微积分微分方程练习题及答案

合集下载

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。

2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。

3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。

4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。

答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。

由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。

2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。

因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。

由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。

3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。

4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。

因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。

大学微积分考试题及答案

大学微积分考试题及答案

大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-1, 1)上是:A. 增函数B. 减函数C. 先减后增函数D. 先增后减函数答案:A2. 极限lim (x->0) [sin(x)/x]的值是:A. 0B. 1C. 2D. 无穷大答案:B3. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = cos(x)答案:C4. 曲线y = x^3在点(1, 1)处的切线斜率是:A. 1B. 2C. 3D. 4答案:C5. 定积分∫[0, 1] x dx的值是:A. 0B. 1/2C. 1/3D. 1答案:C6. 微分方程dy/dx = x^2的通解是:A. y = x^3 + CB. y = e^x + CC. y = sin(x) + CD. y = ln(x) + C答案:A7. 函数f(x) = e^x在点x=0处的导数是:A. 0B. 1C. 2D. e答案:B8. 以下哪个级数是收敛的?A. ∑(-1)^n / nB. ∑n^2C. ∑(1/n)D. ∑(1/n^2)答案:D9. 曲线y = ln(x)的拐点是:A. x = 1B. x = eC. x = 0D. 没有拐点答案:D10. 以下哪个选项是正确的泰勒公式展开?A. e^x = ∑x^nB. sin(x) = ∑(-1)^n * x^(2n+1) / (2n+1)!C. ln(1+x) = ∑(-1)^n * x^n / nD. cos(x) = ∑x^(2n) / (2n)!答案:D二、填空题(每题4分,共20分)11. 函数f(x) = x^4 - 4x^3 + 4x^2的驻点是______。

答案:x = 0, x = 312. 极限lim (x->∞) (1 + 1/x)^x的值是______。

答案:e13. 定积分∫[1, e] e^x dx可以通过分部积分法计算,其结果是______。

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案微分方程是数学中非常重要的一门课程,它在许多科学领域中有着广泛的应用。

为了更好地掌握微分方程的解题技巧,下面将给出一些微分方程求解的练习题及其答案。

练习一:一阶线性微分方程1. 求解微分方程:dy/dx + y = 2x解答:首先将该微分方程转化为标准形式:dy/dx = 2x - y然后可以使用分离变量的方法进行求解,将变量分离得到:dy/(2x - y) = dx对等式两边同时积分,得到:∫(1/(2x - y))dy = ∫dx通过对右边的积分,得到:ln|2x - y| = x + C1 (其中C1是常数)将等式两边取e的指数,得到:2x - y = Ce^x其中C = e^C1是一个任意常数,所以方程的通解为:y = 2x - Ce^x (其中C为常数)2. 求解微分方程:dy/dx + 2y = e^x解答:将该微分方程转化为标准形式:dy/dx = e^x - 2y然后使用分离变量的方法进行求解,得到:dy/(e^x - 2y) = dx对等式两边同时积分,得到:∫(1/(e^x - 2y))dy = ∫dx通过对右边的积分,得到:(1/2)ln|e^x - 2y| = x + C2 (其中C2是常数)再次将等式两边取e的指数,得到:e^x - 2y = Ce^2x其中C = e^C2是一个任意常数,所以方程的通解为:y = (1/2)e^x - (C/2)e^2x (其中C为常数)练习二:二阶微分方程1. 求解微分方程:d^2y/dx^2 + 4dy/dx + 4y = 0解答:首先将该微分方程的特征方程写出来:r^2 + 4r + 4 = 0解特征方程,得到特征根为:r = -2由于特征根为重根,所以方程的通解形式为:y = (C1 + C2x)e^(-2x) (其中C1和C2为常数)2. 求解微分方程:d^2y/dx^2 + dy/dx - 2y = 0解答:首先将该微分方程的特征方程写出来:r^2 + r - 2 = 0解特征方程,得到特征根为:r1 = 1,r2 = -2所以方程的通解形式为:y = C1e^x + C2e^(-2x) (其中C1和C2为常数)这里给出了一些微分方程求解的练习题及其答案,通过练习这些题目,相信可以增强对微分方程的理解和掌握。

第六章微积分微分方程初步(含答案)

第六章微积分微分方程初步(含答案)

第六章微积分微分⽅程初步(含答案)微分⽅程初步⼀、单项选择题1.微分⽅程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分⽅程222y x dxdy x +=是( b ) A.⼀阶可分离变量⽅程 B.⼀阶齐次⽅程 C.⼀阶⾮齐次线性⽅程 D.⼀阶齐次线性⽅程3.下列⽅程中,是⼀阶线性微分⽅程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.⽅程x y xy =-'满⾜初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分⽅程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分⽅程y y x ='满⾜1)1(=y 的特解为( a )A.x y =B. c x y +=C.cx y =D.0=y7. 设21,y y 是⼆阶常系数线性齐次⽅程()()0y P x y Q x y '''++=的两个线性⽆关的解,21,C C 是两个任意常数,则下列命题中正确的是( c )(A ) 2211y C y C +是微分⽅程的特解。

(B )2211y C y C +不可能是微分⽅程的通解。

(C )2211y C y C +是微分⽅程的通解。

(D )2211y C y C +不是微分⽅程的解。

8.微分⽅程05))(sin(2''=+-+x y y xy y 是( a )A ⼀阶微分⽅程B ⼆阶微分⽅程C 可分离变量的微分⽅程D ⼀阶线性微分⽅程9.微分⽅程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =⼆、填空题1.微分⽅程34()"30y y y y '++=的阶数为__2____;2.微分⽅程0=+y dxdy 的通解是x y ce -=; 3.微分⽅程02=+'xy y 的通解是2x y ce -=;4.微分⽅程x y y e +'=的通解是()10,0x y e C e C ++=<;5. 微分⽅程03='+''y y x 的通解为 221xC C y +=; 6. n 阶微分⽅程的通解含有__n __个独⽴的任意常数。

微积分练习题及答案

微积分练习题及答案

微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。

在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。

下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。

一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。

答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。

答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。

答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。

答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。

答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。

答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。

2. 求解微分方程dy/dx = e^x。

答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。

3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。

答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。

微积分四章节微分方程章节外习题答案

微积分四章节微分方程章节外习题答案

e
1 dx x(x1)
[
e
1 dx
x(x1) dx
c]
x ( x ln x c ). x1

y(1) 0, c 1,
特解
y x ( x ln x 1).
1 xa
10
p 8 5 .三 .1 . 通 解 y e sin x ( x c ).
2.
dx 1 x ( y 1 ),
5c2 cos 5 x 5c1 sin 5 x )e 2x .
y x 0 0 , y x 0 1 5 , c1 0 , c 2 3 ,
特解
y 3e 2x sin 5 x.
a
24
p 9 0 .二 .4 .解 : r 3 2 r 2 r 0 , r ( r 1)2 0 ,
dt t
dy y ln y y
dx 1
arctan y
(3) dy 1 y2 x 1 y2 .
a
8
p 8 5 .二 .1 .
x yy
y
x2
x1
2
y
2
,
d d
y x
x y yx
y 2 x1
(1) ,
令 u y , 得 dy u x du ,代 入 (1)得
x
dx
dx
du dx
r1 0 , r2 ,3 1 ,
通 解 y c1 (c2 c3 x )e x .
y (c3 c2 c3 x )e x ,c2 c3 c3 x c3
y ( c 2 2 c 3 c 3 x )e x
y 2, x0
y
x0
0,
y
x
0
1,
c1 1,c2 c3 1,

微积分B2练习2+答案

微积分B2练习2+答案

练 习 卷一、选择题1、微分方程(ln )0y y dx xdy -+=的类型是( ).A .可分离变量方程B .一阶线性齐次方程C .一阶线性非齐次方程D .齐次方程 2、方程222240x y z -+=表示的曲面是( ). A .单叶双曲面B .双叶双曲面C .椭圆抛物面D .锥面3、函数z =sin(x 2+y )在点(0,0)处( ).A .无定义B .无极限C .有极限,但不连续D .连续 4、函数2222z x y x y =+-在点(1,1)处的全微分 (1,1)dz 等于( ). A . 0 B . dx dy + C . 22dx dy + D . 22dx dy - 5、更换积分次序12201(,)(,)xx dx f x y dy dx f x y dy -+⎰⎰⎰⎰等于( ). A .120(,)yy dy f x y dx -⎰⎰B .220(,)yydy f x y dx -⎰⎰C .12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰D .1201(,)ydy f x y dx -⎰⎰6、设曲线L为下半圆y =22()Lx y ds +⎰=( ).A .0B .2πC .π-D .π 二、填空题1、在xOy 面内过原点,且与直线215321x y z -+-==-垂直的直线方程为 . 2、设函数(,,)()z u x y z xy =,则点(1,2,1)处的u u u xyz∂∂∂++=∂∂∂ . 3、曲面163222=++z y x 在点)3,2,1(--处的切平面方程是 . 4、22222(,arctan )x y xyf x y dxdy x+≤+⎰⎰化为极坐标下的二次积分为 .5、设f 可微,L 是光滑有向闭曲线取正向,则22()()Lf x y xdx ydy ++=⎰ .6、判别级数∑∞=⋅1!2n nnnn 的敛散性 .三、解答题1、求微分方程2(23)0y dx xy dy -+=的通解.2、设方程2223x y z xyz ++=确定了隐函数(,)z z x y =,求,z z x y∂∂∂∂.3、求函数22(,)(2)=++x f x y e x y y 的极值.4、求二重积分2Dxydxdy ⎰⎰,其中D 由曲线2y x =与直线y x =所围成.5、求曲线积分43224(4)(65)Lx xy dx x y y dy ++-⎰,其中L 为35(1)sin12x ye e π-+-=上由点(2,1)A --至点(3,0)B 的一段弧.6、验证2sin 2sin33cos3cos 2x ydx y xdy -在整个xOy 平面内是某一函数u (x , y )的全微分,并求这样的一个函数u (x , y ).7、求幂级数∑∞=-12)1(n nnx 的收敛域.8、设函数f (t )在[0,)+∞上连续,且满足方程:222299()t x y t f t e f dxdy π+≤=+⎰⎰,又f (0)=1,求f (t ).、选择题:1、A ;2、D ;3、D ;4、A ;5、A ;6、D . 、填空题:1、230x y z==; 2、32ln 2+; 3、323160+-+=x y z ;4、2cos 2202(,)d f r rdr πθπθθ-⎰⎰; 5、0; 6、收敛 .、解答题:1、解:将方程化为223dx x dy y y-=,方程是一阶非齐次线性微分方程, 其中223(),()P y x Q y y y=-=,根据其通解公式有: 2223()dydy yy x ee dy C y---⎰⎰=+⎰2ln 2ln 23()y y e e dy C y -=+⎰=243()y dy C y =+⎰231()y C y=-+1Cy y =-. 2、解:两边分别对x , y 求偏导数, 由2233z z x zyz xy x x ∂∂+=+∂∂,得3223z yz xx z xy∂-=∂-, 由2233z z y zxz xy y y ∂∂+=+∂∂,得3223z xz y y z xy∂-=∂-. 3、解:由方程组得222(2241)0(22)0x x xyf e x y y f e y ⎧=+++=⎪⎨=+=⎪⎩得驻点1(,1)2-,又由1(,1)202xx f e -=>,1(,1)0,2xy f -=1(,1)22yy f e -=,所以2240xx yy xy f f f e ⋅-=>,由判断极值的充分条件知,在点1(,1)2-处函数取得极小值,1(,1)22ef -=-.4、解:用区域D 的草图,边界2,y x y x ==与的交点(0,0),(1,1), 由2{(,)|,01}D x y x y x x =≤≤≤≤,22111222222400011[]()22xx x x Dx ydxdy x dx ydy x dx y x x x dx ===-⎰⎰⎰⎰⎰⎰146571001111121()[]225723535x x dx x x =-=-=⋅=⎰. 5、解:432244,65,P x xy Q x y y =+=-212,P Qxy y x∂∂==∂∂ 曲线积分与路径无关,选取A(-2,-1)到C(3,-1)到B(3,0),43224(4)(65)Lx xy dx x y y dy ++-⎰342421(4)(545)x x dx y y dy --=-+-⎰⎰52335021154[2][]6253x x y y --=-+-=. 6、解:在整个xOy 平面内,2sin 2sin3,3cos3cos 2,P x y Q y x ==-具有一阶连续偏导数,且6sin 2cos3,Q Px y x y∂∂==∂∂ 故所给表达式为某一函数u (x , y )的全微分,取(x 0,y 0)=(0,0),则有(,)(0,0)(,)2sin 2sin33cos3cos20(3cos3cos2)x y xyu x y x ydx y xdy dx y x dy =-=+-⎰⎰⎰0[s i n 3c o s 2]c o s 2si n 3yy x x y =-=-. 7、解:令t =x -1, 级数变为∑∞=12n n n nt .21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ, 所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 发散; 当t =-2时, 级数成为∑∞=-1)1(n n, 收敛.因此级数∑∞=12n nnnt 的收敛域为-2≤t <2. 因为-2≤x -1<2, 即-1≤x <3, 所以原级数的收敛域为[-1, 3).8、解:222339900011()()2()33t t t t f t e d f d e f d πππθρρρπρρρ=+=+⎰⎰⎰,2299()1823()31818()t t f t te f t t te tf t ππππππ'=+⋅⋅=+, 即 29()18()18t f t tf t te πππ'-=为一阶线性非齐次微分方程,222218189999()[18][18]tdttdtt t t t f t e te e dt C e te e dt C ππππππππ--⎰⎰=⋅+=⋅+⎰⎰22992[18](9)t t e tdt C e t C ππππ=+=+⎰,而由f (0)=1,得C =1,所以292()(91)t f t e t ππ=+.。

微积分练习100题及其解答

微积分练习100题及其解答
x 0 t x
2
1
x2

1
解: lim x e
x 0
2
1
lim
x2
et . t t
17.求极限: lim sin x ln x .
x 0
解: lim sin x ln x lim
x 0 x 0
1 ln x tan x sin x x lim lim 0. x 0 csc x x 0 csc x cot x x 1 x 2 1 x . 1 x2 lim x 1 1 x tan 2 1 x x
cos 2x 1 2 sin 2x lim 2 x 0 sin x 2 x sin 2 x x cos 2 x 2 sin 2x 6x cos 2x 2x2 sin 2x ; 2 sin 2x 1 2 x lim x 0 2 sin 2x 3 4 cos 2 x x sin 2 x 2x lim


2.求极限: lim
e x e sin x . x 0 x sin x
( x 0) ,∴ lim
解:∵ e x 1 ~ x
e x e sin x e x sin x 1 lim e sin x 1. x 0 x sin x x0 x sin x
x 0
2
13.求极限: lim
x1
1 1 . 1 x ln x
1 1 1 1 ln x 1 x x lim lim lim x 1 1 x x 1 x 1 1 x ln x (1 x) ln x ln x ; 解: x 1 x 1 1 lim lim x 1 1 x x ln x x 1 1 ln x 1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 选择题:
1、 一阶线性非齐次微分方程)()(x Q y x P y +='
的通解是( ). (A)⎰+⎰⎰=-])([)()(C dx e x Q e y dx x P dx x P ; (B)⎰⎰⎰=-dx e x Q e y dx x P dx
x P )()()(; (C)⎰+⎰⎰=-])([)()(C dx e x Q e y dx x P dx
x P ; (D)⎰
=-dx x P ce y )(.
2、方程y y x y x ++='22是( ).
(A)齐次方程; (B)一阶线性方程;
(C)伯努利方程; (D)可分离变量方程 .
3、2)1(,022==+y x
dx y dy 的特解是( ). (A)222=+y x ; (B)933=+y x ;
(C)133=+y x ; (D)13
333=+y x .
4、方程
x y sin ='''的通解是( ). (A)
322121cos C x C x C x y +++=; (B)32212
1sin C x C x C x y +++=; (C)1cos C x y +=;
(D)x y 2sin 2=.
5、方程0='+
'''y y 的通解是( ). (A)1cos sin C x x y
+-=; (B)321cos sin C x C x C y
+-=; (C)1cos sin C x x y
++=; (D)1sin C x y
-=.
6、若1y 和2y 是二阶齐次线性方程0)()(=+'+''y x Q y x P y 的两个特解,则 2211y C y C y +=(其中21,C C 为任意常数)( )
(A)是该方程的通解; (B)是该方程的解;
(C)是该方程的特解; (D)不一定是该方程的解.
7、求方程0)(2='-'y y y 的通解时,可令( ).
(A)P y P y '=''='则,; (B)
dy
dP P y P y =''='则,; (C)dx
dP P y P y =''='则,; (D)dy
dP
P y P y '=''='则,.
8、已知方程02=-'+''y y x y x 的一个特解为x y =,于是方程的通解为( ).
(A)221x C x C y +=; (B)x
C x C y 121+=;
(C)x e C x C y 21+=; (D)x
e C x C y -+=21.
9、已知方程0)()(=+'+''y x Q y x P y 的一个特1y 解为, 则另一个与它线性无关的特解为( ). (A) ⎰⎰=-
dx
e y y y dx x P )(21
121; (B) ⎰⎰=dx e y y y dx x P )(21
121
; (C) ⎰⎰=-dx e y y y dx x P )(1
121; (D) ⎰⎰=dx e y y y dx x P )(1
121.
10、方程x e y y y x 2cos 23=+'-''的一个特解形式是 ( ).
(A) x e A y x
2cos 1=;
(B) x xe B x xe A y x
x 2sin 2cos 11+=;
(C) x e B x e A y x x
2sin 2cos 11+=;
(D) x e x B x e x A y x
x 2sin 2cos 2121+=.
二、 求下列一阶微分方程的通解:
1、)1(ln ln +=+'x ax y x y x ;
2、033=-+y x xy dx dy

3、022=+-++y x xdy ydx ydy xdx .
三、 求下列高阶微分方程的通解:
1、012=-'-''y y y ;
2、)4(2+='-''+'''x e x y y y .
四、 求下列微分方程满足所给初始条件的特解:
1、0)(2223=-+dy xy x dx y ,11==y x 时,;
2、x y y y cos 2=+'+'',23,00='==y y x 时,.
五、已知某曲线经过点)1,1(
,它的切线在纵轴上的截距等于切点的横坐标,求它的方程 .
六、设可导函数)(x ϕ满足
1sin )(2cos )(0+=+
⎰x tdt t x x x ϕϕ, 求)(x ϕ.
七、我舰向正东海里1处的敌舰发射制导鱼雷,鱼雷在航行中始终对准敌舰.设敌舰以0
v 常数沿正北方向直线行驶,已知鱼雷速度是敌舰速度的两倍,求鱼雷的航行曲线方程,并问敌舰航行多远时,将被鱼雷击中?
答案:
一、1、A ; 2、A ; 3、B ; 4、A ; 5、B ;
6、B ;
7、B ;
8、B ;
9、A ; 10、C. 二、1、x
c ax y ln +=; 2、12122++=-x e C y
x ; 3、C x y y x =-+arctan 222
. 三、1、
)cosh(1211C x C C y +=; 2、
x x e x x e C e C C y x x x ---+++=-222321)9
461( 四、1、0)ln 21(2=-+y y x ;
2、x xe y x sin 21+=-.
五、
x x x y ln -=.
六、x x x sin cos )(+=ϕ. 七、)10(3
2)1(31)1(2321
≤≤+-+--=x x x y . 敌舰航行2/3海里后即被击中.。

相关文档
最新文档