2019-2020密云初三1模数学试卷答案

合集下载

2020年北京市密云区中考数学一模试卷 (含答案解析)

2020年北京市密云区中考数学一模试卷 (含答案解析)

2020年北京市密云区中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1.下列四个角中,最有可能与60°角互补的是()A. B.C. D.2.一周时间有604800秒,604800用科学记数法表示为()A. 6048×102 B. 6.048×105C. 6.048×106D. 0.6048×1063.下列各式计算正确的是()A. a2+a2=a4B. (−2x)3=−8x3C. a3·a4=a12D. (x−3)2=x2−94.下面几种中式窗户图形既是轴对称又是中心对称的是()A. B. C. D.5.实数a,b,c,d在数轴上对应点的位置如图所示,正确的结论是A. a>cB. b+c>0C. |a|<|d|D. −b<d6.如图是某一正方体的展开图,那么该正方体是()A.B.C.D.7.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价几何?译文:今有人合伙买物,每人出八钱,则多三钱;每人出七钱,则少四钱,问人数、物件各是多少?设合伙人数是x,物价为y钱,以下列出的方程组正确的是()A. B. C. D.8.下表反映了我国高速铁路基本情况,根据统计表提供的信息,下列推断不合理的是()年份营业里程(公里)占铁路营业里程比重(%)客运量(万人)占铁路客运量比重(%)20086720.87340.520092699 3.24651 3.120105133 5.6133238.0 201166017.12855215.8 201293569.63881520.5 20131102810.75296225.1 20141645614.77037830.5 20151983816.49613937.9 20162298018.512212843.4(上表摘自《2017中国统计年鉴》)A. 2008−2016年,我国高速铁路营业里程逐年增长B. 2008−2016年,我国高速铁路营业里程占铁路营业里程比重增长最多的是2016年C. 2008−2016年,我国高速铁路客运量逐年增长D. 到2017年,我国高速铁路客运量占铁路客运量比重有望基本达到或超过50%二、填空题(本大题共8小题,共16.0分)9.写一个比4小的无理数.10.如果分式1x−5有意义,那么x的取值范围是______.11.请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是______ .12.计算:m2−4m+4m−1÷(3m−1−m−1)=______.13.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=______.14.如图,大楼AB的底部右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,则障碍物B,C两点间的距离为______米.(结果保留根号)15.从绵阳园艺山到涪城区有三条不同的线路(三条线路分别用A,B,C表示).为了解早高峰期间这三条线路上的公交车从园艺山到涪城区的用时情况,在每条线路上随机选取了100个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路20≤t≤3030<t≤4040<t≤5050<t≤60合计A25153030100B183********C3193723100早高峰期间,乘坐______(填“A”,“B”或“C”)线路上的公交车,从绵阳园艺山到涪城区“用时不超过50分钟”的可能性最大.16.如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为______ .三、解答题(本大题共12小题,共68.0分)17.计算:(1)(12)−1+√3+(√7)0−2cos60°−|3−π|;(2)解不等式组:{2x−7<3(x−1)①5−12(x+4)≥x②18.解不等式组:{7x<8+9xx+12<1,并写出它的所有整数解.19.阅读:已知△ABC,用直尺与圆规,在直线BC上方的平面内作一点M(不与点A重合),使∠BMC=∠BAC(如图1).小明利用“同弧所对的圆周角相等”这条性质解决了这个问题,下面是他的作图过程:第一步:分别作AB、BC的中垂线(虚线部分),设交点为O;第二步:以O为圆心,OA为半径画圆(即△ABC的外接圆)第三步:在弦BC上方的弧上(异于A点)取一点M,连结MB、MC,则∠BMC=∠BAC.(如图2)思考:如图2,在矩形ABCD中,BC=6,CD=10,E是CD上一点,DE=2.(1)请利用小明上面操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC=∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)(2)求PC的长.20.已知一元二次方程x2−4x+k=0有两个不相等的实数根.(1)求k的取值范围.(2)如果k是符合条件的最大整数且一元二次方程x2−4x+k=0与x2+mx−1=0有一个相同的根,求此时m的值.21.如图,AE//BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若,BD=6,求AD的长.22.如图,在平面直角坐标系xOy中,直线y=−x+1与函数y=k的图象交于A(−2,a),B两点.x(1)求a,k的值;(2)已知点P(0,m),过点P作平行于x轴的直线l,交函数y=k的图象于点C(x1,y1),交直线y=x−x+1的图象于点D(x2,y2),若|x1|>|x2|,结合函数图象,直接写出m的取值范围.23.如图,DC是⊙O的直径,点B在圆上,直线AB交CD延长线于点A,且∠ABD=∠C.(1)求证:AB是⊙O的切线;(2)若AB=4cm,AD=2cm,求半径的长及tan C的值.24.为引领学生感受诗词之美,某校团委组织了一次全校800名学生参加的“中国诗词大赛”,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<6050.0560≤x<70150.1570≤x<8020n80≤x<90m0.3590≤x≤100250.25请根据所给信息,解答下列问题:(1)m=______,n=______;并补全频数分布直方图;(2)这100名学生成绩的中位数会落在______分数段;(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的800名学生中成绩“优”等的约有多少人?25.如图,P是半圆弧AB⏜上一动点,连接PA、PB,过圆心O作OC//BP交PA于点C,连接CB.已知AB=6cm,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.51 1.52 2.53y/cm3 3.1 3.5 4.0 5.36(说明:补全表格时相关数据保留一位小数)(2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:直接写出△OBC周长C的取值范围是______.26.在平面直角坐标系xOy中,二次函数y=ax2−2ax+1(a>0)的对称轴为x=b,点A(−2,m)在直线y=−x+3上.(1)求m,b的值;(2)若点D(3,2)在二次函数y=ax2−2ax+1(a>0)上,求a的值;(3)当二次函数y=ax2−2ax+1(a>0)与直线y=−x+3相交于两点时,设左侧的交点为P(x1,y1),若−3<x1<−1,求a的取值范围.27.△ABC是等边三角形,点C关于AB对称的点为C′,点P是直线C′B上的一个动点,连接AP,作∠APD=60°交射线BC于点D.(1)若点P在线段C′B上(不与点C′,点B重合)①如图1,当点P是线段C′B的中点时,直接写出线段PD与线段PA的数量关系______.②如图2,点P是线段C′B上任意一点,证明PD与PA的数量关系.(2)若点P在线段C′B的延长线上,①依题意补全图3;②直接写出线段BD,AB,BP之间的数量关系为:______.28.在平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离”,记作d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)=______,d(B,⊙O)=______.②已知直线l:y=−512x+b与⊙O的“距离”d(l,⊙O)=3413,求b的值.(2)已知点A(−2,6),B(−2,−2),C(6,−2).⊙M的圆心为M(m,0),半径为1.若d(⊙M,△ABC)=1,请直接写出m的取值范围______.【答案与解析】1.答案:D解析:解:60°角的补角=180°−60°=120°,是钝角,结合各图形,只有D选项是钝角.故选:D.根据互补的两个角的和等于180°求出60°角的补角,然后结合图形即可选择.本题考查了互为补角的定义,根据补角的定义求出60°角的补角是钝角是解题的关键.2.答案:B解析:解:数字604800用科学记数法表示为6.048×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:B解析:本题考查了合并同类项,积的乘方,同底数幂的乘法,完全平方公式,熟练掌握运算法则是解本题的关键,根据积的乘方即可判定B正确.解:A.a2+a2=2a2,故错误;B.(−2x)3=−8x3,正确;C.a3·a4=a7,故错误;D.(x−3)2=x2−6x+9,故错误.故选B4.答案:C解析:解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后完全可重合,中心对称图形是要寻找对称中心,旋转180度后两部分完全重合.5.答案:D解析:本题考查了实数与数轴,利用数轴上点的位置关系得出a,b,c,d的大小是解题关键.根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.解:由数轴上点的位置,得a<−4<b<0<c<1<d=4.A.a<c,故A选项错误;B.∵|b|>|c|,b<0<c,∴b+c<0,故B选项错误;C.|a|>4=|d|,故C选项错误;D.−b<4=d,故D选项正确.故选D.6.答案:B解析:本题考查展开图折叠成几何体,训练了学生的观察能力和空间想象能力.根据正方体展开图的相对面的位置作答即可.解:根据正方体的展开图可得选B.故选B.7.答案:C解析:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数−物品价值=3,②物品价值−7×人数=4,据此可列方程组.解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4. 故选C .8.答案:B解析:解:A.2008−2016年,我国高速铁路营业里程逐年增长,故正确;B .2008−2016年,我国高速铁路营业里程占铁路营业里程比重增长最多的是2014年,故错误;C .2008−2016年,我国高速铁路客运量逐年增长,故正确;D .到2017年,我国高速铁路客运量占铁路客运量比重有望基本达到或超过50%,故正确; 故选:B .根据统计表中的数据逐一判断即可得结论.本题主要考查统计图表,统计表是表现数字资料整理结果的最常用的一种表格,统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.9.答案:π解析:此题考查了实数大小比较,以及无理数,熟练掌握无理数的定义是解本题的关键.找出一个小于4的无理数即可.解:比4小的无理数可以是π,故答案为π.10.答案:x ≠5解析:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.根据分母为零,分式无意义;分母不为零,分式有意义.解:分式1x−5有意义,得x−5≠0,解得x≠5.故答案为:x≠5.11.答案:答案不惟一,如球、正方体等解析:解:球的3个视图都为圆;正方体的3个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.本题考查了几何体的三种视图,掌握常见几何体的三视图是关键.12.答案:2−m2+m解析:解:m2−4m+4m−1÷(3m−1−m−1)=(m−2)2m−1÷3−(m+1)(m−1)m−1=(m−2)2m−1⋅m−13−m2+1=(m−2)2m−1⋅m−1(2+m)(2−m)=2−m2+m,故答案为:2−m2+m.根据分式的除法和减法可以化简题目中的式子,本题得以解决.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.13.答案:2解析:本题考查考查垂径定理,属于基础题.连接OC,如图,根据垂径定理得到CE=DE=12CD=4,再利用勾股定理计算出OE,然后计算OB−OE即可.解:连接OC,如图,∵弦CD⊥AB,∴CE=DE=12CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE=√52−42=3,∴BE=OB−OE=5−3=2.故答案为2.14.答案:(70−10√3)解析:解:过D作DF⊥AB,交AB于点F,过C作CG⊥DF,交DF于点G,可得四边形FBED与四边形CGDE为矩形,∴FB=CG=DE=10m,∵AB=80m,∴AF=AB−FB=80−10=70m,在Rt△AFD中,tan45°=AFFD=1,即AF=FD=70m,在Rt△CGD中,tan30°=CGDG ,即10DG=√33,解得:DG=10√3m,∴BC=FG=FD−DG=(70−10√3)m,故答案为:(70−10√3)过D作DF⊥AB,交AB于点F,过C作CG⊥DF,交DF于点G,可得四边形FBED与四边形CGDE为矩形,由AB−BF求出AF的长,在直角三角形AFD中,利用锐角三角函数定义求出FD的长,在直角三角形CGD中,利用锐角三角函数定义求出GD的长,由FD−DG求出FG的长,即为BC的长.此题考查了解直角三角形的应用−仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.15.答案:C解析:解:∵A线路公交车用时不超过50分钟的可能性为25+15+30100=0.7,B线路公交车用时不超过50分钟的可能性为18+32+10100=0.6,C线路公交车用时不超过50分钟的可能性为31+9+37100=0.77,∴C线路上公交车用时不超过50分钟的可能性最大,故答案为:C.根据给出的数据先分别计算出用时不超过50分钟的可能性,再进行比较即可得出答案.本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.16.答案:122n−1解析:解:记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,∵s1=14⋅s=122⋅s,s2=14⋅14s=124⋅s,s3=126⋅s,∴s n=122n ⋅s=122n⋅12⋅2⋅2=122n−1,故答案为12.记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,求出s1,s2,s3,探究规律后即可解决问题.本题考查三角形的中位线定理,三角形的面积等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.17.答案:解:(1)原式=2+√3+1−2×12+3−π=5+√3−π;(2){2x −7<3(x −1)①5−12(x +4)≥x② 解不等式①,得x >−4,解不等式②,得x ≤2,∴不等式组的解集为−4<x ≤2.解析:(1)原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的性质计算,即可得到结果;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解二元一次方程组与一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.18.答案:解:{7x <8+9x①x+12<1②, ∵解不等式①得:x >−4,解不等式②得:x <1,∴原不等式组的解集为:−4<x <1,∴不等式组的整数解是:−3,−2,−1、0.解析:先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能求出不等式组的解集.19.答案:解:(1)如图所示,点P 即为所求:(2)∵CD=10,DE=2,∴CE=8,∵BC=AD=6,∴BE=10,则OP=OB=5,BC=3,∵BQ=CQ=12∴OQ=4,则PQ=9,∴PC=√CQ2+PQ2=√32+92=3√10.解析:(1)作BC的垂直平分线,交BE于点O,以O为圆心,OB为半径作圆,交垂直平分线于点P,则点P为所求.(2)先根据AD=6,CD=10,DE=2知CE=8,BE=10,从而得OB=OP=5,再由BQ=CQ=1BC=3得OQ=4,再根据勾股定理求解可得.2本题考查作图−复杂作图,解题的关键是掌握圆周角定理、线段垂直平分线的尺规作图、矩形的性质及勾股定理等知识点.20.答案:解:(1)由一元二次方程x2−4x+k=0有两个不相等的实数根,得△=b2−4ac=(−4)2−4k>0,解得k<4;(2)由k是符合条件的最大整数,且一元二次方程x2−4x+k=0,得x2−4x+3=0,解得x1=1,x2=3,一元二次方程x2−4x+k=0与x2+mx−1=0有一个相同的根,当x=1时,把x=1代入x2+mx−1=0,得1+m−1=0,解得m=0,,当x=3时,把x=3代入x2+mx−1=0,得9+3m−1=0,解得m=−83综上所述:如果k是符合条件的最大整数,且一元二次方程x2−4x+k=0与x2+mx−1=0有一个相同的根,m=0或−8.3解析:本题考查了根的判别式,解一元二次方程.(1)根据方程有两个不等实数根,可得判别式大于零,根据解不等式,可得答案;(2)根据解方程,可得x2−4x+k=0的解,根据解相同,把方程的解代入,可得关于m的一元一次方程,解一元一次方程,可得答案.21.答案:(1)证明:∵AE//BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,BD=3,∴AC⊥BD,OD=OB=12∵∠ADB=30°,∴AD=2AO,在Rt△AOD中,(2AO)2−AO2=OD2,3AO2=32,AO=√3,∴AD=2√3.解析:本题考查了菱形的判定与性质、平行线的性质、等腰三角形的判定、平行四边形的判定、勾股定理等知识;熟练掌握菱形的判定与性质是解决问题的关键.(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC ,证出四边形ABCD 是平行四边形,即可得出结论;(2)由菱形的性质得出AC ⊥BD ,OD =OB =12BD =3,再由勾股定理即可得出AD 的长. 22.答案:解:(1)∵直线y =−x +1与函数y =kx 的图象交于A(−2,a),把A(−2,a)代入y =−x +1解得a =3,∴A(−2,3).把A(−2,3)代入y =k x ,解得k =−6;(2)画出函数图象如图解{y =−6x y =−x +1得{x =−2y =3或{x =3y =−2, ∵A(−2,3),∴B(3,−2),根据图象可得:若|x 1|>|x 2|,则0<m <3或−2<m <0.解析:(1)将点A(−2,a)代入y =−x +1,得出点A 的坐标,再代入函数y =kx ,即可求出k 的值;(2)求出点B 的坐标,结合函数的图象即可求解.本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键. 23.答案:(1)证明:连接OB ,∵OB=OD,∴∠OBD=∠ODB,∵CD是⊙O的直径,∴∠CBD=90°,又∵∠ABD=∠C,∴∠ABO=∠ABD+∠DBO=∠C+∠BDC=90°,∴OB⊥AB ∴AB是⊙O的切线;(2)设⊙O的半径为r.在Rt△ABO中,∠ABO=90°,∴AB2+OB2=AO2,即16+r2=(r+2)2,解得:r=3,又∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴BDBC =ADAB=12,∴tanC=BDCB =12.解析:本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.(1)连接OB,如图,利用圆周角定理得∠CBD=90°,再利用∠OBC=∠C=∠ABD得到∠ABD+∠OBD=90°,然后根据切线的判定定理得到结论;(2)根据勾股定理得到半径,然后根据三角函数的定义即可得到结论.24.答案:(1)35,0.2;∴m=100×0.35=35,n=20÷100=0.2,补全图形如下:(2)80≤x<90;(3)该校参加这次比赛的800名学生中成绩“优”等的约有800×0.25=200(人).解析:解:(1)∵被调查的总人数为5÷0.05=100,故答案为:35,0.2;统计图见答案;(2)∵中位数是第50、51个数据的平均数,且第50、51个数据均落在80≤x<90内,∴中位数会落在80≤x<90内,故答案为:80≤x<90;(3)见答案.(1)先由分数段50≤x<60的人数及其频率求得总人数,再根据频率=频数÷总人数可求得m、n的值,据此即可补全直方图;(2)根据中位数的定义求解可得;(3)总人数乘以样本中第5组的频率即可得.本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.答案:(1)4.62)根据题意,画出函数图象如下图:(3)9≤C≤12解析:解:(1)经过测量,x=2时,y值为4.6(2)见答案;(3)根据图象,可以发现,y的取值范围为:3≤y≤6∵C=6+y故答案为:9≤C≤12解答本题需要动手操作,在细心测量的基础上,描点、连线画出函数图象,再根据观察找到函数值得取值范围.本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.26.答案:解:(1)∵二次函数y=ax2−2ax+1(a>0)的对称轴为x=b,∴b=2a=1.2a∵点A(−2,m)在直线y=−x+3上,∴m=2+3=5;(2)∵点D(3,2)在二次函数y=ax2−2ax+1(a>0)上,∴2=a×32−2a×3+1,∴a=1;3(3)∵当x=−3时,y=−x+3=6,∴当(−3,6)在y=ax2−2ax+1(a>0)上时,6=a×(−3)2−2a×(−3)+1,∴a=1.3又∵当x=−1时,y=−x+3=4,∴当(−1,4)在y=ax2−2ax+1(a>0)上时,4=a×(−1)2−2a×(−1)+1,∴a=1.<a<1.∴13=1.将A(−2,m)代入y=−x+3,即可求出m=2+3=5;解析:(1)根据二次函数的性质,可得b=2a2a(2)将D(3,2)代入y=ax2−2ax+1,即可求出a的值;.再把x=−1 (3)把x=−3代入y=−x+3,求出y=6,把(−3,6)代入y=ax2−2ax+1,求出a=13代入y=−x+3,求出y=4,把(−1,4)代入y=ax2−2ax+1,求出a=1.进而得出a的取值范围.本题考查了二次函数、一次函数的性质,函数图象上点的坐标特征,掌握点在直线上,则点的坐标满足函数的解析式是解题的关键.27.答案:PD=PA BD=BP+AB解析:(1)①解:如图1中,连接AC′.∵△ABC是等边三角形,∴∠ABC=60°,∵点C′与点C关于AB对称,∴∠C′BA=∠CBA=60°,BC′=BC=BA,∴△ABC′是等边三角形,∵PB=PC′,∴PA⊥BC′,且∠APD=60°,∴∠BPD =30°,且∠PBD =120°∴∠BDP =∠BPD =30°,∴PB =BD ,且∠ABC =∠ABC′=60°,AB =AB ,∴△ABD≌△ABP(SAS)∴AP =AD ,且∠APD =60°,∴△APD 是等边三角形,∴AP =PD ,故答案为AP =PD .②证明:如图2中,作∠BPE =60°交AB 于点E .∵△ABC 是等边三角形,∴∠ABC =60°,∵点C′与点C 关于AB 对称,∴∠C′BA =∠CBA =60°=∠BPE ,∴∠PEB =60°.∴△PBE 是等边三角形,∴PB =PE ,AEP =120°=∠PBD .∵∠BPD +∠DPE =60°,∠APE +∠DPE =60°,∴∠BPD =∠APE ,在△PBD 和△PEA 中,{∠BPD =∠APE PB =PE ∠PBD =∠PEA∴△PBD≌△PEA(ASA).∴PD =PA .(2)①解:补全图形,如图3所示:②解:结论:BD=BP+AB.理由:如图3中,在BD上取一点E,使得BE=PB.∵∠EBP=60°,BE=BP,∴△EBP是等边三角形,由(1)可知:△PAD是等边三角形,∴∠BPE=∠APD=60°,∴∠APB=∠EPD,∵PB=PE,PA=PD,∴△BPA≌△EPD(SAS),∴AB=DE,∴BD=BE+ED=BP+AB.故答案为BD=BP+AB.(1)①如图1中,连接AC′,可证△ABC′是等边三角形,由PB=PC′,推出PA⊥BC′,可求∠BDP=∠BPD=30°,可得PB=PD,由“SAS”可证△ABD≌△ABP,可得AP=AD,由等边三角形的性质可求解;②如图2中,作∠BPE=60°交AB于点E,只要证明△PBD≌△PEA(ASA)即可解决问题;(2)①根据要求画出图形即可解决问题;②结论:BD=BP+AB.如图3中,在BD上取一点E,使得BE=PB.只要证明△BPA≌△EPD(SAS),即可解决问题.本题是几何变换综合题,考查等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.28.答案:(1)①1,3;②如图1中,设直线l交x轴,y轴于点P,Q,作OH⊥PQ于H,OH交⊙O于G.由题意:P(125b,0),Q(0,b),∴OP=125|b|,OQ=|b|,PQ=135|b|,∵S△POQ=12⋅OP⋅OQ=12⋅PQ⋅OH,∴OH=1213|b|,∵直线l:y=−512x+b与⊙O的“距离”d(l,⊙O)=3413,∴1213|b|−2=3413,∴b=±5.(2)4或0≤m≤4−2√2或4+2√2解析:解:(1)①如图1中,连接OB交⊙O于点E,设⊙O交y轴于点F.由题意:d(A,⊙O)=AF=2−1=1,∵B(4,3),∴OB=5,d(B,⊙O)=BE=OB−OE=5−2=3,故答案为1,3.②见答案.(2)如图2中,设AC交x轴于E.∵d(⊙M,△ABC)=1,∴当m=−4时,⊙M1满足条件,当m=0时,⊙M2满足条件,假设⊙M3满足条件,作M3H⊥AC,由题意HM3=HE=2,∴EM3=2√2,∴M3(4−2√2,0),∴m=4−2√2.观察图象可知:当0≤m≤4−2√2时,⊙M满足条件,假设⊙M4满足条件,作M4G⊥AC于G,由题意;GM4=GE=2,∴EM4=2√2,∴M4(4+2√2,0),∴m=4+2√2,综上所述,满足条件的m的值为−4或0≤m≤4−2√2或4+2√2.故答案为4或0≤m≤4−2√2或4+2√2.(1)①根据图形M,N间的“距离”的定义即可解决问题;x+b与⊙O的“距②设直线l交x轴,y轴于点P,Q,作OH⊥PQ于H,OH交⊙O于G.根据y=−512,构建方程即可解决问题;离”d(l,⊙O)=3413(2)如图2中,设AC交x轴于E.分四种情形分别求解即可解决问题;本题属于一次函数综合题,考查了点与圆的位置关系,直线与圆的位置关系,图形M,N间的“距离”的定义等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会利用特殊位置解决问题,属于中考压轴题.。

2020年北京密云区九年级中考数学一模试卷带讲解

2020年北京密云区九年级中考数学一模试卷带讲解
等级
评价数量
APP
五星
四星
三星
二星
一星
合计

562
286
79
48
25
1000

517
393
52
21
17
1000

504
210
136
116
34
1000
(说明:网上对于口语APP的综合评价从高到低依次为五星、四星、三星、二星和一星).
小明选择________(填“甲”、“乙”或“丙”)款英语口语APP,能获得良好口语辅助练习(即评价不低于四星)的可能性最大.
5.实数 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )
A. B. C. D.
【5题答案】
C
【分析】根据数轴判断出 的正负情况以及绝对值的大小,然后解答即可.
【详解】由图可知, ,且 ,
∴ , , , ,
∴关系式不成立的是选项C.
故选C.
【点睛】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.
选择丙款口语APP获得良好口语辅助练习(即评价不低于四星)的可能ቤተ መጻሕፍቲ ባይዱ为 ,
∵0.91>0.848>0.714,
∴选择乙款英语口语APP,能获得良好口语辅助练习(即评价不低于四星),乙的可能性最大.
故答案为:乙.
【点睛】本题考查简单概率的计算及比较可能性大小注意掌握可能性等于所求情况数与总情况数之比.
16.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和1D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2F2,如图(3)中阴影部分;如此下去…,则正六角星形AnFnBnDnCnEnFn的面积为_______.

2019年北京市密云县中考数学一模试卷及答案(word解析版)

2019年北京市密云县中考数学一模试卷及答案(word解析版)

北京市密云县2019年中考数学一模试卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的1.(4分)(2019•密云县一模)﹣的倒数是()解:∵(﹣)的倒数是﹣3.(4分)(2019•密云县一模)在下列四个黑体字母中,既是轴对称图形,又是中心对称图B4.(4分)(2019•密云县一模)函数中,自变量x的取值范围是()5.(4分)(2019•密云县一模)在一个不透明的袋子里装有3个黑球和2个白球,他们除颜B,.B7.(4分)(2019•密云县一模)某射击运动员在一次射击练习中,成绩(单位:环)记录如×8.(4分)(2019•密云县一模)如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的距离为S,则S关于t的函数图象大致为()B二、填空题(本题共16分,每小题4分)9.(4分)(2019•密云县一模)分解因式:a3﹣2a2+a=a(a﹣1)2.10.(4分)(2019•密云县一模)已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为3πcm2.=11.(4分)(2019•密云县一模)将一副三角板按图中方式叠放,则角α的度数为75°.12.(4分)(2019•密云县一模)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==×(﹣);(2)求a1+a2+a3+a4+…+a100的值为.=×)=×﹣)=×﹣)=×﹣)=×﹣)故答案为:,×﹣×﹣+(﹣×﹣×+﹣+﹣)×).故答案为:.三、解答题(本题共30分,每小题5分)13.(5分)(2019•密云县一模)计算:.14.(5分)(2019•密云县一模)解不等式:5(x﹣2)+8<6(x﹣1)+7.15.(5分)(2019•密云县一模)已知(a≠b),求的值.=,通分得出﹣,推出,化简得,代入求出即可.+=,=﹣,﹣,,,是解此题的关键,用了整体代入的方法(即把16.(5分)(2019•密云县一模)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.,17.(5分)(2019•密云县一模)如图,已知直线L1经过点A(﹣1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式.(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)由题意得.××18.(5分)(2019•密云县一模)某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有AB两个制衣间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用了20天完成,求A、B两车间每天分别能加工多少件.量关系可列出方程++四、解答题(本题共20分,每小题5分)19.(5分)(2019•密云县一模)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD 的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.AD EC=BCAE=4=3220.(5分)(2019•密云县一模)如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.21.(5分)(2019•密云县一模)某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图.请根据图中所给的信息解答下列问题:(1)这次评价中,一共抽查了560名学生;(2)请将条形统计图补充完整;(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?×=4.822.(5分)(2019•密云县一模)如图,长方形制片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁减和拼图第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)所拼成得四边形是什么特殊四边形?(2)则拼成的这个四边形纸片的周长的最小值是多少?五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2019•密云县一模)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x ﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.y=,可得<﹣(﹣,﹣,即可得=,,;)﹣﹣﹣﹣,﹣k=,==±24.(7分)(2019•密云县一模)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.BE=AB=2BE=1的距离为PH=PM=PN==×=,,,MC=MN=MP=,)时,25.(8分)(2019•密云县一模)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.,根据相似的性质得到:,,时,点,数学试卷。

北京市密云县2019-2020学年中考数学模拟试题含解析

北京市密云县2019-2020学年中考数学模拟试题含解析

北京市密云县2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各式中,不是多项式2x 2﹣4x+2的因式的是( ) A .2B .2(x ﹣1)C .(x ﹣1)2D .2(x ﹣2)2.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( ) A .0.96a 元B .0.972a 元C .1.08a 元D .a 元3.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作CE ∥x 轴交双曲线于点E ,连接BE ,则△BCE 的面积为( )A .5B .6C .7D .84.估计624的值应在( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间5.如图,已知点A (1,0),B (0,2),以AB 为边在第一象限内作正方形ABCD ,直线CD 与y 轴交于点G ,再以DG 为边在第一象限内作正方形DEFG ,若反比例函数xky =的图像经过点E ,则k 的值是 ( )(A )33 (B )34 (C )35 (D )366.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是( )A.∠ABD=∠C B.∠ADB=∠ABC C.AB CB BD CD=D.AD ABAB AC=7.方程2131xx+=-的解是()A.2-B.1-C.2D.48.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>09.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等边三角形D.△BEF是等腰三角形10.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.2411.设x1,x2是方程x2-2x-1=0的两个实数根,则2112x xx x+的值是( )A.-6 B.-5 C.-6或-5 D.6或512.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.14.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=43,AC=5,则AB的长____.15.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1.将矩形纸片折叠,使点B与点P 重合,折痕所在直线交矩形两边于点E,F,则EF长为________.16.9的算术平方根是.17.因式分解:2m2﹣8n2= .18.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?20.(6分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE 交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.21.(6分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C 点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.22.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.23.(8分)为了提高中学生身体素质,学校开设了A :篮球、B :足球、C :跳绳、D :羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.24.(10分)如图,已知⊙O 的直径AB=10,弦AC=6,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E .求证:DE 是⊙O 的切线.求DE 的长.25.(10分)(1)(﹣2)2+2sin 45°﹣11()182-⨯(2)解不等式组523(1)131322x x x x +>-⎧⎪⎨-≤-⎪⎩,并将其解集在如图所示的数轴上表示出来.26.(12分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 交于点E ,点F 在边AB 上,连接CF 交线段BE 于点G ,CG 2=GE•GD .求证:∠ACF=∠ABD ;连接EF ,求证:E F•CG=EG•CB .27.(12分)如图,在ABC V 中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O e 交BC 于点G ,交AB 于点F ,FB 恰为O e 的直径.求证:AE 与O e 相切;当14cos 3BC C ==,时,求O e 的半径. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】原式分解因式,判断即可. 【详解】原式=2(x 2﹣2x+1)=2(x ﹣1)2。

2020北京密云初三一模数学含答案

2020北京密云初三一模数学含答案

2020北京密云初三一模数学 2020.5考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2B..铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1. 下列四个角中,有可能与70°角互补的角是()2. 5G是第五代移动通信技术,5G网络下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需1秒.将1300000用科学记数法表示应为()A.51310⨯ B.51.310⨯ C.61.310⨯ D.71.310⨯3. 下列各式计算正确的是()A.326•a a a= B.5510a a a+= C. D.22(1)1a a-=-4.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.科克曲线 B.笛卡尔心形线 C.赵爽弦图 D.斐波那契螺旋线5.实数a,b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A. a-5 > b-5 B.-a > -b()33928a a=--C . 6a > 6bD .a -b > 06.如图,点A ,B 是正方体上的两个顶点,将正方体按图中所示方式展开,则在展开图中B 点的位置为( )A .1B B .2BC .3BD .4B7. 《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉. 问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打岀来的谷子. 问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x 斗谷子,下等稻子每捆打y 斗谷子,根据题意可列方程组为( )A .B .C .D .8. 据统计表明,2019年中国电影总票房高达642.7亿元,其中动画电影发展优势逐渐显现出来.下面的统计表反映了六年来中国上映的动画电影的相关数据:2014—2019年中国动画电影影片数量及票房统计表年份 国产动画影片数量 (单位:部)国产动画影片票房 (单位:亿元) 进口动画影片数量 (单位:部) 进口动画影片票房(单位:亿元) 2014 21 11.4 18 19.5 2015 26 19.8 14 24.2 2016 24 13.8 24 57.0 2017 16 13.0 21 36.8 2018 21 15.8 22 25.0 2019 3170.954244.09(以上数据摘自《中国电影产业市场前瞻与投资战略规划分析报告》) 根据上表数据得出以下推断,其中结论不正确...的是( ) A .2017年至2019年,国产动画影片数量均低于进口动画影片数量 B .2019年与2018年相比,中国动画电影的数量增加了50%以上3610512x y y x +=⎧⎨+=⎩3610512x y y x -=⎧⎨-=⎩3610512y x x y +=⎧⎨+=⎩3610512y xx y -=⎧⎨-=⎩C.2014年至2019年,中国动画电影的总票房逐年增加D.2019年,中国动画电影的总票房占中国电影总票房的比例不足20% 二、填空题(本题共16分,每小题2分)9. 请写出一个绝对值大于2的负无理数:.若代数式X+1x−3有意义,则x的取值范围是.11.在如图所示的几何体中,其三视图中有三角形的是.(写出所有正确答案的序号)12. 化简2b a baa a⎛⎫--÷⎪⎝⎭的结果是.13. 如图,AB为⊙O直径,点C为⊙O上一点,点D为AĈ的中点,且OD与AC相交于点E,若⊙O的半径为4,∠CAB=30°,则弦AC的长度为.14.为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为30°,若亮亮身高1.70米,则无人机距离地面的高度约为米.(结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732)15. 为提升英语听力及口语技能,小明打算在手机上安装一款英语口语APP辅助练习.他分别从甲、乙、丙三款口语APP中随机选取了1000条网络评价进行对比,统计如下:等级评价数量APP五星四星三星二星一星合计甲562 286 79 48 25 1000乙517 393 52 21 17 1000丙504 210 136 116 34 1000(说明:网上对于口语APP的综合评价从高到低,依次为五星、四星、三星、二星和一星).小明选择(填“甲”、“乙”或“丙”)款英语口语APP ,能获得良好口语辅助练习(即评价不低于四星)的可能性最大.16. 如图16-1,将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1.取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图16-2中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图16-3中阴影部分......如此下去,则正六角星形A n F n B n D n C n E n的面积为.三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分)17.计算:101()(1)2cos6092π-++-+18.解不等式组,并写出它的所有整数解.19.下面是小菲设计的“作一个角等于已知角的二倍”的尺规作图过程.已知:△ABC中,AC>BC.求作:∠ADB,使得∠ADB=2∠C.作法:如图,分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧交于M、N点,作直线MN;分别以点A和点B为圆心,大于12AB的长为半径53291032x xxx-≤+⎧⎪⎨+>⎪⎩作弧,两弧交于P、Q点,作直线PQ,MN和PQ交于点D;●连接AD和BD;❍以点D为圆心,AD的长为半径作⊙D.所以∠ADB=2∠C.根据小菲设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接CD∵MN和PQ分别为AC、AB的垂直平分线,∴CD=AD= .∴⊙D是△ABC的外接圆.∵点C是⊙D上的一点,∴∠ADB=2∠C.()(填推理的依据)20.已知:关于x的一元二次方程x2- 2x + m -1= 0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为非负整数..,求m的值.....,且该方程的根都是整数21.如图,在Rt△ABC中,∠ACB=90°.CD⊥AB,AF平分∠CAB,交CD于点E,交BC于点F.过点F作FG⊥AB交AB于点G,连接EG.(1)求证:四边形CEGF是菱形;(2)若∠B=30°,AC=6,求CE的长.22. 如图,在平面直角坐标系xOy 中,直线l :的图象与反比例函数的图象交于点A (3,m ).(1)求m 、k 的值;(2)点P (x p ,0)是x 轴上的一点,过点P 作x 轴的垂线,交直线l 于点M ,交反比例函数ky x=(0x >)的图象于点N . 横、纵坐标都是整数的点叫做整点.记ky x=(0x >)的图象在点A ,N 之间的部分与线段AM ,MN 围成的区域(不含边界)为W .① 当x p =5时,直接写出区域W 内的整点的坐标为 ; ② 若区域W 内恰有6个整点,结合函数图象,求出x p 的取值范围.23.如图,AB 为⊙O 的直径,点C 、点D 为⊙O 上异于A 、B 的两点,连接CD ,过点C 作CE ⊥DB ,交DB 的延长线于点E ,连接AC 、AD .(1)若∠ABD =2∠BDC ,求证:CE 是⊙O 的切线.(2)若⊙O,求AC 的长.1y x =-(0)ky x x=>1tan 2BDC ∠=24. 2020年新冠肺炎疫情发生以来,我市广大在职党员积极参与社区防疫工作,助力社区坚决打赢疫情防控阻击战。

北京密云区中考一模数学试卷及答案(word版)

北京密云区中考一模数学试卷及答案(word版)

2019北京密云区中考一模数学试卷及答案(word版)2019年4月北京密云初三数学一模考了哪些题目?数学网中考频道第一时间为大家整理2019北京密云一模数学(即初三下册期中考试)试卷及答案,更多一模试卷及答案详见2019北京各区中考一模试卷及答案(初三下期中试卷)汇总。

2019年北京房山区中考一模数学试卷及答案(word版)2019北京西城区中考一模数学试卷及答案2019北京东城区中考一模数学试卷及答案2019北京朝阳区中考一模数学试卷及答案2019北京海淀区中考一模数学试卷及答案2019北京石景山区中考一模数学试卷及答案2019北京丰台区中考一模数学试卷及答案2019北京顺义区中考一模数学试卷及答案2019北京通州区中考一模数学试卷及答案2019北京密云区中考一模数学试卷及答案2019北京怀柔区中考一模数学试卷及答案2019北京燕山区中考一模数学试卷及答案2019北京大兴区中考一模数学试卷及答案其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

2019北京门头沟区中考一模数学试卷及答案2019北京平谷区中考一模数学试卷及答案“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

北京市密云县2019-2020学年中考数学第一次调研试卷含解析

北京市密云县2019-2020学年中考数学第一次调研试卷含解析

北京市密云县2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是( )A .B .C .D .2.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A .5sin αB .5sin αC .5cosαD .5cos α3.若点M (﹣3,y 1),N (﹣4,y 2)都在正比例函数y=﹣k 2x (k≠0)的图象上,则y 1与y 2的大小关系是( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .不能确定4.若分式11a -有意义,则a 的取值范围是( ) A .a≠1 B .a≠0 C .a≠1且a≠0 D .一切实数5.如图,梯形ABCD 中,AD ∥BC ,AB=DC ,DE ∥AB ,下列各式正确的是( )A .AB DC =u u u r u u u r B .DE DC =u u u v u u u v C .AB ED =u u u v u u u v D .AD BE =u u u v u u u v6.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .7.如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC=6,则DE 的长为( )A .2B .3C .4D .68.已知函数y =ax 2+bx+c 的图象如图所示,则关于x 的方程ax 2+bx+c ﹣4=0的根的情况是A.有两个相等的实数根B.有两个异号的实数根C.有两个不相等的实数根D.没有实数根9.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是()A.4 B.1 C.2 D.310.不等式5+2x <1的解集在数轴上表示正确的是( ).A.B.C.D.11.下列大学的校徽图案是轴对称图形的是()A.B.C.D.12.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.14.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是______.15.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x≥0)与22x y 5=(x≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DE AB=_.16.如图,已知ABC V ,D 、E 分别是边AB 、AC 上的点,且1.3AD AE AB AC ==设AB a u u u r r =,DE b u u u r r =,那么AC =u u u r ______.(用向量a r 、b r 表示)17.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则线段A′C 长度的最小值是______.18.分解因式:32a 4ab -= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图中m的值为_______________.(2)求这40个样本数据的平均数、众数和中位数:(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。

2019-2020学年密云区初三一模数学试卷含答案

2019-2020学年密云区初三一模数学试卷含答案

2019-2020学年届初三一模考试考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、名称、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2B..铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1. 2019年1月3日上午10点26分,中国嫦娥四号探测器成功在月球背面软着陆,成为人类首次在月球背面软着陆的探测器,首次实现月球背面与地面站通过中继卫星通信.月球距离地球的距离约为384000km,将384000用科学记数法表示为A. 53.8410⨯ B. 338410⨯ C. 33.8410⨯ D. 60.38410⨯2.下图是某个几何体的侧面展开图,则该几何体为A.棱柱B.圆柱C.棱锥D.圆锥3.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是cba5421-1-2-3-4-53A.a+c>0B. |a|<|b|C.bc>1D. ac>04.如果2350m m--=,那么代数式29().3mmm m-+的值是()A.﹣5 B.﹣1 C.1 D.55.正多边形内角和为540︒,则该正多边形的每个外角的度数为A.36︒B.72︒C.108︒D.360︒6.如图是北京地铁部分线路图.若车公庄坐标为(-3,3),崇文门站坐标为(8,-2),则雍和宫站的坐标为A.(8,6)B.(6,8)C.(-6,-8)D.(-8,-6)根据上表数据得出以下推断,其中结论正确的是A. Huawei 和Xiaomi 2018年第四季度市场份额总和达到25%B. 2018年第四季度比2017年第四季度市场份额增幅最大的是 Apple 手机C. Huawei 手机2018年第四季度比2017年第四季度市场出货量增加18.4万台D. 2018年第四季度全球智能手机出货量同比下降约10%8.某通讯公司推出三种上网月收费方式.这三种收费方式每月所收的费用y (元)与上网时间x (小时)的函数关系如图所示,则下列判断错误..的是A.每月上网不足25小时,选择A 方式最省钱B.每月上网时间为30小时,选择B 方式最省钱C.每月上网费用为60元,选择B 方式比A 方式时间长D.每月上网时间超过70小时,选择C 方式最省钱)y (二、填空题(本题共16分,每小题2分)9. 如图所示的网格是正方形网格,则线段AB 和CD 的长度关系为:AB___ CD (填“>”,“<”或“=”)ABCD10.分式2xx - 有意义,则x 的取值范围是____________. 11.已知21x y =⎧⎨=⎩是方程3ax by +=的一组解(0,0a b ≠≠),任写出一组符合题意的a 、b 值,则a =_______,b =_______.12.比例规是一种画图工具,利用它可以把线段按一定比例伸长或缩短.它是由长短相等的两脚AD 和BC 交叉构成的,其中AD 与BC 相交于点O.如图,OA=OB,CD=2,AB=2CD ,OC=3,则OB=_______.ODCBA13.新能源汽车环保节能,越来越受到消费者的喜爱.某品牌新能源汽车2017年销售总额为500万元,2018年销售总额为960万元,2018年每辆车的销售价格比2017年降低1万元,2018年销售量是2017年销售量的2倍.求2018年每辆车的销售价格是多少万元?若设2018年每辆车的销售价格x 万元,则可列出方程为 .14.一般地,如果在一次实验中,结果落在区域D 中的每一点都是等可能的,用A 表示“实验结果落在区域D 中的一个小区域M ”这个事件,那么事件A 发生的概率为()P AM D =的面积的面积,下图是一个正方形及其内切圆,随机的向正方形内投一粒米,落在圆内的概率为______________.15.如图,AB 为⊙O 的直径,C 、D 是⊙O 上两点,AC=BC ,AD 与CB 交于点E.25DAB ∠=︒,则E ∠=_______.16.在平面直角坐标系xoy 中,点A (-1,2),B (-2,1)将△AOB 绕原点顺时针旋转90°后再沿x 轴翻折,得到DOE ∆,其中点A 的对应点为点D ,点B 的对应点为点E.则D 点坐标为______________.上面由△AOB 得到DOE ∆的过程,可以只经过一次图形变化完成.请你任写出一种只经过一次图形变化可由△AOB 得到DOE ∆的过程__________________________.三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分) 17.下面是小明设计的“已知底和底边上的高作等腰三角形”的尺规作图过程. 已知:如图1,已知线段a 和线段b.求作:等腰三角形ABC ,使得AC=BC ,AB=a ,CD ⊥AB 于D ,CD=b.图2图1ba作法:①如图2,作射线AM ,在AM 上截取AB=a ; ②分别以A 、B 为圆心,大于12AB 长为半径作弧,两弧交于E 、F 两点; ③连结EF ,EF 交AB 与点D ;④以点D 为圆心,以b 为半径作弧交射线DE 于点C. ⑤连结AC ,BC.所以,ABC ∆为所求作三角形. 根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留痕迹); (2)完成下面的证明. Q AE=BE=AF=BF ,∴四边形AEBF 为______________. Q AB 与EF 交于点D ,∴EF ⊥AB ,AD=________. Q 点C 在EF 上,∴BC=AC (填写理由:______________________________________)18. 计算:116cos3012()|32|2-︒--+- .19.解不等式组:31)12523x x x x ->+⎧⎪+⎨<+⎪⎩(20.如图,菱形ABCD 中,AC 与BD 交于点O.DE//AC ,12DE AC =. (1)求证:四边形OCED 是矩形;(2)连结AE ,交OD 于点F ,连结CF.若CF=CE=1,求AE 长.OEDCBA21. 已知方程20x mx n ++=(1)当n=m-2时,求证:方程总有两个不相等的实数根.(2)若方程有两个不相等实数根,写出一组满足条件的m ,n 值,并求出此时方程的根.22. 为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:一周诗词诵背数量 3首 4首 5首 6首 7首 8首 人数13561015请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ; (2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23. 已知直线3y kx k =+ 与函数(0)my x x=> 交于A (3,2). (1)求k ,m 值.(2)若直线3y kx k =+与x 轴交于点P ,与y 轴交于点Q.点B是y 轴上一点,且ABQ S ∆=2POQ S ∆.求点B 的纵坐标.24.如图,AB 为⊙O 的直径,E 为OB 中点,过E 作AB 垂线与⊙O 交于C 、D 两点.过点C 作⊙O 的切线CF 与DB 延长线交于点F.(1)求证:CF ⊥DF (2)若OF 长.F25.如图ABC ∆中,30BAC ∠=︒,AB=5cm,AC=,D 是线段AB 上一动点,设AD 长为x cm ,CD 长为y cm (当点A 与点D 重合时,x =0).D CBA小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小慧的探究过程,请补充完整:(1)经过取点、画图、测量,得到 x 与y 的几组对应值,如下表:x /cm 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5y /cm3.5 ____ 2.7 2.3 2.0 1.8 1.7 1.8 2.0 2.3 2.7(说明:补全表格时,结果保留一位小数)(2)在平面直角坐标系x o y 中,描出补全后的表中各组数值所对应的点,并画出函数图象;(3)结合函数图象解决问题,当CD ≥2cm 时,x 的取值范围是____________________.26.已知抛物线2224y x mx m =-+-,抛物线的顶点为P . (1)求点P 的纵坐标.(2)设抛物线x 轴交于A 、B 两点,1122(,),(,)A x y B x y ,21x x >. ①判断AB 长是否为定值,并证明.②已知点M (0,-4),且MA ≥5,求21-x x m +的取值范围.27. 已知ABC ∆为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60︒得到线段CE.连结DE 、BE.(1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作AF EB ⊥交EB 延长线于点F.用等式表示线段EB 、DB 与AF 之间的数量关系并证明.图2DCBA图1A B C D28.在平面直角坐标系xoy 中,已知P(x 1,y 1)Q(x 2,y 2),定义P 、Q 两点的横坐标之差的绝对值与纵坐标之差的绝对值的和为P 、Q 两点的直角距离,记作d(P ,Q).即d(P ,Q)=|x 2-x 1|+|y 2-y 1| 如图1,在平面直角坐标系xoy 中,A (1,4),B (5,2),则d(A ,B)=|5-1|+|2-4|=6.图1(1)如图2,已知以下三个图形: ①以原点为圆心,2为半径的圆;②以原点为中心,4为边长,且各边分别与坐标轴垂直的正方形;③以原点为中心,对角线分别在两条坐标轴上,对角线长为4的正方形.点P 是上面某个图形上的一个动点,且满足(,)2d O P = 总成立.写出符合题意的图形对应的序号____________.(2)若直线(3)y k x =+ 上存在点P 使得(,)2d O P =,求k 的取值范围.(3)在平面直角坐标系xoy 中,P 为动点,且d (O ,P )=3,M e 圆心为M (t ,0),半径为1. 若M e 上存在点N 使得PN=1,求t 的取值范围.备用图1密云区2018-2019学年度第二学期初三零模试题参考答案题号 1 2 3 4 5 6 7 8 1ACCDBACB二、填空题(本题共16分,每小题2分)9. < 10.2x ≠ 11.如1,1a b == (本题答案不唯一) 12. 613.96010001x x =+ 14. 4π15.20︒ 16.(2,-1) ,将△AOB 沿直线y=x 翻折得到△DOE. 三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分)17.(1)..................................2分 Q AE=BE=AF=BF ,∴四边形AEBF 为菱形. ..................................3分 Q AB 与EF 交于点D , ∴EF ⊥AB ,AD=DB. ..................................4分Q 点C 在EF 上, ∴BC=AC(填写理由:线段垂直平分线上的点到线段两端距离相等) ..................................5分18.原式=116cos3012()|32|2-︒+=363223+- ..................................4分 =0 ..................................5分19. 解不等式组:31)12523x x x x ->+⎧⎪⎨+<+⎪⎩(①②解:由①得3x-3>x+1 .................................1分 解得:x>2.................................2分由②得:2x+5<3x+6 .................................3分 解得:x>-1.................................4分 ∴不等式组的解集为x>2 .................................5分 20.(1)证明:∵四边形ABCD 为菱形 ∴AC ⊥BD ,OA=OC ∴∠DOC=90° ∵DE//AC ,DE=12AC ∵四边形DOCE 为平行四边形 又∵∠DOC=90° ∴四边形DOCE 矩形 .................................2分(2)∵OF//CE ,O 是AC 中点 ∴F 为AE 中点 ∴CF=AF=EF ∵CF=CE=1 ∴CF=1,AE=2在Rt△ACE 中,∠ACE=90°, =.................................5分21.(1)2244(2)m n m m ∆=-=-- =248m m -+ .................................1分=2(2)40m -+>∴方程总有两个不相等的实数根 .................................2分 (2)令m=2,则n=0.................................3分 代入得220x x += 解得120,2x x ==.................................5分22.(1) 6 .................................1分(2)31120093040⨯=(人) .................................3分估计大赛后一个月该校学生一周诗词背6首(含6首)以上的人数为930人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市密云区2020届初三一模考试
数学试卷参考答案及评分标准 2020.05
一、选择题(本题共16分,每小题2分)
二、填空题(本题共16分,每小题2分)
9.; 10.3x ≠; 11.②③; 12.a+b ; 13. 14.10.4 ; 15.乙; 16.
1
4
n . 三、解答题(本题共68分.第17~22题,每题各5分;第23~26题,每题各6分;第27、28题,
每题各7分)
说明:与参考答案不同,但解答正确相应给分. 17.原式=1
21232
+-⨯+ ………………………………4分 =3-1+3
=5 ………………………………5分
18.解: 由①得:4x ≤, ………………………1分 由②得:2x >, ………………………2分 ∴不等式组的解集为:24x <≤ ………………………4分 ∴整数解有:3、4 ………………………5分
19. (1)
………………………………3分
(2) BD ; ………………………………4分 一条弧所对的圆周角是它所对的圆心角的一半 ………………………………5分
20.(1)解:△=(-2)2-4(m-1)
= 8-4m ………………………………1分∵方程有两个不相等的实数根
∴8-4m>0
m<2 ………………………………2分(2)解:∵m为非负整数
∴m=0或m=1 ………………………………3分当m=0时,x2-2x-1=0
∵△=8,此时方程的根不是整数,∴m=0舍去………………………………4分
当m=1时,x2-2x=0
方程的两个根均为整数
∴m=1 ………………………………5分
21.(1)证明:∵CD⊥AB,FG⊥AB
∴CD//FG
∴∠CEF=∠EFG
∵ AF平分∠CAB,FC⊥AC,FG⊥AB
∴FC=FG,
∵AF=AF
∴Rt ACF Rt AGF
∆≅∆
∴∠CFE=∠EFG
∴∠CEF=∠CFE
∴CE=CF
∴CE= FG且CE//FG
∴四边形CEGF是平行四边形
∵FC=FG
∴平行四边形CEGF是菱形……………………………3分(2)解:∵Rt ACF Rt AGF
∆≅∆,AC=6
∴AG=AC=6
∵∠B=30°
∴在Rt△ABC中,AB=2AC=12
∴BG=6 ……………………………4分
∴在Rt△FGB中,tan30°=
3
63 FG FG
BG
==
∴FG=CE=23……………………………5分
22.(1)解:m =2,k =6 ………………………………2分
(2)①(4,2) ………………………………3分 ② 当x p =1时,与直线l 的交点M (1,0),与反比例函数图象的交点N (1,6) 此时在x =1这条直线上有5个整点:(1,1)(1,2)(1,3)(1,4)(1,5); ∴ 01p x <<
当x p =6时,与直线l 的交点M (6,5),与反比例函数图象的交点N (6,1)
此时在x =6这条直线上有3个整点:(6,2)(6,3)(6,4)
∴ 67p x <≤
综上所述:01p x <<或 67p x <≤ ………………………………5分
23.(1)证明:连接OC ………………………………1分
∵OC=OA ∴∠OCA =∠OAC ∴∠COB =2∠OAC
∵∠BDC =∠OAC ,∠ABD =2∠BDC ∴∠COB =∠ABD ∴OC // DE
(2)

∵CE ⊥DB ,∠C ED =90° ∴∠OC E =90°,OC ⊥CE
∴CE 是⊙O 的切线 …………………………3分 (2)解:连接BC ………………………………4分 ∵∠BDC=∠BAC ,
∴tan ∠BAC= tan ∠BDC=1
2
∵ AB 是⊙O 的直径 ∴∠BCA=90°

1
2
BC AC = 设BC =x ,AC =2x
∴AB ∵⊙O ∴ x =2
∴AC =2x =4 ………………………………6分
24.解:(1)a =12,b =0.32; ………………………………2分 (2)
………………………………4分
(3)23 ………………………………5分 (4)160 ………………………………6分
25.(1)3.0
………………………………2分 (2)
………………………………4分
(3)2.4或6.6 ………………………………6分
26.(1)x =2 ………………………………1分 (2)解:∵抛物线的对称轴是x =2 ∴顶点在1≤x ≤5范围内 ∵y 的最小值是-1
∴顶点坐标是(2, -1) ………………………………2分 ∵a >0,开口向上
∴x >2时,y 随x 的增大而增大 即x =5时,y 有最大值
∴把顶点(2, -1)代入y=ax 2-4ax +1 4a - 8a +1=-1
a=
1
2
∴ y=
12
x 2
-2x +1 ………………………………3分 ∴ 当x =5时,y =72,即y 的最大值是7
2
………………………………4分
102040及以上
04
8 频数
x /次
x
(3)当x1=-2时,P(-2,5)
把P(-2,5)代入y=ax2-4ax+1
∴4a+8a+1=5,
1
3 a=
当x1=-1时,P(-1,4)
把P(-1,4)代入y=ax2-4ax+1
∴a+4a+1=4,
3
5 a=
∴13
35
a
≤<………………………………6分
27 . (1)①∵点B关于CN的对称点为点D
∴ABC ADC
∆≅∆
∴∠ABC=∠ADC,∠ACB=∠ACD=45°
∴∠BCD =90°
∵AF=AB
∴∠ABC=∠AFB
∴∠AFB =∠ADC
∵∠AFB+∠AFC=180°
∴∠ADC+∠AFC=180°
在四边形AFCD中,∠FAD=90°
∴AF⊥AD………………………………3分

CD CF
+=………………………………4分
解:过点A作AC边的垂线交CB延长线于点P ∴△APC是等腰直角三角形,∠PAC=90°,AP=AC ∵∠PAF+∠FAC=∠DAC+∠FAC =90°
∴∠PAF=∠DAC
∵∠AFB =∠ADC
∴APF ACD
∆≅∆
∴PF=CD
在等腰Rt△APC
中,PF CF
+=
∴CD CF
+=………………………………6分
(2
)CD CF
-=………………………7分
28.(1) D 2 ………………………………1分
(2)设点P (-1,2)的平行于第二、四象限夹角平分线的特征线是y=-x+b ∴1+b=2 b=1
∴点P (-1,2)的平行于第二、四象限夹角平分线的特征线是y=-x+1
∴ A (1,0)
∵△BP A 的面积不小于6 ∴
1
262
AB ⋅⋅=,AB=6
∴B (-5,0)或B (7,0) ………………………………3分
当y=kx+b 经过P (-1,2)和点B (-5,0)时,
250
k b k b -+=⎧⎨
-+=⎩, 1
2k =
当y=kx+b 经过P (-1,2)和点B (7,0)时,
270
k b k b -+=⎧⎨+=⎩,1
4k =-
∴102k <≤且104k -≤<(或者: 11
42
k -≤≤且k ≠0) …………………………5分
(3)2222t -≤≤+ ………………………………7分。

相关文档
最新文档