人教版初三数学上册圆

合集下载

人教版初中九年级上册数学《圆》精品课件

人教版初中九年级上册数学《圆》精品课件

固定的端点 O 叫做圆心;
A
线段 OA 叫做半径;
r
以点 O 为圆心的圆,记作⊙O,
·
O
读作“圆O”.
O
同心圆
等圆
圆心相同,半径不同 半径相同,圆心不同
确定一个圆的两个要素:
一是圆心, 二是半径.
A ·r O
问题1:圆上各点到定点(圆心 O)的距离 有什么规律?
问题2:到定点的距离等于定长的点又有什 么特点?
知识点2 与圆有关的概念
弦和直径的定义 连接圆上任意两点的线段叫做弦,如图中的 AC. 经过圆心的弦叫做直径,如图中的 AB.
B
O
A
C
半径是弦吗?

圆上任意两点间的部分叫
B
做圆弧,简称弧.以 A、B 为
端点的弧记作AB,读作“圆
O
弧 AB”或“弧 AB”.
圆的任意一条直径的两个 A
C
端点把圆分成两条弧,每一条
形成性定义(动态):在一个平面内,线段 OA 绕它 固定的一个端点 O 旋转一周,另一个端点 A 所形成的图 形叫做圆.
集合性定义(静态):圆心为 O、 半径为 r 的圆可以看成是所有到定点 O 的距离等于定长 r 的点的集合.
战国时的《墨经》 就有“圆,一中同长也” 的记载.它的意思是圆 上各点到圆心的距离都 等于半径.
2.下列说法中,不正确的是( ) D A.过圆心的弦是圆的直径 B.等弧的长度一定相等 C.周长相等的两个圆是等圆 D.长度相等的两条弧是等弧
3.一个圆的最大弦长是10cm,则此圆的半径是5
cm.
4.在同一平面内与已知点A的距离等于5cm的所有点所组成 的图形圆是 .
5.如右图,以AB为直径的半圆O上有两点D、E,ED与BA

人教版-数学-九年级上册-知识归纳:圆

人教版-数学-九年级上册-知识归纳:圆

知识归纳:圆本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.10.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.重点、热点垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理. 运用圆内接四边形的性质解有关计算和证明题.。

人教版初三数学九年级上册 第24章 《圆》教材分析 课件(共38张PPT)

人教版初三数学九年级上册 第24章 《圆》教材分析 课件(共38张PPT)

能利用垂径定理解决有关简单问题; 能利用圆周角定理及其推论解决有关 简单问题
运用圆的性质的有关 内容解决有关问题
点和圆 的
位置关系
了解点与圆的位置关系
尺规作图(利用基本作图完成):过 不在同一直线上的三点作圆;能利用 点与圆的位置关系解决有关简单问题
图图 形形 与的 几性 何质
直线和圆 的
位置关系
了解直线和圆的位置关系;会判断直 线和圆的位置关系;理解切线与过切 点的半径的关系;会用三角尺过圆上 一点画圆的切线
三角形的内切圆;了解三角形的内心; 有关简单问题;尺规作图(利用基本
了解正多边形的概念及正多边形与圆 作图完成):作三角形的外接圆、内
的关系
切圆,作圆的内接正方形和正六边形
弧长、扇形面 会计算圆的弧长和扇形的面积;会计
积 算圆锥的侧面积和全面积
和圆锥
能利用圆的弧长和扇形的面积解决一 些简单的实际问题
O
O
适当补充“知二推三”,灵活运用所学 知识,特别是体会如何证明圆心在弦上 (某弦是直径)。
O
C
A
B
例. 根据条件求解:
D
(1)已知⊙O半径为5,弦长为6,求弦心距和弓形高.
(2)已知⊙O半径为4,弦心距为3,求弦长和弓形高.
(3)已知⊙O半径为5,劣弧所对的弓形高为2,求弦长和 弦心距.
(4)已知⊙O弦长为2,弦心距为,求⊙O半径及弓形高.
A
B
半径为5dm。则水深______dm.
5.注重数学核心素养的培养
本章的教学内容能进一步发展学生的几何 直观、推理能力等数学核心素养。
在教学过程中引导学生多画图、敢画图, 借助对几何图形直观的感知、分析问题, 并在此基础之上,在解决问题的过程中, 运用合情推理探索思路,发现结论,运用 演绎推理用于证明结论。

人教版初中九年级上册数学课件 《正多边形和圆》圆

人教版初中九年级上册数学课件 《正多边形和圆》圆
18
解:要使△PCD 的周长最小,即 PC+PD 的值最小.根
据正多边形的性质,得点 C 关于 BE 的对称点为点 A,连接 AD
交 BE 于点 P,那么有 PC+PD=AD 最小.易知四边形 ABCD
为等腰梯形,∠BAD=∠CDA=60°.作 BM⊥AD 于点 M,CN
⊥AD 于点 N.∵AB=2,∴AM=12AB=1,∴DN=AM=1,∴
能超过( A )
A.12 mm
B.12 3 mm
C.6 mm
D.6 3 mm
3.已知圆内接正三角形的面积为 3,则该圆的内接正六边形的边心距是( B )
A.2
B.1
C. 3
D.
3 2
7
4.【贵州贵阳中考】如图,正六边形 ABCDEF 内接于⊙O,连接 BD.则∠CBD 的度数是( A )
A.30° C.60°
10
8.【教材P106练习T3变式】如图,正八边 形ABCDEFGH的半径为2,求它的面积.
11
解:连接 AO、BO、CO、AC. ∵正八边形 ABCDEFGH 的半径为 2,∴AO= BO=CO=2,∠AOB=∠BOC=360°×18=45°,∴∠AOC=90°,∴AC=2 2,此时 AC⊥BO,∴S 四边形 ABCO=12BO·AC=12×2×2 2=2 2,∴正八边形 ABCDEFGH 的面 积为 2 2×4=8 2.
B.45° D.90°
8
5.如图,正六边形 ABCDEF 内接于半径为 4 的圆,则 B、E 两点间的距离为___8___.
9
6.将一个边长为 1 的正六边形补成如图所示的矩形,则矩形的周长等于 ___4_+__2__3____.(结果保留根号)
43 7.【山东滨州中考】若正六边形的内切圆半径为 2,则其外接圆半径为___3___.

新人教版九年级上《圆》课件

新人教版九年级上《圆》课件
推导过程中涉及了圆的半径、圆心坐标、点到圆心的距离等概念,以及代数运算 和方程的求解方法。
圆的方程的应用
圆的方程在解决实际问题中具有广泛的应用,如计算圆的面 积、周长、圆弧长度等几何量。
圆的方程还可以用于解决与圆相关的几何问题,如求两圆的 位置关系、圆与直线的交点等。
圆的方程与其他几何图形的关系
圆在物理学中的应用
总结词
基础且重要,不可或缺
详细描述
在物理学中,圆是一个非常重要的概念。例如,在力学中,圆周运动是一个基本运动形式;在电磁学 中,圆代表电流的方向和大小。这些物理现象都离不开圆的几何特性。
圆在数学建模中的应用
总结词
抽象但实用,解决问题的重要工具
详细描述
在数学建模中,圆是一个重要的几何图形。它可以用来描述各种实际问题,如最短路径 问题、面积和周长问题等。通过建立数学模型,我们可以更好地理解和解决这些问题。
02
圆的对称性
圆的基本性质
圆是中心对称图形
圆关于其圆心对称,任意一点关 于圆心对称的点都在圆上。
圆是轴对称图形
圆关于经过其圆心的任意直线对 称。
圆与对称图形的关系
01
圆是唯一的既是中心对称又是轴 对称的二维图形。
02
对称性在几何学中具有重要地位 ,圆作为最简单的封闭二维曲线 ,是理解对称性的基础。
计。
西方的圆文化
在西方文化中,圆常被用来代表 变化、运动和无限。例如,毕达 哥拉斯学派认为“万物皆数”,
并将数与圆联系起来。
生活中的圆
在日常生活中,许多物品和建筑 都采用了圆形设计,如轮胎、井 盖、管道等,这主要是因为圆形
具有旋转对称性,方便实用。
谢谢您的聆听
THANKS

第二十四章圆(完整知识点)人教版九年级数学上册

第二十四章圆(完整知识点)人教版九年级数学上册

第二十四章 圆一、圆的有关概念及表示方法 (一)圆的定义1、描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

其固定的端点O 叫做圆心,线段OA 叫做半径。

2、集合性定义:圆可以看成是所有到定点(圆心)的距离等于定长(半径)的点的集合。

(二)圆的表示方法:以点O 为圆心的圆,记作⨀O ,读作“圆O ”。

(三)圆具有的特性1、圆上各点到定点(圆心O )的距离都等于定长(半径r )。

2、到定点的距离等于定长的点都在同一个圆上。

注:(1)确定一个圆需要两个因素:圆心确定圆的位置,半径确定圆的大小。

(2)同一个圆中的所有半径都相等,所以圆上任意两点和圆心[三点不共线(直径)]构成的三角形都是等腰三角形。

(四)圆的有关概念1、弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

以AC 为端点的弦,记作:弦AC 。

注:圆中有无数条弦,其中直径是最长的弦,但弦不一定是直径。

2、弧2.1圆上任意两点间的部分叫做圆弧、简称弧。

以A 、B 为端点的弧记作⨀AB ,读作“圆弧AB ”或“弧AB ”。

2.2圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,如图中的⨀ABC 。

小于半圆的弧叫做劣弧,如图中的⨀AC。

注:(1)在一个圆中,任意一条弦都对着两条弧,任意一条弧只对着一条弦。

(2)弧包括优弧、劣弧、半圆;半圆既不是劣弧,也不是优弧。

3、同圆或等圆:能够重合的两个圆叫做等圆。

同圆或等圆的半径相等。

4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

等弧是全等的,不仅仅是弧的长度相等。

5、同心圆:圆心相同,半径不相等的圆叫做同心圆。

二、圆的有关性质 (一)垂直于弦的直径1、圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

名称 文字语言 符号语言 图示垂径 定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧。

人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)

人教版数学九年级上册第二十四章《圆》知识点及练习题(附答案)

⼈教版数学九年级上册第⼆⼗四章《圆》知识点及练习题(附答案)《圆》章节知识点复习和练习附参考答案⼀、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离⼤于定长的点的集合; 3、圆的内部:可以看作是到定点的距离⼩于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆⼼,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、⾓的平分线:到⾓两边距离相等的点的轨迹是这个⾓的平分线;4、到直线的距离相等的点的轨迹是:平⾏于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平⾏线距离相等的点的轨迹是:平⾏于这两条平⾏线且到两条直线距离都相等的⼀条直线。

⼆、点与圆的位置关系1、点在圆内 ? d r < ? 点C 在圆内;2、点在圆上 ? d r = ? 点B 在圆上;3、点在圆外 ? d r > ? 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ? d r > ? ⽆交点;2、直线与圆相切 ? d r = ? 有⼀个交点;3、直线与圆相交 ? d r < ? 有两个交点;四、圆与圆的位置关系外离(图1)? ⽆交点 ? d R r >+;外切(图2)? 有⼀个交点 ? d R r =+;相交(图3)? 有两个交点 ? R r d R r -<<+;内切(图4)? 有⼀个交点 ? d R r =-;内含(图5)? ⽆交点 ? d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆⼼,并且平分弦所对的两条弧;(3)平分弦所对的⼀条弧的直径,垂直平分弦,并且平分弦所对的另⼀条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径②AB CD ⊥③CE DE = ④弧BC =弧BD ⑤弧AC =弧AD中任意2个条件推出其他3个结论。

人教版九年级数学上册 《圆》圆的有关性质PPT教学课件

人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
解:每个小圆的面积为 π12a·n12=π4na22,而大圆的面积为 π12a2=14πa2,即每个小 圆的面积是大圆的面积的n12.
第十九页,共二十页。
第二十页,共二十页。
6.若⊙O 的半径为 6 cm,则⊙O 中最长的弦为____1_2___cm.
第七页,共二十页。
8
7.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于点D,AD<BD, 若CD=2 cm,AB=5 cm,求AD、AC的长.
第八页,共二十页。
9
解:连接 OC.∵AB=5 cm,∴OC=OA=12AB=52 cm.在 Rt△CDO 中,由勾股
A.AB>0
B.0<AB<5
C.0<AB<10
D.0<AB≤10
4.如图,⊙O 的半径为 1,分别以⊙O 的直径 AB 上的两个四等分点 O1、O2 为
圆心,12为半径作圆,则图中阴影部分的面积为( B )
A.π
B.12π
C.14π
D.2π
第六页,共二十页。
7
5. 如图,分别延长⊙O 的弦 AB 与半径 OC 交于点 D,BD=OA.若∠AOC=120°, 则∠D 的度数是_____2_0°____.
人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
第二十四章 圆
24.1 圆的有关性质

第一页,共二十页。
2
以练助学 名师点睛
知识点1 圆的意义及其表示 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的 图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作 “⊙O”,读作“圆O”. 注意:确定一个圆取决于两个因素:圆心和半径,圆心确定圆的位置,半径确 定圆的大小.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、选择题
《圆》练习

1若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与
三角形面积之比是( )
(A) —^( B) 旦(C) ' —( D)
c+2r c+r 2c + r c +r
AB
2、已知AB是半圆的直径,BC切半圆于B点,BC= =r, AC交半圆于D点,DE丄AB
2
于E,则DE的长为( )
(A) 3r (B)(C)」r (D) -r
5 2 3 5
3、等腰三角形中,AB=AC , BC=4 , △ ABC的内切圆的半径为1,则AB的长为(
(A) 2 ( B) 3 (C) 2 • .3 (D)10
3
4、如图,四边形ABCD内接于半圆O,AB为直径,AB=4 , AD=DC=1,则BC的长为()
(A) —(B) ?15 (C) 2.. 3 (D)—
2 4
5、如果O O i和。

O2相交于C、D , CB是O O i的直径,过
B作O O i的切线交CE的延长线于A , AFD是割线,
交O O2于F、D , BC=FD=2 , CE= ,3,则AF 的长为( )
(A)〈3 ( B )亠(C)壬(D )4
3 3 3 3
6、已知O O的半径为r, AB、CD为O O的两条直径,且弧
AC=60°,P为弧BC上的任意一点,PA、PD分别交CD、
AB 于E、F,贝U AE • AP+DF • DP 等于( )
(A) 3r2( B) 2、3r2(C) 4r2( D) 3、2r2
7、如图1,凸五边形ABCDE内接于半径为1的O O,
ABCD是矩形,AE=ED,且BE和CE把AD三等分. 则此五
边形ABCDE的面积是:
(C) -3
5
(D)T
&如右图中的圆与三个半圆都相切,且两个较小半圆半径 都为1,又都与大半圆相切,则阴影部分图形的面积为( )
(A )1( B )—( C ) n ( D — 2 9 9
9、如右图,以半圆的一条弦 AN 为对称轴将弧 AN 折叠过 来和直
径 MN 交于B 点,如果 MB : BN=2 : 3,且MN=10, 则弦AN 的
长为( )
(A )3 -5( B )4.5( C )4、、3( D )5 3
O O 的切线,B 是切点,弦BC // OA ,连结AC ,则阴影 部分的面积等于(
) (A ) — ( B ) (C ) 3 ( D ) -
9 6 6 8
4 8 11、如果20个点将某圆周20等分,那么顶点只能在这 20个 点中选取的正多边形的个数有(
) (A ) 4 个(B ) 8 个(C ) 12 个(D ) 24 个
12、 如果边长顺次为 25、39、52与60的四边形内接于一圆,那么
此圆的周长为( )
(A ) 62 n ( B ) 63 n ( C ) 64 n ( D ) 65 n
13、 设AB 为O O 的一条弦,CD 为O O 的一条直径,且与弦 AB 相
交,记M #S^AB —S^AB I , N =2S©A B ,则( )
(A ) M>N (B ) M=N ( C ) M<N ( D ) M 、N 大小关系不确定
14、如图,半圆 O 的直径在梯形 ABCD 的底边AB 上,且与其 余三
边BC 、CD 、DA 相切,若BC=2 , DA=3 ,则AB 的长()
(A )等于4 ( B )等于5 (C )等于6 (D )不能确定
15、如右图,P 为半O O 直径BA 延长线上一点,PC 切半O O 于C ,
且 PA : PC=2: 3,贝U sin /ACP 的值为(
) (A ) - ( B ) (C )亠丄3 ( D )无法确定
3
13 13
二、填空题 16、扇形OAB 的弦AB=18,半径为6的圆C 恰与OA 、OB
和弧AB 相切,圆D 又与圆C 、OA 和OB 相切,则圆D 的半径为
_____________________________________________________________
17、已知如图,AB 为半圆的直径,C 、D 为半圆弧上的两点,若弧
CD=弧BD ,
10、如图, A 是半径为1的圆O 外的一点,
OA=2,AB 是 面积为16(5,则AP 的长为 ________________
DC与BA的延长线交于P,如果,AP : CP=3: 4,^ ADB的18、如图,设半圆的圆心O在直角△ ABC的斜边AB上,
且与两直角边相切于D、丘,若厶ABC的面积为S, 斜边长
为C,则圆的半径为_______________________ 。

19、如图1,AB是半圆0的直径,四边形CDMN
和DEFG都是正方形,其中C,D,E在AB上,
F,N在半圆上若AB=10,则正方形CDMN的面积与正方形
DEFG的面积之和是__________________ .
20、如图,MON中,/ MON=90°,过线段MN中点A
作AB // ON交M弧MN于点B,则/ BON= ________ 度。

B
21、一个半径为1cm的圆,在边长为6cm的正六边形内任意挪动(圆
可以与正六边形的
边相切),则圆在正六边形内不能达到的部分的面积为
________________________________________________________________ cm2。

22、设P是正方形ABCD的外接圆的劣弧AD上任意一点,则PA+PC 与PB的比值为____ 。

23、如图,A、B、C、D四点在同一圆周上,且BC=CD=4 , AE=6,线段BE和DE
的长都是正整数,则BD的长等于_____________ 。

24、已知PAB、PCD 为O O 的两条割线,PA=8, AB=10 , CD=7 ,
/ P=600,则O O的半径为___________ 。

25、把两个半径为5和一个半径为8的圆形纸片放在桌面上,
使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完
全盖住,则这个大圆形纸片的最小半径等于_______________ 。

三、解答题
26. 已知CA = CB = CD,过A, C, D三点的圆交AB于点F.求
证:CF为/ DCB 的平分线.
27、在厶ABC中,AB = 40, AC = 60,以A为圆心,AB长为半径作圆交BC与D ,
且D在BC边上,若BD和DC的长均为正整数,求BC的长.
28、已知如图,圆内接四边形ABCD , AB=AD , PB=BO ,
CE 丄PE, CD=18,求DE。

相关文档
最新文档