实验二离散控制系统的性能分析

合集下载

实验一基于MATLAB的二阶系统动态性能分析

实验一基于MATLAB的二阶系统动态性能分析

实验一基于MATLAB的二阶系统动态性能分析二阶系统是控制系统中常见的一类系统,在工程实践中有广泛的应用。

为了对二阶系统的动态性能进行分析,可以使用MATLAB进行模拟实验。

首先,我们需要定义一个二阶系统的数学模型。

一个典型的二阶系统可以用如下的常微分方程表示:$$m\ddot{x} + b\dot{x} + kx = u(t)$$其中,$m$是系统的质量,$b$是系统的阻尼系数,$k$是系统的刚度,$u(t)$是控制输入。

在MATLAB中,我们可以使用StateSpace模型来表示二阶系统。

具体实现时,需要指定系统的状态空间矩阵,并将其转换为StateSpace模型对象。

例如:```matlabm=1;b=0.5;k=2;A=[01;-k/m-b/m];B=[0;1/m];C=[10;01];D=[0;0];sys = ss(A, B, C, D);```接下来,我们可以利用MATLAB的Simulink工具来模拟系统的响应。

Simulink提供了一个直观的图形界面,可以快速搭建系统的模型,并进行动态模拟。

我们需要使用一个输入信号来激励系统,并观察系统的响应。

例如,我们可以设计一个阶跃输入的信号,并将其作为系统的输入,然后观察系统的输出。

在Simulink中,可以使用Step函数来生成阶跃输入。

同时,我们可以添加一个Scope模块来实时显示系统的输出信号。

以下是一个简单的Simulink模型的示例:在Simulink模拟中,可以调整系统的参数,如质量、阻尼系数和刚度,以观察它们对系统动态性能的影响。

通过修改输入信号的类型和参数,还可以研究系统在不同激励下的响应特性。

另外,MATLAB还提供了一些工具和函数来评估二阶系统的动态性能。

例如,可以使用step函数来计算系统的阶跃响应,并获取一些性能指标,如峰值时间、上升时间和超调量。

通过比较不同系统的性能指标,可以选择最优的系统配置。

此外,MATLAB还提供了频域分析工具,如Bode图和Nyquist图,用于分析系统的频率响应和稳定性。

测控专业面试知识点总结

测控专业面试知识点总结

测控专业面试知识点总结测控专业是一个涉及到电子、通信、控制、计算机等多个学科知识的综合性专业,它广泛应用于军事、航空航天、船舶、汽车、医疗等领域。

因此,在测控专业的面试中,考官通常会涉及到相关的专业知识点,下面我们就来总结一下测控专业面试的知识点。

一、电子技术1. 电子元件的基本知识,包括二极管、晶体管、场效应管、光电子器件等的工作原理和特性。

2. 多级放大器的结构及其特性,共射放大器、共基放大器、共集放大器的工作原理及其应用。

3. 集成电路的基本概念和分类,包括数字集成电路和模拟集成电路的区别、运算放大器、比较器、振荡器等的基本原理及应用。

4. 信号与系统的知识,包括信号的分类、连续信号与离散信号、线性系统与非线性系统、时域与频域的概念。

5. 数模转换与模数转换,包括模拟信号与数字信号之间的转换原理和方法。

二、通信技术1. 通信系统的基本原理,包括调制解调原理、信道编码原理、信号检测与估计原理等。

2. 数字通信系统的基本知识,包括数字调制技术、数字信道编码技术、同步技术等。

3. 无线通信技术,包括移动通信系统的基本原理、无线信道的特性与分析、无线接入技术等。

4. 卫星通信技术,包括卫星通信系统的组成、基本原理、通信链路分析等。

5. 光纤通信技术,包括光纤通信系统的组成、光纤传输原理、光纤放大器、光纤传感等。

三、控制技术1. 控制系统的基本概念,包括反馈控制系统和开环控制系统的特点、闭环控制系统与开环控制系统的比较。

2. 控制系统的稳定性分析,包括极点分布、震荡特性、稳定性判据等。

3. 控制系统的性能分析,包括超调量、峰值时间、稳态误差等性能指标。

4. 控制系统的设计原理,包括PID控制器的设计方法、根轨迹设计法、频率域法等。

5. 先进控制技术,包括自适应控制、鲁棒控制、模糊控制、神经网络控制等。

四、计算机技术1. 计算机组成原理,包括计算机的基本结构、存储器层次结构、指令系统、输入输出系统等。

离散控制系统中的仿真与实验验证

离散控制系统中的仿真与实验验证

离散控制系统中的仿真与实验验证离散控制系统是一种基于样本信号的控制系统,它将连续时间的信号转化为离散时间的信号,并利用离散时间信号进行控制和调节。

仿真和实验验证是离散控制系统设计和调试过程中非常重要的一部分,本文将针对离散控制系统中的仿真与实验验证进行探讨。

一、离散控制系统的仿真在离散控制系统中,仿真是一种重要的工具,用于模拟和评估系统的性能。

通过仿真,我们可以在电脑上构建一个离散控制系统的模型,并根据不同的输入信号,预测系统的动态响应。

1.1 离散控制系统的建模离散控制系统的仿真首先需要建立系统的数学模型。

通常,我们可以通过离散系统差分方程来描述系统的动态特性。

差分方程可以将系统的输入信号和输出响应相联系,从而实现系统性能的仿真。

例如,对于一个离散时间系统,差分方程可以表示为:y(k) = a1*x(k) + a2*x(k-1) + b1*u(k) + b2*u(k-1)其中,y(k)表示系统的输出信号,x(k)表示系统的状态变量,u(k)表示输入信号,a1、a2、b1、b2分别为系统的系数。

通过将差分方程转化为状态空间模型,我们可以更加方便地进行仿真分析。

状态空间模型可以用矩阵形式表示为:x(k+1) = F*x(k) + G*u(k)y(k) = H*x(k) + I*u(k)其中,F、G、H、I为状态空间模型的系数矩阵。

1.2 离散控制系统的仿真工具为了进行离散控制系统的仿真,我们通常会借助一些专门的仿真软件或工具。

例如MATLAB/Simulink等工具提供了丰富的离散控制系统仿真模块,可以方便地进行系统建模、仿真和参数调试。

通过在仿真软件中构建离散控制系统的模型,并设置各种参数和输入信号,我们可以获取系统的动态响应曲线和性能指标。

二、离散控制系统的实验验证仿真虽然可以提供对离散控制系统性能的预测,但最终的验证还需要通过实验来完成。

实验验证可以帮助我们检验仿真模型的准确性,并对系统的实际性能进行评估。

自动控制原理第7章离散控制系统

自动控制原理第7章离散控制系统
差分方程描述了系统在离散时间点的行为,通过求解差分方程可 以预测系统未来的输出。
Z变换
01
Z变换是分析离散时间信号和系统 的有力工具,它将离散时间信号 或系统转化为复平面上的函数或 传递函数。
02
Z变换的基本思想是通过将离散时 间信号或系统进行无限次加权和 ,将其转化为一个复数域上的函 数或传递函数。
离散状态方程
离散状态方程是描述离散控制系统动 态行为的数学模型,它的一般形式为 $mathbf{dot{x}}(k) = Amathbf{x}(k) + Bu(k)$,其中 $mathbf{x}(k)$表示在时刻$k$的系 统状态向量,$u(k)$表示在时刻$k$ 的输入向量,$A$和$B$是系统的系 数矩阵。
稳态误差主要来源于系统本身的结构 和参数,以及外部干扰和测量噪声。
离散控制系统的动态响应分析
动态响应定义
动态响应是指系统在输入信号作 用下,系统输出信号随时间变化 的特性。
动态响应的描述方

动态响应可以通过系统的传递函 数、频率特性、根轨迹图等方式 进行描述。
优化动态响应的方

通过调整系统参数、改变系统结 构、引入反馈控制等方法,可以 优化系统的动态响应。
离散控制系统的仿真工具与实例
仿真工具介绍
离散控制系统的仿真工具用于模拟和测试系统的性能和稳定性。常见的仿真工具包括MATLAB/Simulink、 LabVIEW等。这些工具提供了丰富的数学函数库和图形化界面,方便用户进行系统建模和仿真。
仿真实例分析
通过具体的仿真实例,可以深入了解离散控制系统的性能和特点。例如,可以设计一个温度控制系统,通过调整 系统参数和控制算法,观察系统在不同工况下的响应特性和稳定性。通过对比不同方案,可以评估各种参数和控 制策略对系统性能的影响,为实际应用提供参考和依据。

实验二:系统稳定性和稳态性能分析

实验二:系统稳定性和稳态性能分析

实验二:系统稳定性和稳态性能分析主要内容:自动控制系统稳定性和稳态性能分析上机实验目的与要求:熟悉 MATLAB 软件对系统稳定性分析的基本命令语句 熟悉 MATLAB 软件对系统误差分析的 Simuink 仿真 通过编程或 Simuink 仿真完成系统稳定性和稳态性能分析一 实验目的1、研究高阶系统的稳定性,验证稳定判据的正确性;2、了解系统增益变化对系统稳定性的影响;3、观察系统结构和稳态误差之间的关系。

二 实验任务1、稳定性分析欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。

(1)已知单位负反馈控制系统的开环传递函数为0.2( 2.5)()(0.5)(0.7)(3)s G s s s s s +=+++,用 MA TLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。

(2)已知单位负反馈控制系统的开环传递函数为( 2.5)()(0.5)(0.7)(3)k s G s s s s s +=+++,当取k =1,10,100用MA TLAB 编写程序来判断闭环系统的稳定性。

只要将(1)代码中的k 值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k 变化对系统稳定性的影响。

2、稳态误差分析(1)已知如图所示的控制系统。

其中2(5)()(10)s G s s s +=+,试计算当输入为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。

从 Simulink 图形库浏览器中拖曳Sum (求和模块)、Pole-Zero (零极点)模块、Scope (示波器)模块到仿真操作画面,连接成仿真框图如右上图所示:(2)若将系统变为I 型系统,5()(10)G s s s =+,在阶跃输入、斜坡输入和加速度信号输入作用下,通过仿真来分析系统的稳态误差。

计算机控制实验报告初稿

计算机控制实验报告初稿
6.“II型”系统要注意稳定性。对于Gp2(s),若采用PI调节器控制,其开环传递函数为
G(s)=Gc(s)·Gp2(s)
=K(Tis+1)/s·1/s(0.1s+1)
为使用环系统稳定,应满足Ti>0.1,即K1<10
7.PID递推算法如果PID调节器输入信号为e(t),其输送信号为u(t),则离散的递推算法如下:
Gs=tf([5],[1,1,0]);
Gz=c2d(Gs,0.1,'zoh');//求解广义对象的脉冲传递函数
Transfer function:
0.02419 z + 0.02339
----------------------
z^2 - 1.905 z + 0.9048
Sampling time: 0.1
G=c2d(G1,0.01,'zoh');//求系统脉冲传递函数
rlocus(G);//绘制系统根轨迹
将图片放大得到
Z平面的临界放大系数由根轨迹与单位圆的交点求得。
放大图片分析:
[k,poles]=rlocfind(G)
Select a point in the graphics window
selected_point =
0.9905 + 0.1385i
k =
193.6417
poles =
0.9902 + 0.1385i
0.9902 - 0.1385i
得到0<K<193
(2)假设不考虑采样开关和零阶保持器的影响,即看作一连续系统,讨论令系统稳定的 的取值范围;
解:
G1=tf([1],[1 1 0]);

自动控制原理题目(含答案)

自动控制原理题目(含答案)

《自动控制原理》复习参考资料一、基本知识 11、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。

2、闭环控制系统又称为反馈控制系统。

3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。

4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。

5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。

6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。

7、两个传递函数分别为 G1(s)与 G2(s)的环节,以并联方式连接,其等效传递函数为G(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。

18、系统前向通道传递函数为 G (s),其正反馈的传递函数为 H (s),则其闭环传递函数为G(s) /(1-G(s) H(s) )。

9、单位负反馈系统的前向通道传递函数为 G (s),则闭环传递函数为G(s) /(1+ G(s) )。

10 、典型二阶系统中,ξ=0.707 时,称该系统处于二阶工程最佳状态,此时超调量为 4.3%。

11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。

12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。

13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。

14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。

15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。

16 、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。

17 、对于典型二阶系统,惯性时间常数 T 愈大则系统的快速性愈差。

18 、应用频域分析法,穿越频率越大,则对应时域指标 ts越小,即快速性越好19 最小相位系统是指 S 右半平面不存在系统的开环极点及开环零点。

20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、补偿校正与复合校正四种。

实验二-基于Matlab的离散控制系统仿真

实验二-基于Matlab的离散控制系统仿真

实验二基于Matlab的离散控制系统仿真一、实验目的1)学习使用Matlab命令对离散控制系统进行仿真的方法。

2)学习使用Simulink工具箱对离散控制系统进行仿真的方法。

二、实验原理1. 控制系统命令行仿真一阶系统闭环传递函数为3()G ss+3请转换为离散系统脉冲传递函数并仿真。

根据要求实验有实验数据和所得图形如下:连续零极点图函数:离散函数零极点图:连续函数根轨迹图:离散函数根轨迹图:连续函数单位脉冲响应曲线:离散函数单位脉冲响应曲线:连续函数单位阶跃响应:离散函数单位阶跃响应:连续函数波特图:离散函数波特图:连续函数艾奎斯特曲线:离散函数艾奎斯特曲线:连续函数尼科尔斯曲线:离散函数尼科尔斯曲线:2. 控制系统simulink 仿真按图建立系统的Simulink 模型,对不同的输入信号进行仿真,改变参数,观察不同的仿真结果。

图1 控制系统Simulink 仿真图解答于实验内容第二问三、实验内容1) 二阶系统传递函数为225()4+25G s s s =+,请转换为零极点模型,离散系统模型(采样时间为1),以及离散零极点模型,并进行基于matlab 命令的仿真研究(求连续和离散系统的单位脉冲响应、单位阶跃响应、零极点分布图、根轨迹、波特图、奈奎斯特曲线、尼科尓斯曲线等)。

根据题意实验所得有:连续单位脉冲响应连续单位阶跃响应连续零极点分布图离散零极点分布图连续根轨迹连续波特图连续奈奎斯特曲线连续尼科尓斯曲线2)按图1建立系统的Simulink模型,对不同的输入信号进行仿真。

改变模型参数,观察不同的仿真结果。

Step输入:Ramp输入:当函数分子分别为1,10,100,500时有:经过实验可以看出分子越大超调越大,调整时间越大。

3)将上述系统离散化并基于Simulink仿真,观察仿真结果。

根据题意实验有:Step输入:Ramp输入:分子为1时:Step输入:Ramp输入:分子为250时:Step输入:Ramp输入:四、实验报告1)按照实验报告所要求的统一格式,填写实验报告;2)记录实验过程、实验结果和图表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二离散控制系统的性能分析(时域/频域)
一、实验目的:
1掌握离散闭环系统的动态性能时域参数的分析与计算方法;
2.掌握离散系统稳定性的频域典型参数分析与计算方法。

二、实验工具:
1 MATLAB软件(6.5以上版本);
2 每人计算机一台。

三、实验内容:
1 在Matlab语言平台上,通过给定的闭环离散系统,深刻理解时域参数的物理意义与计
算方法,内容包括如下:
阻尼比参数分析:Z平面与S平面的极点相互转换编程实现;分析两个平面域的特殊特性的极点的轨迹相互映射的方法;
系统阶跃响应参数:上升时间和超调量等。

2 采用频域分析方法,通过编程计算,进一步理解离散系统的稳定性参数,包括如下:
通过幅频图,进行增益裕度分析;
通过相频图,进行相位裕度分析。

四、实验步骤:
%Example 1 damping ratio computation
ts=0.1;
gp=tf(1,[1 1 0])
gz=c2d(gp,ts,'zoh')
kz=tf(5*[1,-0.9],[1 -0.7],ts);
sys_ta=feedback(gz*kz,1,-1)
p=pole(sys_ta)
radii=abs(p);
angl=angle(p)
damp(sys_ta)
real_s=log(radii)/ts
img_s=angl/ts
zeta=cos(atan(-img_s./real_s))
wn=sqrt(real_s.^2+img_s.^2)。

相关文档
最新文档