数,故选D . 【点睛】本题考查了实数的分类,比较简单.18.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .b a c <<C .a c b <<D .a b c << 【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∵a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.19.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( )A .2,1--B .1-,0C .0,1D .1,2【答案】C1的范围即可得到答案.【详解】解: 12,<<∴ 011,<<0,1,a b ∴== 故选:.C【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.20.(2020·四川攀枝花市·中考真题)下列说法中正确的是( ).A .0.09的平方根是0.3B 4=±C .0的立方根是0D .1的立方根是±1【答案】C【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【详解】解:A 、0.09的平方根是±0.3,故选项错误;B 4=,故选项错误;C 、0的立方根是0,故选项正确;D 、1的立方根是1,故选项错误;故选C.【点睛】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键.21.(2020·四川达州市·中考真题)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A .10B .89C .165D .294【答案】D 【分析】类比十进制“满十进一”,可以表示满5进1的数从左到右依次为:2×5×5×5,1×5×5,3×5,4,然后把它们相加即可.【详解】依题意,还在自出生后的天数是:2×5×5×5+1×5×5+3×5+4=250+25+15+4=294,故选:D .【点睛】本题考查了实数运算的实际应用,解答的关键是运用类比的方法找出满5进1的规律列式计算. 22.(2020·山东菏泽市·中考真题)下列各数中,绝对值最小的数是( )A .5-B .12C .1- D【答案】B【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【详解】解:55-=,1122=,11-==,∵1512>>>,∵绝对值最小的数是12;故选:B . 【点睛】本题考查的是实数的大小比较,熟知绝对值的性质是解答此题的关键.23.(2020·江苏宿迁市·中考真题)在∵ABC 中,AB=1,下列选项中,可以作为AC 长度的是( ) A .2B .4C .5D .6【答案】A【分析】根据三角形三边关系,两边之差小于第三边,两边之和大于第三边,可以得到AC 的长度可以取得的数值的取值范围,从而可以解答本题.【详解】∵在∵ABC 中,AB=1,﹣1<AC ,1<2,4,5,6,∵AC 的长度可以是2,故选项A 正确,选项B 、C 、D 不正确;故选:A .【点睛】本题考查了三角形三边关系以及无理数的估算,解答本题的关键是明确题意,利用三角形三边关系解答.24.(2020·四川攀枝花市·中考真题)实数a 、b 在数轴上的位置如图所示,化简的结果是( ).A .2-B .0C .2a -D .2b 【答案】A【分析】根据实数a 和b 在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.【详解】解:由数轴可知-2<a <-1,1<b <2,∵a+1<0,b -1>0,a -b <0,+=11a b a b ++---=()()()11a b a b -++-+-=-2故选A.【点睛】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.25.(2020·湖南株洲市·中考真题)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【分析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【详解】∵|+1.2|=1.2,|-2.3|=2.3, |+0.9|=0.9,|-0.8|=0.8,0.8<0.9<1.2<2.3,∵从轻重的角度看,最接近标准的是选项D 中的元件,故选D .【点睛】本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.26.(2020·北京中考真题)实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-3 【答案】B【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2 观察四个选项,只有选项B 符合,故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.27.(2020·湖南长沙市·中考真题)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .②③B .①③C .①④D .②④【答案】A【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;②π是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A .【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.28.(2020·黑龙江大庆市·中考真题)若2|2|(3)0x y ++-=,则x y -的值为( )A .-5B .5C .1D .-1【答案】A 【分析】根据绝对值和平方的非负性可求出x ,y 的值,代入计算即可;【详解】∵2|2|(3)0x y ++-=,∵20x +=,30y -=,∵2x =-,3y =,∵235-=--=-x y .故答案选A .【点睛】本题主要考查了绝对值和平方的非负性,准确计算是解题的关键.29.(2020·山东烟台市·中考真题)实数a ,b ,c 在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定 【答案】A【分析】根据有理数大小比较方法,越靠近原点其绝对值越小,进而分析得出答案.【详解】解:观察有理数a ,b ,c 在数轴上的对应点的位置可知,这三个数中,实数a 离原点最远,所以绝对值最大的是:a .故选:A .【点睛】此题主要考查了绝对值的意义,以及有理数大小的比较,正确掌握绝对值的意义是解题关键. 30.(2020·四川乐山市·中考真题)数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-【答案】D【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B 表示的数是多少即可.【详解】解:点A 表示的数是−3,左移7个单位,得−3−7=−10,点A 表示的数是−3,右移7个单位,得−3+7=4,故选:D .【点睛】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:数轴上的点右移加,左移减.31.(2020·湖南郴州市·中考真题)如图表示互为相反数的两个点是( )A .点A 与点BB .点A 与点DC .点C 与点BD .点C 与点D 【答案】B【分析】根据一个数的相反数定义求解即可.【详解】解:在-3,-1,2,3中,3和-3互为相反数,则点A 与点D 表示互为相反数的两个点.故选:B .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.32.(2019·台湾中考真题)数线上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且5d d c -=-,则关于D 点的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、C 之间 C .介于C 、O 之间D .介于O 、B 之间【答案】D【分析】根据O 、A 、B 、C 四点在数轴上的位置和绝对值的定义即可得到结论.【详解】解:0c <,5b =,5c <,5d d c -=-,BD CD ∴=,D ∴点介于O 、B 之间,故选:D .【点睛】本题考查实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.33.(2019·江苏徐州市·中考真题)如图,数轴上有O 、A 、B 三点,O 为O 原点,OA 、OB 分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是( )A .6510⨯B .710C .7510⨯D .810 【答案】D【分析】用各选项的数分别除以62.510⨯,根据商结合数轴上AO 、OB 间的距离进行判断即可. 【详解】A. (6510⨯)÷(62.510⨯)=2,观察数轴,可知A 选项不符合题意; B. 710÷(62.510⨯)=4,观察数轴,可知B 选项不符合题意; C. 7510⨯÷(62.510⨯)=20,观察数轴,可知C 选项不符合题意;D. 810÷(62.510⨯)=40,从数轴看比较接近,可知D 选项符合题意,故选D .【点睛】本题考查了数轴,用科学记数法表示的数的除法,正确进行运算,结合数轴恰当地进行估算是解题的关键.34.(2019·山东枣庄市·中考真题)点,,,O A B C 在数轴上的位置如图所示,O 为原点,1AC =,OA OB =.若点C 所表示的数为a ,则点B 所表示的数为( )A .()1a -+B .()1a --C .1a +D .1a -【答案】B【分析】根据题意和数轴可以用含 a 的式子表示出点 B 表示的数,本题得以解决. 【详解】O 为原点,1AC =,OA OB =,点C 所表示的数为a ,∴点A 表示的数为1a -,∴点B 表示的数为:()1a --,故选B .【点睛】本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.35.(2019·四川中考真题)实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .1m <B .1m 1->C .0mn >D .10m +>【答案】B【分析】利用数轴表示数的方法得到m <0<n ,然后对各选项进行判断.【详解】利用数轴得m <0<1<n ,所以-m >0,1-m >1,mn <0,m+1<0.故选B. 【点睛】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大. 二.填空题目1.(2021·重庆中考真题)计算:031_______.【答案】2.【分析】分别根据绝对值的性质、0指数幂的运算法则计算出各数,再进行计算即可. 【详解】解:031312,故答案是:2.【点睛】本题考查的是绝对值的性质、0指数幂,熟悉相关运算法则是解答此题的关键.2.(2021·四川自贡市·中考真题)某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【分析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=151025 9⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654, 8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∵7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.3.(2021·云南中考真题)已知a ,b 2(2)0b -=则a b -=_______. 【答案】-3【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解. 【详解】解:根据题意得,a +1=0,b -2=0,解得a =-1,b =2, 所以,a -b =-1-2=-3.故答案为:-3.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.(2021·湖南怀化市·中考真题)比较大小:2__________12(填写“>”或“<”或“=”).【答案】>【分析】直接用122-,结果大于0,则2大;结果小于0,则12大.【详解】解:11=0222->,∵122,故答案为:>. 【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.5.(2021·山东临沂市·中考真题)比较大小:(选填“>”、“ =”、“ <” ). 【答案】<【分析】先把两数值化成带根号的形式,再根据实数的大小比较方法即可求解.【详解】解:∵=5=,而24<25,∵5.故答案为:<.【点睛】此题主要考查了实数的大小的比较,当一个带根号的无理数和一个有理数进行比较时,首选的方法就是把它们还原成带根号的形式,然后比较被开方数即可解决问题.6.(2021·四川自贡市·中考真题)请写出一个满足不等式7x >的整数解_________. 【答案】6(答案不唯一)1.4,再解不等式即可.【详解】解: 1.4≈,∵7x >,∵ 5.6x >.所以6是该不等式的其中一个整数解(答案不唯一,所有不小于6的整数都是该不等式的整数解); 故答案为:6(答案不唯一).【点睛】本题考查了解一元一次不等式、不等式的整数解、二次根式的值的估算等内容,要求学生在理解相关概念的前提下能灵活运用解决问题,本题答案不唯一,有一定的开放性. 7.(2021·湖南邵阳市·中考真题)16的算术平方根是___________. 【答案】4【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根 ∵2(4)16±= ∵16的平方根为4和-4 ∵16的算术平方根为48.(2020·______. 【答案】2(或3)【详解】∵1<2,34,∵2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.9.(2020·|1|0b +=,则2020()a b +=_________. 【答案】1【分析】根据绝对值的非负性和二次根式的非负性得出a ,b 的值,即可求出答案.【详解】|1|0b +=∵2a =,1b =-,∵2020()a b +=202011=,故答案为:1. 【点睛】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a ,b 的值是解题关键.10.(2020·湖北荆州市·中考真题)若()112020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a ,b ,c 的大小关系是_______.(用<号连接) 【答案】b a c <<【分析】分别计算零次幂,负整数指数幂,绝对值,再比较大小即可.【详解】解:()020201,a π=-=112,2b -⎛⎫=-=- ⎪⎝⎭33,c =-=∴ b a c <<.故答案为:b a c <<.【点睛】本题考查的是零次幂,负整数指数幂,绝对值的运算,有理数的大小比较,掌握以上知识是解题的关键.11.(2020·内蒙古赤峰市·中考真题)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.【答案】201912【分析】先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112=;点2A 表示的数为11111222OA ==点3A 表示的数为22111242OA ==;点4A 表示的数为33111282OA == 归纳类推得:点n A 表示的数为112n -(n 为正整数);则点2020A 表示的数为2020120191122-=,故答案为:201912. 【点睛】本题考查了数轴的定义、线段中点的定义,根据点1234,,,A A A A 表示的数,正确归纳类推出一般规律是解题关键.12.(2019·山东德州市·中考真题)33x x -=-,则x 的取值范围是______. 【答案】3x ≤【分析】根据绝对值的意义,绝对值表示距离,所以30x -≥,即可求解; 【详解】根据绝对值的意义得,30x -≥,3x ∴≤; 故答案为3x ≤; 【点睛】本题考查绝对值的意义;理解绝对值的意义是解题的关键. 三.解答题1.(2021·上海中考真题)计算: 1129|12-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】解:1129|12-+-(112-⨯31=2. 【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.2.(2021·新疆中考真题)计算:020211)|3|(1)+--. 【答案】0.【分析】第一项根据零指数幂计算,第二项根据绝对值的意义计算,第三项进行立方根运算,第四项进行有理数的乘方运算,最后进行加减运算即可. 【详解】解:原式=1+3-3+(-1)=0.【点睛】本题考查了实数的运算,包括零指数幂、绝对值的意义,求一个数的立方根,有理数的乘方运算.正确化简各数是解题的关键.3.(2021·湖南怀化市·中考真题)计算:021(3)()4sin 60(1)3π---+︒--【答案】11【分析】根据非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则计算即可.【详解】解:原式=191=11-+.【点睛】本题主要考查非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则,正确掌握每个知识点是解决本题的关键.4.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒. 【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π-+︒=114-+=11-+ 【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.5.(2021·湖南岳阳市·中考真题)计算:())02021124sin 30π-+-+︒-.【答案】2【分析】分别根据有理数的乘方、绝对值的代数意义、特殊锐角三角函数值和零指数幂的运算法则化简各项后,再进行加减运算即可得到答案.【详解】解:())2021124sin 30π-+-+︒-=112412-++⨯- =1221-++-=2. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则和特殊锐角三角函数值是解答此题的关键.6.(2021·云南中考真题)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-. 【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.【详解】解:201tan 452(3)1)2(6)23-︒-++-+⨯-=1191422++--=6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.7.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=. 【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.8.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.【答案】(1)输液10分钟时瓶中的药液余量为200毫升;(2)小华从输液开始到结束所需的时间为60分钟.【分析】(1)先求出每分钟输液多少毫升,进而即可求解;(2)先求出输液10分钟时调整后的药液流速,进而即可求解.【详解】(1)解:75÷15=5(毫升/分钟),250-5×10=200(毫升), 答:输液10分钟时瓶中的药液余量为200毫升;(2)(200-160)÷10=4(毫升/分钟),160÷4+20=60(分钟), 答:小华从输液开始到结束所需的时间为60分钟.【点睛】本题主要考查有理数运算的实际应用,明确时间,流速,输液量三者之间的数量关系,是解题的关键.9.(2020·青海中考真题)计算:101145( 3.14)3π-⎛⎫+︒+-- ⎪⎝⎭【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】101145( 3.14)3π-⎛⎫+︒+- ⎪⎝⎭3|11|13=+-+-3113=++-=【点睛】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上。

专题2实数-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)

专题2实数-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)

2021年中考数学真题分项汇编【全国通用】(第02期)专题2实数姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广东中考真题)下列实数中,最大的数是( )A .πB C .2- D .3 【答案】A【分析】直接根据实数的大小比较法则比较数的大小即可.【详解】解: 3.14π≈ 1.414≈,22-=,23π<-<<,故选:A .【点睛】本题考查了实数的大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(2021·广东中考真题)若0a +=,则ab =( )A B .92 C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∴0a ≥0,且0a +=∴0a =0==即0a =,且320a b -=∴a =b =∴92ab == 故选:B .【点睛】 本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.3.(2021·广东中考真题)设6的整数部分为a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .【答案】A【分析】a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∴34<<,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯+=+=-=. 故选:A .【点睛】本题考查了二次根式的运算,正确确定6的整数部分a 与小数部分b 的值是解题关键.4.(2021·湖南)实数a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a b >B .||||a b >C .0ab >D .0a b +> 【答案】B由数轴易得21,01a b -<<-<<,然后问题可求解.【详解】解:由数轴可得:21,01a b -<<-<<, ∴,,0,0a b a b ab a b <><+<,∴正确的是B 选项;故选B .【点睛】本题主要考查数轴、绝对值的意义及实数的运算,熟练掌握数轴、绝对值的意义及实数的运算是解题的关键.5.(2021·12,0,1-中,最小的数是( )A .1-B .0C .12D 【答案】A【分析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小.【详解】12,0,1-中,12为正数大于0,1-为负数小于0, ∴最小的数是:1-.故选:A .【点睛】本题考查了实数比较大小,解题的关键是:根据正数大于0,0大于负数,两个负数,绝对值大的反而小,可以直接判断出来.6.(2021·黑龙江绥化市·中考真题)下列运算正确的是( )A .()257a a =B .448x x x ⋅=C 3=±D =【答案】B根据幂的乘方,同底数幂的乘法,算术平方根,以及实数的运算法则逐一判断.【详解】A 、(a 5)2=a 10,故A 错,B 、x 4∴x 4=x 8,故B 正确,C 3=,故C 错,D -3-D 错, 故选:B【点睛】本题考查了算术平方根,实数的运算,同底数幂的乘法,以及幂的乘方,熟悉并灵活运用以上性质是解题的关键.7.(2021·黑龙江绥化市·中考真题)定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) A .3-B .5C .34-D .32【答案】B【分析】根据题意列出算式,求解即可【详解】 2||a b a ab b -=++-▲2111()2=()()2|2|222-∴--+-⨯+-▲ 412=-+=5.故选B .【点睛】本题考查了新定义运算、负指数幂的运算,绝对值的计算,解决本题的关键是牢记公式与定义,本题虽属于基础题,但其计算中容易出现符号错误,因此应加强符号运算意识,提高运算能力与技巧等.8.(2021·湖南永州市·中考真题)定义:若10x N =,则10log x N =,x 称为以10为底的N 的对数,简记为lg N ,其满足运算法则:lg lg lg()(0,0)M N M N M N +=⋅>>.例如:因为210100=,所以2lg100=,亦即lg1002=;lg4lg3lg12+=.根据上述定义和运算法则,计算2(lg2)lg2lg5lg5+⋅+的结果为( )A .5B .2C .1D .0【答案】C【分析】根据新运算的定义和法则进行计算即可得.【详解】解:原式lg 2(lg 2lg5)lg5⋅++=, lg 2lg10lg5=⋅+,lg 2lg5=+,lg10=,1=,故选:C .【点睛】本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.9.(2021·广西柳州市·中考真题)在实数3,12,0,2-中,最大的数为( ) A .3B .12C .0D .2- 【答案】A【分析】根据正数大于零,负数小于零,正数大于一切负数,两个负数比较大小,绝对值大的反而小,两个正数比较大小,绝对值大数就大,据此判断即可.【详解】根据有理数的比较大小方法,可得: 12032 ,因此最大的数是:3,故选:A .【点睛】本题考查了实数的比较大小,解答此题的关键在于明确:正数>0>负数.10.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( ) A .23- B .13 C .12- D .23【答案】D【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值. 【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅, 会发现是以:213,,32-,循环出现的规律, 202136732=⨯+,2021223a a ∴==, 故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.11.(2021·青海中考真题)已知a ,b 是等腰三角形的两边长,且a ,b满足()223130a b +-=,则此等腰三角形的周长为( ).A .8B .6或8C .7D .7或8【答案】D【分析】先根据非负数的性质列式求出a 、b 的值,再分a 的值是腰长与底边两种情况讨论求解.【详解】解:()223130a b +-=,∴23+5023130a b a b -⎧⎨+-⎩== 解得23a b ⎧⎨⎩==,∴2是腰长时,三角形的三边分别为2、2、3,能组成三角形,周长=2+2+3=7;∴2是底边时,三角形的三边分别为2、3、3,能组成三角形,周长=2+3+3=8,所以该等腰三角形的周长为7或8.故选:D .【点睛】本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出a 、b 的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断. 12.(2021·北京中考真题)实数,a b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .2a >-B .a b >C .0a b +>D .0b a -<【答案】B【分析】 由数轴及题意可得32,01a b -<<-<<,依此可排除选项.【详解】解:由数轴及题意可得:32,01a b -<<-<<, ∴,0,0a b a b b a >+<->,∴只有B 选项正确,故选B .【点睛】本题主要考查实数的运算及数轴,熟练掌握实数的运算及数轴是解题的关键.13.(2021·湖北宜昌市·中考真题)在六张卡片上分别写有6,227-,3.1415,π,0机抽取一张,卡片上的数为无理数的概率是( )A .23B .12C .13D .16【答案】C【分析】首先根据无理数定义确定哪些是无理数,再根据概率的公式计算即可.【详解】解:在6,227-,3.1415,π,0π2个, ∴从中随机抽取一张,卡片上的数为无理数的概率是2163=, 故选:C .【点睛】此题考查概率的计算公式,正确掌握无理数的定义会判断无理数是解题的关键.14.(2021·江苏南京市·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大 【答案】C【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【详解】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意; B.5232=,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y ==则155153232,28,x y ====1515,x y ∴> 且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.15.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p 的值为( )A .100B .121C .144D .169【答案】B【分析】 分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∴第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.16.(2021·湖北中考真题)下列实数中是无理数的是( )A .3.14B C D .17【答案】C【分析】根据算术平方根、无理数的定义即可得.【详解】A 、3.14是有限小数,属于有理数,此项不符题意;B 3=,是有理数,此项不符题意;CD 、17是分数,属于有理数,此项不符题意; 故选:C .【点睛】本题考查了算术平方根、无理数,熟记定义是解题关键.17.(2021·四川达州市·1在数轴上的对应点可能是( )A .A 点B .B 点C .C 点D .D 点 【答案】D【分析】1的近似值,再判定它位于哪两个整数之间即可找出其对应点.【详解】解: 1.414≈,1 2.414≈,∴它表示的点应位于2和3之间,所以对应点是点D ,故选:D .【点睛】1的整数部分,本题较基础,考查了学生的基本功.18.(2021·黑龙江齐齐哈尔市·中考真题)下列计算正确的是( )A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y -=【答案】A【分析】 根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【详解】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点睛】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.19.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-1155.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .45【答案】B【分析】通过有理数和无理数的概念判断,然后利用概率计算公式计算即可.【详解】有理数有:1-,1155.06006000600006……; 则取到的卡片正面的数是无理数的概率是25, 故选:B .【点睛】本题主要考查了有理数、无理数的概念和简单概率计算,先判断后计算概率即可.20.(2021·黑龙江大庆市·中考真题)在π,12,3-,47这四个数中,整数是( ) A .πB .12C .3-D .47 【答案】C【分析】根据整数分为正整数、0、负整数,由此即可求解.【详解】解:选项A :π是无理数,不符合题意;选项B :12是分数,不符合题意; 选项C :3-是负整数,符合题意;选项D :47是分数,不符合题意; 故选:C .【点睛】本题考查了有理数的定义,熟练掌握整数分为正整数、0、负整数是解决本题的关键.二、填空题21.(2021·湖北随州市·()012021π+-=______.【分析】的符号,再根据绝对值的定义及零指数幂的意义即可完成.【详解】()01202111π+-=+=【点睛】本题考查了算术平方根据的估值,绝对值的意义,零指数幂的意义等知识,关键是掌握绝对值的意义和零指数幂的意义,并能对算术平方根正确估值.22.(2021·福建中考真题)写出一个无理数x ,使得14x <<,则x 可以是_________(只要写出一个满足条件的x 即可)【答案】,1.010010001π⋅⋅⋅等)【分析】从无理数的三种形式:∴开方开不尽的数,∴无限不循环小数,∴含有π的数,【详解】根据无理数的定义写一个无理数,满足14x <<即可;所以可以写:∴∴无限不循环小数,1.010010001……,∴含有π的数,2π等.只要写出一个满足条件的x 即可.,1.010010001π……等)【点睛】本题考查了无理数的定义,解答本题的关键掌握无理数的三种形式:∴开方开不尽的数,∴无限不循环小数,∴含有π的数.23.(2021·湖南永州市·中考真题)在220,,0.101001,7π-中无理数的个数是_______个. 【答案】1【分析】根据无理数的概念结合有理数的概念逐一进行判断即可.【详解】解:0整数,是有理数;227是分数,是有理数;0.101001-是有限小数,是有理数;π是无限不循环小数,是有理数,所以无理数有1个.故答案为:1【点睛】本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行:初中范围内学习的无理数主要有三类:∴含π的一部分数,如2,3ππ等;∴开方开不尽的数,∴虽有规律但是无限不循环的数,如0.1010010001…,等.24.(2021·黑龙江大庆市·=________ 【答案】4【分析】先算4(2)-,再开根即可.【详解】4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.25.(2021·四川广元市·中考真题)如图,实数m 在数轴上所对应的点分别为A ,B ,C ,点B 关于原点O 的对称点为D .若m 为整数,则m 的值为________.【答案】-3【分析】先求出D 点表示的数,再得到m 的取值范围,最后在范围内找整数解即可.【详解】解:∴点B 关于原点O 的对称点为D ,点B∴点D 表示的数为∴A 点表示C 点位于A 、D 两点之间,∴m <<∴m 为整数,∴3m =-;故答案为:3-.【点睛】本题考查了数轴上点的特征,涉及到相反数的性质、对无理数进行估值、确定不等式组的整数解等问题,解决本题的关键是牢记相关概念和性质,本题蕴含了数形结合的思想方法.26.(2021·四川达州市·中考真题)已知a ,b 满足等式2690a a ++=,则20212020a b =___________. 【答案】-3【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a ++=,变形得()230a +=, ∴130,03a b +=-=, ∴13,3a b =-=, ∴()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-3【点睛】 本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.27.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和.【详解】 由题意规律可得:2399100222222++++=-. ∴1002=m∴23991000222222=2m m +++++==, ∴22991001012222222+++++=-,∴10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=. ……∴1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=①12310022222S ++++=② ∴-∴,得10021S -=∴10010110110199992222222m m m ++++=+++=100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.28.(2021·湖南怀化市·中考真题)比较大小:2 __________12(填写“>”或“<”或“=”). 【答案】>【分析】直接用122-,结果大于0,则2大;结果小于0,则12大. 【详解】解:11=0222->, 12>, 故答案为:>.【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.29.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______. 【答案】12016-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021 =2020+1﹣12016﹣2021 =12016-. 故答案为:12016-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 30.(2021·湖北随州市·中考真题)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率π精确到小数点后第七位的人,他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (即有bd x a c <<,其中a ,b ,c ,d 为正整数),则b d a c++是x 的更为精确的近似值.例如:已知15722507π<<,则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457π≈<,再由17922577π<<,可以再次使用“调日法”得到π的更为精确的近似分数……现已知7352<<,则使用两次“调日法”______. 【答案】1712【分析】根据“调日法”的定义,第一次结果为:107,所以71057<,根据第二次“调日法”进行计算即可.【详解】解:∴7352< ∴第一次“调日法”,结果为:7+310=5+27∴10 1.42867≈>∴71057<< ∴第二次“调日法”,结果为:7+1017=5+712故答案为:1712【点睛】 本题考查无理数的估算,根据定义,严格按照例题步骤解题是重点.三、解答题31.(2021·广西贺州市·()01230π-+--︒.【答案】π【分析】根据算术平方根的定义、零指数幂的意义、绝对值的意义、特殊角的三角函数值、实数的运算等知识即可完成本题的计算.【详解】原式212π=++--π=【点睛】本题考查了算术平方根的定义、零指数幂的意义、绝对值的意义、特殊角的三角函数值、实数的运算等知识,关键是熟练掌握这些知识.32.(2021·黑龙江大庆市·()222sin 451+︒-- 【答案】1【分析】直接利用去绝对值符号、特殊角度的三角函数值、负整数的平方运算计算出结果即可.【详解】()222sin 451+︒--221=- 1=故答案是:1.【点睛】本题考查了去绝对值符号、特殊角度的三角函数值、负整数的平方运算法则,解题的关键是:掌握相关的运算法则.33.(2021·江苏盐城市·中考真题)计算:1011)3-⎛⎫+- ⎪⎝⎭【答案】2.【分析】根据负整数指数幂、0指数幂的运算法则及算术平方根的定义计算即可得答案.【详解】1011)3-⎛⎫+- ⎪⎝⎭312=+-2=.【点睛】本题考查实数的运算,熟练掌握负整数指数幂、0指数幂的运算法则及算术平方根的定义是解题关键. 34.(2021·山东济宁市·21cos 45-+︒-32- 【分析】 先运用绝对值、特殊角的三角函数值、负整数次幂以及平方根的知识化简,然后再计算即可.【详解】21cos 45-+︒-1122+-+32-. 【点睛】本题主要考查了绝对值、特殊角的三角函数值、负整数次幂、平方根等知识点,灵活应用相关知识成为解答本题的关键.35.(2021·湖南张家界市·中考真题)计算:2021(1)22cos60-+--︒【分析】 先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.【详解】解:2021(1)22cos60-+-︒+11222=-+-⨯+=【点睛】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键.36.(2021·河南中考真题)(1)计算:013(3--; (2)化简:21221x x x -⎫⎛-÷ ⎪⎝⎭. 【答案】(1)1;(2)2x . 【分析】(1)实数的计算,根据实数的运算法则求解即可;(2)分式的化简,根据分式的运算法则计算求解.【详解】(1)013(3--- 11133=-+ 1=.(2)21221x x x -⎫⎛-÷ ⎪⎝⎭212(1)x x x x -=⨯- 2x =. 【点睛】本题考查了实数的混合运算,负指数幂,二次根式的化简,零次幂的计算,分式的化简等知识,牢记公式与定义,熟练分解因式是解题的关键.37.(2021·广西玉林市·()()01416sin 30π--+--°.【答案】1【分析】先算算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,再算加减法,即可求解.【详解】解:原式=141162+--⨯=1【点睛】本题主要考查实数的混合运算,掌握算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,是解题的关键.38.(2021·江苏宿迁市·中考真题)计算:()0π1-+4sin45°【答案】1【分析】结合实数的运算法则即可求解.【详解】解:原式=14112+⨯=+=. 【点睛】本题考察非0底数的0次幂等于1、二次根式的化简、特殊三角函数值等知识点,属于基础题型,难度不大.解题的关键是掌握实数的运算法则.39.(2021·浙江衢州市·01()|3|2cos 602--+︒.【答案】2.【分析】由特殊的三角函数值得到1cos602︒=,由零指数幂公式算出01()=12,最后算出结果即可. 【详解】 解:原式13+13222=【点睛】本题考查了实数的混合运算,关键注意零指数幂的运算和特殊的三角函数值.40.(2021·1133-⎛⎫- ⎪⎝⎭.【分析】先化简二次根式,绝对值,负整式指数幂,然后计算即可得答案.【详解】 1133-⎛⎫- ⎪⎝⎭(33=-33==【点睛】本小题考查二次根式的化简、绝对值的意义、负指数幂等基础知识,熟练掌握运算法则是解题关键.。

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。

2024年深圳市中考数学模拟题汇编:无理数与实数(附答案解析)

2024年深圳市中考数学模拟题汇编:无理数与实数(附答案解析)

2024年深圳市中考数学模拟题汇编:无理数与实数一.选择题(共10小题)1.为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点0)到达点A,点A 对应的数是()A.πB.3.14C.﹣πD.﹣3.142.如图,在数轴上点A表示的实数是()A.5B.3C.2.2D.﹣13.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是()A.a<﹣b<b<﹣a B.a<b<﹣b<﹣a C.a<﹣b<﹣a<b D.﹣b<a<b<﹣a 4.在227,0,−30.001,32,3.14,3,0.1010010001…(两个“1”之间依次多1个“0”)中,无理数的个数有()A.3个B.4个C.5个D.6个5.估计(26−2)÷2的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间6.下列说法:①2是8的立方根;②没有最小的有理数;③相反数是本身的数是0;④(﹣4)2的平方根是4;⑤倒数是本身的数是1.其中正确的有()A.4个B.3个C.2个D.1个7.下列无理数中,大小在3与4之间的是()A.5B.7C.13D.178.16的平方根是()A.4B.±4C.±2D.2 9.平方根是±13的数是()A.13B.16C.19D.±1910.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是()A.﹣b<﹣a<a<b B.﹣b<a<﹣a<b C.﹣a<﹣b<a<b D.﹣b<b<﹣a<a 二.填空题(共5小题)11.计算:(12)−1−9=.12.如图,数轴上点A、点B表示的数分别是1和5,若点A是线段BC的中点,则点C 所表示的数是.13.与5−1的和为有理数(只写一个答案).14.若|a﹣2|++3+(c﹣4)2=0,则a﹣b﹣c=.15.若+3+(b+7)2=0,则点M(a,b)到x轴的距离.三.解答题(共5小题)16.已知25=x,=2,z是9的算术平方根,求2x+y﹣z的算术平方根.17.我国高速公路规定小型汽车行驶的速度不得超过120千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆当时行驶的速度.所用的经验公式是v =16d,其中v表示车速(单位:千米/小时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.经测量,d=51.2米,f=1.25,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度?18.计算:4−(−2)2−(−1)2023+38.19.完善下面表格,发现平方根和立方根的规律,并运用规律解决问题.(1)表格中的m=,n=.(2)从表格数字中可以发现:开算术平方根时,被开方数的小数点每向左(或向右)移动两位,它的算术平方根的小数点随即向左(或向右)移动一位.请用文字表述立方根的变化规律:.(3)若≈14.142,3700≈,求a+b的值.(参考数据:2≈1.4142,20≈4.4721,37≈1.9129,30.7≈0.8879)20.如图1,这是由8个同样大小的立方体组成的魔方,总体积为216cm3.(1)这个魔方的棱长为cm.(2)图1的侧面有一个正方形ABCD,求这个正方形的面积和边长.(3)将正方形ABCD放置在数轴上,如图2所示,点A与数2表示的点重合,则D在数轴上表示的数为.2024年深圳市中考数学模拟题汇编:无理数与实数参考答案与试题解析一.选择题(共10小题)1.为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点0)到达点A,点A 对应的数是()A.πB.3.14C.﹣πD.﹣3.14【考点】实数与数轴;无理数.【专题】实数;运算能力.【答案】A【分析】由圆的周长等于线段OA的长度,从而可得答案.【解答】解:∵直径为1个单位长度的圆的周长为2π=2×12=,∴点A对应的数是π,故选:A.【点评】本题考查的是实数与数轴,无理数在数轴上的表示,理解实数与数轴上的点一一对应是解本题的关键.2.如图,在数轴上点A表示的实数是()A.5B.3C.2.2D.﹣1【考点】实数与数轴.【专题】实数;二次根式.【答案】A【分析】根据勾股定理,可得斜线的长,根据圆的性质,可得答案.【解答】解:由勾股定理,得斜线的长为12+22=5,由圆的性质,得点A表示的数为5,故选:A.【点评】本题考查了实数与数轴,利用勾股定理得出斜线的长是解题关键.3.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是()A.a<﹣b<b<﹣a B.a<b<﹣b<﹣a C.a<﹣b<﹣a<b D.﹣b<a<b<﹣a 【考点】实数大小比较;数轴.【专题】实数;数感.【答案】A【分析】先根据a,b两点在数轴上的位置判断出其符号,进而可得出结论.【解答】解:∵由图可知,a<0<b,|b|<|a|,∴0<b<﹣a,a<﹣b<0,∴a<﹣b<b<﹣a.故选:A.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.4.在227,0,−30.001,32,3.14,3,0.1010010001…(两个“1”之间依次多1个“0”)中,无理数的个数有()A.3个B.4个C.5个D.6个【考点】无理数.【答案】A【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:32,3,0.1010010001…(两个“1”之间依次多1个“0”)是无理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.5.估计(26−2)÷2的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【考点】估算无理数的大小;二次根式的混合运算.【专题】实数;二次根式;运算能力.【答案】C【分析】先将原式进行计算,然后进行估算即可.【解答】解:原式=23−1=12−1,∵9<12<16,∴3<12<4,∴2<12−1<3,即原式的值在2和3之间,故选:C.【点评】本题考查二次根式的运算及无理数的估算,将原式进行正确的计算是解题的关键.6.下列说法:①2是8的立方根;②没有最小的有理数;③相反数是本身的数是0;④(﹣4)2的平方根是4;⑤倒数是本身的数是1.其中正确的有()A.4个B.3个C.2个D.1个【考点】实数;非负数的性质:偶次方.【专题】实数;运算能力.【答案】B【分析】根据立方根及平方根的定义,相反数的定义,有理数的定义及倒数的定义进行判断即可.【解答】解:2是8的立方根,则①正确;有理数包括正有理数,0和负有理数,因此没有最小的有理数,则②正确;相反数是本身的数是0,则③正确;(﹣4)2的平方根是±4,则④错误;倒数是本身的数是±1,则⑤错误;综上,正确的有3个,故选:B.【点评】本题考查实数的相关定义,熟练掌握其定义是解题的关键.7.下列无理数中,大小在3与4之间的是()A.5B.7C.13D.17【考点】估算无理数的大小.【专题】实数;运算能力.【答案】C【分析】利用无理数的估算即可求得答案.【解答】解:∵4<5<7<9<13<16<17<25,∴2<5<7<3<13<4<17<5,则大小在3与4之间的是13,故选:C.【点评】本题考查无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.8.16的平方根是()A.4B.±4C.±2D.2【考点】平方根.【答案】C【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:16=4,4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9.平方根是±13的数是()A.13B.16C.19D.±19【考点】平方根.【专题】实数;数感.【答案】C【分析】根据平方根的定义即可求解.【解答】解:∵(±13)2=19,∴平方根是±13的数是19,故选:C.【点评】本题主要考查了平方根,掌握平方根的定义是解题的关键.10.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是()A.﹣b<﹣a<a<b B.﹣b<a<﹣a<b C.﹣a<﹣b<a<b D.﹣b<b<﹣a<a 【考点】实数大小比较;数轴.【专题】实数;数感.【答案】B【分析】根据图示,可得:a<0<b,且﹣a<b,据此把a,﹣a,b,﹣b按照从小到大的顺序排列即可.【解答】解:∵a<0<b,且﹣a<b,∴﹣a>0,﹣b<0,∵﹣a<b,∴﹣b<a,∴﹣b<a<﹣a<b.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.二.填空题(共5小题)11.计算:(12)−1−9=﹣1.【考点】实数的运算;负整数指数幂.【专题】实数;运算能力.【答案】见试题解答内容【分析】先根据负整数指数幂的运算法则及算术平方根的定义求出各数,再根据实数的运算法则进行计算即可.【解答】解:原式=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查的是实数的运算,熟知负整数指数幂的运算法则及算术平方根的定义是解题的关键.12.如图,数轴上点A、点B表示的数分别是1和5,若点A是线段BC的中点,则点C所表示的数是2−【考点】实数与数轴.【专题】计算题;数形结合;实数.【答案】见试题解答内容【分析】设点C所表示的数是x,根据AC=AB列出方程,解方程即可.【解答】解:设点C所表示的数是x,∵点A是线段BC的中点,∴AC=AB,∴1﹣x=5−1,∴x=2−5.即点C所表示的数是2−5.故答案为2−5.【点评】本题考查了实数与数轴,用到的知识点为:数轴上两点间的距离公式,线段中点的定义.掌握公式与定义是解题的关键.13.−与5−1的和为有理数(只写一个答案).【考点】实数的运算.【专题】实数;运算能力.【答案】−5(答案不唯一).【分析】利用二次根式的加减法法则进行计算,即可解答.【解答】解:∵−5+5−1=﹣1,∴−5与5−1的和为有理数,故答案为:−5(答案不唯一).【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.14.若|a﹣2|++3+(c﹣4)2=0,则a﹣b﹣c=1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【专题】常规题型.【答案】见试题解答内容【分析】根据非负数的性质列式求出a、b、c的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣2=0,b+3=0,c﹣4=0,解得a=2,b=﹣3,c=4,∴a﹣b﹣c=2﹣(﹣3)﹣4=2+3﹣4=1.故答案为:1.【点评】本题考查了绝对值非负数,算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.若+3+(b+7)2=0,则点M(a,b)到x轴的距离7.【考点】非负数的性质:算术平方根;点的坐标;非负数的性质:偶次方.【专题】实数;平面直角坐标系;运算能力.【答案】7.【分析】根据非负数的性质,可以求得a、b的值,从而可以得到点M的坐标,进而得到点M到x轴的距离.【解答】解:∵+3+(b+7)2=0,∴a+3=0,b+7=0,解得,a=﹣3,b=﹣7,∴点M为(﹣3,﹣7),∴点M到x轴的距离是7,故答案为:7.【点评】本题考查坐标与图形的性质、非负数的性质,解答本题的关键是明确题意,利用非负数的性质解答.三.解答题(共5小题)16.已知25=x,=2,z是9的算术平方根,求2x+y﹣z的算术平方根.【考点】算术平方根.【专题】实数;运算能力.【答案】11.【分析】根据25=x,=2,z是9的算术平方根,可以求得x、y、z的值,从而可以解答本题.【解答】解:∵25=x,∴x=5;∵=2,∴y=4;∵z是9的算术平方根,∴z=3;∴2x+y﹣z=2×5+4﹣3=11,∴2x+y﹣z的算术平方根是11.【点评】本题考查算术平方根、平方根,解答本题的关键是明确它们各自的含义和计算方法.17.我国高速公路规定小型汽车行驶的速度不得超过120千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆当时行驶的速度.所用的经验公式是v =16d,其中v表示车速(单位:千米/小时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.经测量,d=51.2米,f=1.25,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度?【考点】算术平方根.【专题】应用题.【答案】见试题解答内容【分析】把d与f代入公式计算求出v的值,即可做出判断.【解答】解:根据题意得:v=16d=1651.2×1.25=16×8=128(千米/小时),∵128>120,∴肇事汽车当时的速度超出了规定的速度.【点评】此题考查了算术平方根,熟练掌握运算法则是解本题的关键.18.计算:4−(−2)2−(−1)2023+38.【考点】实数的运算.【专题】实数;运算能力.【答案】1.【分析】先根据数的乘方及开方法则分别计算出各数,再根据实数的运算法则进行计算即可.【解答】解:原式=2﹣4+1+2=1.【点评】本题考查了实数的运算,熟知实数的运算法则是解题的关键.19.完善下面表格,发现平方根和立方根的规律,并运用规律解决问题.…0.8618(1)表格中的m=80,n=0.4.(2)从表格数字中可以发现:开算术平方根时,被开方数的小数点每向左(或向右)移动两位,它的算术平方根的小数点随即向左(或向右)移动一位.请用文字表述立方根的变化规律:开立方根时,被开方数的小数点每向左(或向右)移动三位,它的立方根的小数点随即向左(或向右)移动一位.(3)若≈14.142,3700≈,求a+b的值.(参考数据:2≈1.4142,20≈4.4721,37≈1.9129,30.7≈0.8879)【考点】立方根;平方根;算术平方根.【专题】实数;数感;运算能力.【答案】见试题解答内容【分析】(1)根据平方根、立方根的定义进行计算即可;(2)由表格中的数字变化规律得出结论;(3)根据算术平方根、立方根的变化规律进行解答即可.【解答】解:(1)∵802=6400,∴6400的算术平方根是6400=80,即m=80,∵0.43=0.064,∴0.064的立方根是30.064=0.4,即n=0.4,故答案为:80,0.4;(2)故答案为:开立方根时,被开方数的小数点每向左(或向右)移动三位,它的立方根的小数点随即向左(或向右)移动一位;(3)根据平方根的变化规律得:∵2≈1.4142,∴200≈14.142,即a=200,根据立方根的变化规律得:∵30.7≈0.8879,∴3700≈8.879,即b=8.879,∴a+b=200+8.879=208.879.【点评】本题考查算术平方根、立方根,理解算术平方根、立方根的定义是正确解答的前提,掌握一个数的算术平方根、立方根的小数点与被开方数的小数点的移动变化规律是解决问题的关键.20.如图1,这是由8个同样大小的立方体组成的魔方,总体积为216cm3.(1)这个魔方的棱长为6cm.(2)图1的侧面有一个正方形ABCD,求这个正方形的面积和边长.(3)将正方形ABCD放置在数轴上,如图2所示,点A与数2表示的点重合,则D在数轴上表示的数为(2−【考点】实数与数轴;立方根.【专题】实数;推理能力.【答案】(1)6;(2)面积是18cm2,边长是32c;(3)(2−32).【分析】(1)魔方是个正方体,正方体的体积等于棱长的三次方,再利用立方根的含义求解即可;(2)这个正方形ABCD的边长是小立方体一个面的对角线的长度,利用勾股定理求解即可;(3)由A=32,把A往左边平移32个单位即可得到D点表示的数.【解答】解:(1)设魔方的棱长为acm,根据题意得a3=216,∴a=6,故答案为6.(2)设小正方体的棱长为bcm,根据题意得8b3=216,∴b=3∴所以根据勾股定理得AD2=32+32=18,∴A=32,正方形的面积为18,答:这个正方形的面积是18cm2,边长是32c.(3)由(2)知,A=32,∵点A对应的数是2,∴把A往左边平移32个单位长度可得点D对应的数是(2−32).【点评】本题考查了正方体的体积、实数与数轴之间的关系和勾股定理,二次根式的化简,正方体的体积=棱长的立方.实数与数轴上的点是一一对应的关系,数轴上的点的左右移动后对应的数的表示.。

2024年深圳市中考数学复习与检测试卷(解析版)

2024年深圳市中考数学复习与检测试卷(解析版)

2024年深圳市中考数学复习与检测试卷(解析版)一、选择题(本大题共有10个小题,每小题3分,共30分)1. 2024的倒数是()A.12024B.2024 C.2024−D.12024−【答案】A【分析】本题主要考查了倒数,解题的关键是熟练掌握倒数的定义,“乘积为1的两个数互为倒数”.【详解】解:2024的倒数1 2024.故选:A.2. 下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【详解】A、是轴对称图形,也是中心对称图形,故本选项符合题意,B、是轴对称图形,不是中心对称图形,故本选项不合题意,C、不是轴对称图形,是中心对称图形,故本选项不合题意,D、是轴对称图形,不是中心对称图形,故本选项不合题意,故选:A.3.随着2024年2月第十四届全国冬季运动会临近,吉祥物成为焦点,某日通过搜索得出相关结果约为16000000个.将“16000000”用科学记数法表示为()A .61610×B .71.610×C .81.610×D .80.1610×【答案】B 【分析】本题考查了科学记数法;根据科学记数法计算方法计算即可;解题的关键是掌握科学记数法的计算方法.【详解】解:716000000 1.610=×4 . 某校10名篮球队员进行投篮命中率测试,每人投篮10次,实际测得成绩记录如下表: 命中次数(次)5678 9人数(人) 1 4 3 1 1由上表知,这次投篮测试成绩的中位数与众数分别是( )A .6,6B .6.5,6C .6,6.5D .7,6【答案】B【分析】根据中位数及众数可直接进行求解.【详解】解:由题意得:中位数为67 6.52+=,众数为6; 故选B .5.实数,a b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A .55a b −>−B .66a b >C .a b −>−D .0a b −>【答案】C【分析】根据数轴判断出,a b 的正负情况以及绝对值的大小,然后解答即可.【详解】由图可知,0b a <<,且b a <,∴55a b −>−,66a b >,a b −<−,0a b −>,∴关系式不成立的是选项C .故选C .6 . 某学校将国家非物质文化遗产——“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图所示,若将左图抽象成右图的数学问题:在平面内,AB CD ,DC 的延长线交AE 于点F ;若7535BAE AEC ∠=°∠=°,,则DCE ∠的度数为( )A .120°B .115°C .110°D .75°【答案】C 【分析】根据平行线的性质得到75EFC BAE ∠=∠=°,根据三角形外角性质求解即可. 【详解】解:∵AB CD ,75BAE ∠=°, ∴75EFC BAE ∠=∠=°, ∵35DCE AEC EFC AEC ∠=∠+∠∠=°,,∴110DCE ∠=°, 故选:C .7 . 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.521y x x y −= −=B . 4.521x y x y −= −=C . 4.512x y y x −= −= D . 4.512y x y x −= −= 【答案】D【分析】设木头长为x 尺,绳子长为y 尺,根据“用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设木头长为x 尺,绳子长为y 尺, 由题意可得 4.512y x y x −= −=. 故选:D .8. 赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A. 20mB. 28mC. 35mD. 40m【答案】B【解析】 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R ,()7m OD OC CD R ∴=−=−,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===, 在Rt △ADO 中,222AD OD OA +=,()2223772R R ∴+−= , 解得:156528m 56R =≈, 故选B9 . 如图,DE 是ABC 的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A. 132B. 7C. 152D. 8【答案】C【解析】【分析】根据三角形中中位线定理证得DE BC ∥,求出DE ,进而证得DEF BMF ∽,根据相似三角形的性质求出BM ,即可求出结论.【详解】解:DE 是ABC 的中位线,DE BC ∴∥,116322DE BC ==×=, DEF BMF ∴ ∽, ∴22DEDF BF BM BF BF===, 32BM ∴=, ∴152CM BC BM =+=. 故选:C .10.如图,已知开口向上的抛物线2y ax bx c ++与x 轴交于点()1,0−,对称轴为直线1x =.下列结论: ①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >. 其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】D 【分析】利用二次函数图象与性质逐项判断即可.【详解】解:∵抛物线开口向上,∴0a >,∵抛物线与y 轴交点在负半轴,∴0c <,∵对称轴为12b x a=−=, ∴20b a −=<,∴0abc >,故①正确;∵抛物线的对称轴为=1x , ∴12b a−=, ∴2=0a b +,故②正确;∵函数2y ax bx c ++与直线1y =−有两个交点.∴关于x 的方程210ax bx c +++=一定有两个不相等的实数根,故③正确;∵=1x −时,0y =即0a b c −+=, ∵=2b a ,∴20a a c ++=,即3a c −=, ∵1c <−,∴31a −<−, ∴13a >, 故④正确,故选:D二、填空题(本大题共有5个小题,每小题4分,共20分)11.分解因式:2441a a −+= .【答案】()221a −【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的两倍, 本题可以用完全平方公式.【详解】原式()()2222221121a a a =−××+=−. 故答案为:()221a −.12. 一只不透明的袋中装有2个白球和n 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为14,那么黑球的个数是 . 【答案】6【分析】根据概率公式建立分式方程求解即可【详解】∵袋子中装有2个白球和n 个黑球,摸出白球的概率为14, ∴22n +=14, 解得n =6,经检验n =6是原方程的根,故答案为:613. 已知关于x 的一元二次方程()2230x m x −++=的一个根为1,则m = . 【答案】2【分析】把1x =代入方程计算即可求出m 的值.【详解】解:把1x =代入方程得:1(2)30m −++=, 去括号得:1230m −−+=, 解得:2m =,故答案为:214. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为 .【答案】43π 【分析】延长FA 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =360606°=°,再求出正六边形内角∠FAB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长FA 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =360606°=°, ∠FAB =180°-∠GAB =180°-60°=120°, ∴2120443603603FAB n r S πππ××===扇形, 故答案为43π. 15 . 如图,图1是一盏台灯,图2是其侧面示意图(台灯底座高度忽略不计),其中灯臂40cm AC =,灯罩30cm CD =,灯臂与底座构成的60CAB ∠=°. CD 可以绕点C 上下调节一定的角度.使用发现:当CD 与水平线所成的角为30°时,台灯光线最佳,则此时点D 与桌面的距离是________.(结果精确到1cm 1.732)【答案】50cm【分析】过点D 作DH AB ⊥,交AB 延长线于点H ,过点C 作CF AH ⊥于F ,过点C 作CE DH ⊥于E , 分别在Rt ACF 和Rt CDE △中,利用锐角三角函数的知识求出CF 和DE 的长,再由矩形的判定和性质得到CF EH =,最后根据线段的和差计算出DH 的长,问题得解.【详解】过点D 作DH AB ⊥,交AB 延长线于点H ,过点C 作CF AH ⊥于F ,过点C 作CE DH ⊥于E ,在Rt ACF 中,60A ∠=°,40cm AC =, ∵sin CF A AC=∴sin 60CF AC =°=,在Rt CDE △中,30DCE ∠=°,30cm CD =, ∵sin DE DCE CD∠=, ∴sin 3015DE CD=°=(cm), ∵DH AB ⊥,CF AH ⊥,CE DH ⊥, ∴四边形CFHE 是矩形, ∴CF EH =,∵DH DE EH =+,∴1550DH DE EH +≈(cm).答:点D 与桌面的距离约为50cm .三、解答题(本大题共有6个小题,共50分)16. 计算:101()2cos 451)4π−°−+−−−. 【答案】2【详解】分析:代入45°角的余弦函数值,结合“负整数指数幂和零指数幂的意义及绝对值的意义”进行计算即可.详解:原式=)4211−++=411−+,=2−.17. 先化简,再求值:(1﹣31x +)÷2441x x x −++,其中x =3. 【答案】1,12x −. 【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解. 【详解】解:原式=()2213111x x x x x −+ −÷ +++, =()22112x x x x −+⋅+−, =12x −, 当x =3时,原式=11 32=−.18.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【答案】(1)600;(2)见解析;(3)3200;(4)1 4【详解】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图,(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图;共有12种等可能的情况,其中他第二个吃到的恰好是C粽的有3种,∴P(C粽)=312=14.答:他第二个吃到的恰好是C粽的概率是14.19.某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?【答案】(1)y=﹣10x+540;(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【分析】(1)设函数关系式为y =kx +b ,由销售单价为28元时,每天的销售量为260个; 销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利润=每个遮阳伞的利润×销售量,列出函数关系式,再由二次函数的性质求解即可;【详解】(1)解:设一次函数关系式为y =kx +b ,由题意可得:2602824030k b k b =+ =+, 解得:10540k b =− =, ∴函数关系式为y =﹣10x +540;(2)解:由题意可得:w =(x ﹣20)y =(x ﹣20)(﹣10x +540)=﹣10(x ﹣37)2+2890,∵﹣10<0,二次函数开口向下,∴当x =37时,w 有最大值为2890,答:当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元.20. 已知:如图,在ABC 中,AB BC =,D 是AC 中点,BE 平分ABD ∠交AC 于点E ,点O 是AB 上一点,O 过B 、E 两点,交BD 于点G ,交AB 于点F .(1)试说明直线AC 与O 的位置关系,并说明理由;(2)当2BD=,1sin2C=时,求⊙O的半径.解:(1)证明:如图,连接OE,∵AB=BC且D是BC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠ABE=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∴OE⊥AC,∴AC与⊙O相切.(2)∵BD=2,sinC=12,BD⊥AC,∴BC=4,∴AB=4,设⊙O的半径为r,则AO=4-r,∵AB =BC ,∴∠C =∠A ,∴sinA =sinC =12,∵AC 与⊙O 相切于点E ,∴OE ⊥AC∴sinA =142r r =−, ∴r =43, 经检验:r =43是原方程的解. 21. 如图,抛物线2y x bx c =−++交x 轴于A ,B 两点,交y 轴于点C ,直线BC 的表达式为3y x =−+.(1) 求抛物线的表达式;(2) 动点D 在直线BC 上方的二次函数图像上,连接DC ,DB ,设四边形ABDC 的面积为S ,求S 的最大值;(3) 当点E 为抛物线的顶点时,在x 轴上是否存在一点Q ,使得以A ,C ,Q 为顶点的三角形与BCE 相似?若存在,请求出点Q 的坐标.【答案】(1)223y x x =−++ (2)758(3)存在,Q 的坐标为()0,0或()9,0 【分析】(1)用待定系数法即可求解;(2)由DFB AOC COFD SS S S =++△△梯形,即可求解;(3)分AQC ECB ∽、QAC ECB △∽△、ACQ ECB △∽△三种情况,分别求解即可.【详解】(1)解:∵直线BC 的表达式为3y x =−+, 当0x =时,得:3y =,∴()0,3C ,3OC =,当0y =时,得:03x =−+,解得:3x =, ∴()3,0B ,3OB =,∵抛物线2y x bx c =−++交x 轴于A ,B 两点,交y 轴于点C , ∴9303b c c −++= =, 解得:23b c = = , ∴抛物线的表达式为223y x x =−++; (2)过点D 作DF x ⊥轴于点F ,设()2,23D x x x −++,∴(),0F x ,OF x =,3BF x ,∴223DF x x =−++,∵抛物线223y x x =−++交x 轴于A ,B 两点, 当0y =时,得:2230x x −++=,解得:11x =−,23x =,∴()1,0A −,1OA =,∵DFB AOC COFD SS S S =++△△梯形()()()2211132332313222x x x x x x =−+++−−+++×× 23375228x =−−+ , 又∵302−<,即抛物线的图像开口向下, ∴当32x =时,S 有最大值,最大值为758.(3)存在,理由:∵()222314y x x x =−++=−−+, ∴()1,4E ,又∵()0,3C ,()3,0B ,∴CEBC =BE =∴((22222220CE BC BE ++===,∴90ECB ∠=°, 如图所示,连接AC ,①()1,0A −,()0,3C ,∴1OA =,3OC =,AC === ∴13AO EC CO BC ==, 又∵90AOC ECB ∠=∠=°, ∴AOC ECB ∽,∴当点Q 的坐标为()0,0时,AQC ECB ∽; ②过点C 作CQ AC ′⊥,交x 轴与点'Q , ∵Q AC ′ 为直角三角形,CO AQ ⊥′,∴90ACQ AOC ′∠=∠=°,90AQ C CAQ ACO ′′∠=°−∠=∠, ∴ACQ AOC ′ ∽,又∵AOC ECB ∽,∴ACQ ECB ′ ∽,∴AQ EB AC EC ′== 解得:10AQ ′=,∴()9,0Q ′;③过点A 作AQ AC ⊥,交y 轴与点Q ,∵ACQ 为直角三角形,CA AQ ⊥,∴90QAC AOC ∠=∠=°,90ACQ CQA OAQ ∠=°−∠=∠, ∴QAC AOC △∽△,又∵AOC ECB ∽,∴QAC ECB △∽△,∴QC AC EB CB ==, 解得:103QC =, ∴103Q −,, 此时点Q 在y 轴上,不符合题意,舍去. 综上所述:当在x 轴上的点Q 的坐标为()0,0或()9,0时,以A ,C ,Q 为顶点的三角形与BCE 相似.22. 综合与探究在矩形ABCD 的CD 边上取一点E ,将BCE 沿BE 翻折,使点C 恰好落在AD 边上的点F 处.(1) 如图①,若2BC BA =,求CBE ∠的度数;(2) 如图②,当5AB =,且10AF FD ⋅=时,求EF 的长; (3) 如图③,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NFAN FD =+时,请直接写出AB BC的值. 【答案】(1)15° (2)3 (3)35 【分析】(1)由折叠的性质得出BC BF =,FBE CBE ∠=∠,根据直角三角形的性质得出30AFB ∠=°,可求出答案;(2)证明FAB EDF △∽△,由相似三角形的性质得出AF AB DE DF=,可求出2DE =,得出3EF =,由勾股定理求出DF =AF ,即可求出BC 的长; (3)过点N 作NG BF ⊥于点G ,证明NFG BFA △∽△,12NG FG NF BA FA BF ===,设AN x =,FG y =,则2AF y =,由勾股定理得出()()()222222x y x y +=+,解出43y x =,则可求出答案. 【详解】(1)解:∵四边形ABCD 是矩形, ∴90C ∠=°,∵将BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴BC BF =,FBE CBE ∠=∠,90C BFE ∠=∠=°, ∵2BC AB =,∴2BF AB =,∴30AFB ∠=°, ∵四边形ABCD 是矩形,∴AD BC ∥,∴30CBF AFB ∠=∠=°, ∴1152CBE FBC ∠=∠=°,∴CBE ∠的度数为15°;(2)∵将BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴90BFE C ∠=∠=°,FE CE =, 又∵矩形ABCD 中,90A D ∠=∠=°, ∴90AFB DFE∠+∠=°,90DEF DFE ∠+∠=°, ∴AFB DEF ∠=∠, ∴FAB EDF △∽△, ∴AF AB DE DF=, ∴AF DF AB DE ⋅=⋅,∵10AF DF ⋅=,5AB =, ∴2DE =,∴523CE DC DE =−=−=,∴3EFEC ==, ∴EF 的长为3;(3)过点N 作NG BF ⊥于点G ,∵NFAN FD =+, ∴1122NF AD BC ==, ∵BC BF =,∴12NF BF =, ∵NFG BFA ∠=∠,90NGF BAF ∠=∠=°, ∴NFG BFA △∽△, ∴12NG FG NF BA FA BF ===, 设AN x =,∵BN 平分ABF ∠,AN AB ⊥,NG BF ⊥,∴NGAN x ==,2AB x =, 在Rt BNG △和Rt BNA 中, NG NA BN BN= = , ∴()Rt Rt HL BNG BNA △≌△∴2BGAB x ==, 设FG y =,则2AF y =, 在Rt BAF △中,222AB AF BF +=, ∴()()()222222x y x y +=+, 解得:43y x =, ∴410233BF BG GF x x x =+=+=, ∴231053AB AB x BC BF x ===, ∴AB BC 的值为35.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳市中考数学试题分类解析汇编专题实数一、选择题1(深圳2002年3分)-3的相反数是【 】 A 、-3 B 、3 C 、-31 D 、31 【答案】B 。

【考点】相反数。

【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地0 的相反数还是0。

因此-3的相反数是3。

故选B 。

2.(深圳2002年3分)化简二次根式3a -,结果是【 】A 、a a -B 、a a --C 、a a -D 、a a 【答案】B 。

【考点】二次根式的性质与化简。

【分析】由题意,根据二次根式有意义的性质,隐含条件a≤0,故利用二次根式的性质化简:()32a a a a a -=⋅-=--故选B 。

3.(深圳2003年5分)实数695600保留2位有效数字的近似数是【 】 A 、690000 B 、700000 C 、6.9×105D 、7.0×105【答案】D 。

【考点】科学记数法和有效数字。

【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键 要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

695600一共6位,从而695600=6.956×105。

有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字。

因此695600=6.956×105≈7.0×l05。

故选D 。

4.(深圳2003年5分)实数722,sin30º,2+1,2π,(3)0,|-3|中,有理数的个数是【 】 A 、2个 B 、3个 C 、4个 D 、5个 【答案】C 。

【考点】有理数的概念,特殊角的三角函数值,零指数幂,绝对值。

【分析】根据有理数的概念判断:722是有理数;sin30°=12是有理数;2+1是无理数;2π是无理数;(3)0=1是有理数;|-3|=3是有理数。

因此,有理数有 722,sin30°,(3)0,|-3|,共四个。

故选C 。

5.(深圳2004年3分)16的平方根是【 】 A 、4 B 、-4 C 、±4 D、±2 【答案】B 。

【考点】平方根。

【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的一个平方根: ∵(±4)2=16,∴16的平方根是±4。

故选B 。

6.(深圳2005年3分)在0,-1,1,2这四个数中,最小的数是【 】 A 、-1 B 、0 C 、1 D 、2 【答案】A 。

【考点】有理数大小比较。

【分析】一切负数小于0,两个负数作比较,绝对值大的反而小∵在0,-1,1,2这四个数中,0,1,2均大于0,-1<0,∴-1最小。

故选A 。

7.(深圳2005年3分)长城总长约为6700010米,用科学记数法表示是(保留两个有效数字)【 】 A 、6.7×105米 B 、6.7×106米 C 、6.7×107米 D 、6.7×108米 【答案】B 。

【考点】科学记数法,有效数字。

【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

6700010一共7位,从而6700010=6.70001×106。

有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字。

所以 6700010=6.70001×106≈6.7×106。

故选B 。

8.(深圳2005年3分)实数a 、b 在数轴上的位置如图所示,那么化简|a -b|-2a 的结果是【 】A 、2a -bB 、bC 、-bD 、-2a +b 【答案】C 。

【考点】二次根式的性质与化简,实数与数轴。

【分析】根据数轴判断出a 、b 的符号及a -b 的符号,再根据绝对值的性质和二次根式的性质解答:根据数轴得,实数a 、b 在数轴上的位置,可得b <0<a ; ∴|a-b|-2a =a -b -a=-b 。

故选C 。

9.(深圳2006年3分)-3的绝对值等于【 】A.3- B.3 C.13- D.13【答案】A 。

【考点】绝对值。

【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的义,在数轴上,点﹣3到原点的距离是3,所以﹣3的绝对值是3,故选A 。

10.(深圳2006年3分)今年1—5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.58亿精确到【 】A.百亿位 B.亿位 C.百万位 D.百分位 【答案】C 。

【考点】近似数和有效数字。

【分析】216.58亿元中的5虽然是小数点后的第一位,但它表示5千万,同样8表示8百万,所以216.58亿元精确到百万位。

故选C 。

11.(深圳2007年3分)2-的相反数是【 】 A.12-B.2-C.12D.2bOa【答案】D 。

【考点】相反数。

【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0 的相反数还是0。

因此-2的相反数是2。

故选D 。

12.(深圳2007年3分)今年参加我市初中毕业生学业考试的考生总数为45730人,这个数据用科学记数法表示为【 】 A.50.457310⨯ B.44.57310⨯C.44.57310-⨯D.34.57310⨯【答案】B 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

45730一共5位,从而45730=4.573×104。

故选B 。

13.(深圳2008年3分)4的算术平方根是【 】A.-4 B.4 C.-2 D.2 【答案】D 。

【考点】算术平方根。

【分析】根据算术平方根的定义,求数a 的算术平方根,也就是求一个正数x ,使得x 2=a ,则x 就是a 的算术平方根, 特别地,规定0的算术平方根是0。

∵22=4,∴4的算术平方根是2。

故选D 。

14.(深圳2008年3分)2008年北京奥运会全球共选拔21880名火炬手,创历史记录.将这个数据精确到千位,用科学记数法表示为【 】A.31022⨯ B.5102.2⨯ C.4102.2⨯ D.51022.0⨯ 【答案】C 。

【考点】科学记数法,近似数。

【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

21880一共5位,从而21880=2.188×104。

一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。

一个近似数四舍五入到哪一位,那么就说这个近似数精确到哪一位,从左边第一个不是0的数字起到精确的数位止的所有数止。

因此21880=2.188×104≈2.2×104。

故选C 。

15.(深圳2008年3分)今年财政部将证券交易印花税税率由3‰调整为1‰(1‰表示千分之一).某人在调整后购买100000元股票,则比调整前少交证券交易印花税【 】元?A.200元 B.2000元 C.100元 D.1000元 【答案】A 。

【考点】有理数的混合运算。

【分析】调整前所交证券交易印花税-调整后所交证券交易印花税,即为比调整前少交证券的交易印花税:100000×(3‰-1‰)=200元。

故选A 。

16.(深圳2009年3分)如果a 的倒数是-1,那么a2009等于【 】A .1B .-1C .2009D .-2009【答案】B 。

【考点】倒数,有理数的乘方。

【分析】先根据倒数的定义求出a 的值,再根据乘方的运算法则求解:∵a 的倒数是-1,∴a=-1。

∴a2009=(-1)2009=-1。

故选B 。

17.(深圳2009年3分)横跨深圳及香港之间的深圳湾大桥(Shenzhen Bay Bridge )是中国唯一倾斜的独塔单索面桥,大桥全长4770米,这个数字用科学计数法表示为(保留两个有效数字)【 】A .24710⨯B .34.710⨯C .34.810⨯D .35.010⨯ 【答案】【考点】科学记数法和有效数字。

【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

4770一共4位,从而4770=4.77×103。

有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字。

因此4770=4.77×103≈4.8×104。

故选C 。

18.(深圳2009年3分).如图,数轴上与1,2对应的点分别为A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则22x x-+=【 】 A .2 B .22C .32D .2【答案】C 。

【考点】实数与数轴,二次根式的化简求值。

【分析】根据对称的性质:对称点到对称中心的距离相等,得到x 的值后代入代数式化简求值:由题意得:x =1-(2-1)=2-2,∴原式=()222222222222222324222+--+=-+=-++=--。

故选C 。

19.(深圳2010年学业3分)-2的绝对值等于【 】 A .2 B .-2 C .12 D .4【答案】A 。

【考点】绝对值。

【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A 。

相关文档
最新文档