2007年江西省高考试题(数学理)全解全析
2007年高考数学卷(全国卷Ⅰ.理)含详解

2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2221222121)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a =,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12B .1C .32D .2【解析】1i (1)1i 111i 22222a a i a a i +-++-+=+=++,∵1i1i 2a +++是实数,∴102a -=,解得a =1.选B .(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向【解析】由a ·b =0,得a 与b 垂直,选A .(4)已知双曲线的离心率为2,焦点是(40)-,,(4,0),则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=【解析】由2ca=及焦点是(40)-,,(4,0),得4c =,2a =,24a =,∴22212b c a =-=,∴双曲线方程为221412x y -=.故选A .(5)设a b ∈R ,,集合{}1{0}b a b a b a+=,,,,,则b a -=( )A .1B .-1C .2D .-2【解析】由{}1{0}b a b a b a+=,,,,知0a b +=或0a =.若0a =则ba无意义,故只有0a b +=,1b =(若1ba=,这与0a b +=矛盾),∴1a =-,2b a -=.故选C .(6)下面给出的四个点中,到直线10x y -+=,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11),B .(11)-,C .(11)--,D .(11)-,【解析】逐一检查,选C .(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D )A .15B .25C .35D .45111||||5AD A B =1A 所成角的余弦值为45,选D .(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【解析】若“()f x ,()g x 均为偶函数”则()()f x f x -=,()()g x g x -=当然有()()h x h x -=;反之则未必,故选B .(10)21()n x x-的展开式中,常数项为15,则n =( )A 1D 1 C 1B 1AD CBA (综合法)(坐标法)A 1C 1 B 1AD CB第(7)题D 1A .3B .4C .5D .6【解析】21()n x x-的展开式的通项公式为(22)()(23)1r n rr r n r r n n T C x x C x---+==,若常数项为15,令23015rnn r C -=⎧⎪⎨=⎪⎩,64n r =⎧⎨=⎩,选D . (11)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( C)(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .2()33ππ,B .()62ππ,C .(0)3π,D .()66ππ-,()0x >,则第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答) 【解析】填36.从班委会5名成员中选出3名,共35A 种;其中甲、乙之一担任文娱委员的1224A A 种,则不同的选法共有35A -1224A A =36种.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .【解析】()f x =3()xx ∈R .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比AC1A A 0(16)题。
2007年普通高等学校招生全国统一考试理科数学卷(江西)

2007年普通高等学校招生全国统一考试理科数学卷(江西)学校:___________姓名:___________班级:___________考号:___________一、单选题1.化简2)1(42i i++的结果是A .2+iB .-2+iC .2-iD .-2-i 2.1lim 231--→x x x xA .等于0B .等于lC .等于3D .不存在3.若3)4tan(=-απ,则cot α等于A .-2B .21-C .21D .2 4.已知(x +33x )n 展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于 A .4 B .5 C .6 D .75.若0<x <2π,则下列命题中正确的是A .sin x <x π3B .sin x >x π3 C .sin x <224x π D .sin x >224x π 6.若集合012|),{(},2,1,0{≥+-==y x y x N M 且M y x y x ∈≤--,,012},则N 中元素的个数为A .9B .6C .4D .27.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H .则以下命题中,错误的命题是A .点H 是△A 1BD 的垂心B .AH 垂直平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45°8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 19.设椭圆)0(12222>>b a b y a x =+的离心率为e =21,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能10.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为( ) A .19 B .112 C .115 D .11811.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为A .-B .0C .D .5 12.设12ln )(:2++++=mx x x e x f p x 在(0,+∞)内单调递增,5:-≥m q ,则p是q 的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题13.设函数y =4+log 2(x -1)(x ≥3),则其反函数的定义域为 .14.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=91,则a 36= . 15.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若n m ==,,则m +n 的值为 .16.设有一组圆)(2)3()1(:*422N k k k y k x C k ∈=-++-.下列四个命题:A .存在一条定直线与所有的圆均相切B .存在一条定直线与所有的圆均相交C .存在一条定直线与所有的圆均不.相交D .所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号)三、解答题17.(本小题满分12分)已知函数⎪⎩⎪⎨⎧≤++=-)1(2)0(1)(2<<<x c k c x cx x f c x 在区间(0,1)内连续,且89)(2=c f .(1)求实数k 和c 的值;(2)解不等式182)(+>x f18.(本小题满分12分)如图,函数的图象与y 轴交于点(0,),且在该点处切线的斜率为一2.(1)求θ和ω的值;(2)已知点A(,0),点P是该函数图象上一点,点Q(x0,y0)是P A的中点,当y0=,x0∈[,π]时,求x0的值.19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5, 0.6,0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.20.(本小题满分12分)右图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠A l B l C1=90°,AA l=4,BB l=2,CC l=3.(1)设点O是AB的中点,证明:OC∥平面A1B1C1;(2)求二面角B—AC—A1的大小;(3)求此几何体的体积.21.(本小题满分12分)设动点P到点A(-l,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1=,使得d1d2 sin2θ=λ.(1)证明:动点P的轨迹C为双曲线,并求出C的方程;(2)过点B作直线交双曲线C的右支于M、N两点,试确定λ的范围,使OM·ON=0,其中点O为坐标原点.22.(本小题满分14分)设正整数数列{a n }满足:a 2=4,且对于任何 n ∈N *,有n n n n a n n a a a 1211111211++-++++<<. (1)求a 1,a 3;(2)求数列{ a n }的通项a n .参考答案1.C【解析】略2.B【解析】略3.A【解析】略4.C【解析】略5.D【解析】略6.C【解析】略7.D【详解】因为三棱锥A-A1BD是正三棱锥,故顶点A在底面的射影是底面的中心,A正确;平面A1BD∥平面CB1D1,而AH垂直于平面A1BD,所以AH垂直于平面CB1D1,B正确;根据对称性知C正确,故选D.8.A【解析】略9.A【解析】略10.B【分析】先求出将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的情况,再求出若不考虑限制它落地时向上的点数情况,前者除以后者即可.【详解】∵骰子连续抛掷三次,它落地时向上的点数依次成等差数列∴落地时向上的点数若不同,则为1,2,3或1,3,5,或2,3,4或2,4,6或3,4,5共有6×2=12种情况, 也可全相同,有6种情况∴共有18种情况若不考虑限制,有36=216 落地时向上的点数依次成等差数列的概率为18121612= 故选:B.【点睛】在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式m P n=求得概率 11.B【解析】试题分析:根据导数的定义,曲线在的切线的斜率为,因为函数()f x 是上以5为周期的可导偶函数,所以因为()f x 是上的偶函数,所以必有,故曲线y=f(x)在x=5处的切线的斜率为0 考点:导数的定义,导数的几何意义,周期函数的性质,定义在R 上的偶函数的性质12.B【解析】略13.[5)+,∞【解析】略14.4【解析】略15.2【解析】略16.B,D17.(1)1k =,12c = (2)()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭【解析】解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =. 又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤在12x =处连续, 所以215224f k -⎛⎫=+= ⎪⎝⎭,即1k =. (2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()1f x >+得,当102x <<12x <<. 当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 18.(1)θ=π6,ω=2(2)x 0=2π3或x 0=3π4. 【解析】解:(1)将x =0,y =√3代入函数y =2cos(ωx +θ)得cosθ=√32, 因为0≤θ≤π2,所以θ=π6.又因为y ′=−2ωsin(ωx +θ),y ′|x=0=−2,θ=π6,所以ω=2, 因此y =2cos(2x +π6).(2)因为点A(π2,0),Q(x 0,y 0)是PA 的中点,y 0=√32, 所以点P 的坐标为(2x 0−π2,√3).又因为点P 在y =2cos(2x +π6)的图象上,所以cos(4x 0−5π6)=√32. 因为π2≤x 0≤π,所以7π6≤4x 0−5π6≤19π6, 从而得4x 0−5π6=11π6或4x 0−5π6=13π6. 即x 0=2π3或x 0=3π4.19.(1))()()()(321321321A A A p A A A A A A P E P ⋅⋅+⋅⋅+⋅⋅=0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=(2)()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=【解析】解:分别记甲、乙、丙经第一次烧制后合格为事件1A ,2A ,3A ,(1)设E 表示第一次烧制后恰好有一件合格,则 )()()()(321321321A A A p A A A A A A P E P ⋅⋅+⋅⋅+⋅⋅=0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=.(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为0.3p =,所以~(30.3)B ξ,,故30.30.9E np ξ==⨯=.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A B C ,,,则 ()()()0.3P A P B P C ===,所以3(0)(10.3)0.343P ξ==-=, 2(1)3(10.3)0.30.441P ξ==⨯-⨯=,2(2)30.30.70.189P ξ==⨯⨯=,3(3)0.30.027P ξ===.于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=.20.(1)OC ∥平面A 1B 1C 1(2) 二面角的大小为30∘(3)【解析】(1)证明:作OD ∥AA 1交A 1B 1于D ,连C 1D .则OD ∥BB 1∥CC 1.因为O 是AB 的中点,所以OD =12(AA 1+BB 1)=3=CC 1.则ODC 1C 是平行四边形,因此有OC ∥C 1D .C 1D ⊂平面C 1D ⊂且OC ⊄平面C 1D ⊂,则OC ⊄面C 1D ⊂.(2)如图,过O 作截面BA 2C 2∥面C 1D ⊂,分别交AA 1,AA 1于A 2,A 2.作BH ⊥A 2C 2于B ,连CH .因为A 1B 1C 1面A 1B 1C 1,所以CC 1⊥BH ,则BH ⊥平面AA 1.又因为AB =√5,AB =√5,AC =√3⇒AB 2=BC 2+AC 2.所以BC ⊥AC ,根据三垂线定理知BC ⊥AC ,所以∠BCH 就是所求二面角的平面角. 因为BH =√22,所以sin∠BCH =BH BC =12,故∠BCH =30∘, 即:所求二面角的大小为30∘.(3)因为BH =√22,所以所求几何体体积为.解法二:(1)如图,以B 1为原点建立空间直角坐标系,则∠BCH ,A(0,1,4),∠BCH ,因为O 是AB 的中点,所以BH =√22, OC ⃗⃗⃗⃗⃗ =(1,−12,0). 易知,n ⃗ =(0,0,1)是平面C 1D ⊂的一个法向量.因为n ⃗ =(0,0,1),OC ⊄平面C 1D ⊂,所以OC ⊄平面C 1D ⊂.(2)AB⃗⃗⃗⃗⃗ =(0,−1,−2),BC ⃗⃗⃗⃗⃗ =(1,0,1), 设m ⃗⃗ =(x ,y ,z)是平面ABC 的一个法向量,则则得:{−y −2z =0x +z =0 取x =−z =1,m ⃗⃗ =(1,2,−1).显然,l=(1,1,0)为平面C(1,0,3)的一个法向量. 则,结合图形可知所求二面角为锐角.所以二面角BC⃗⃗⃗⃗⃗ =(1,0,1)的大小是30∘. (3)同解法一. 21.(1)动点P 的轨迹C 为双曲线,方程为:2211x y λλ-=-(223λ<<23λ< 【解析】解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线. 方程为:2211x y λλ-=-. (2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111101λλλλλ-=⇒+-=⇒=-,因为01λ<<,所以λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-. 由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦, 所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--. 于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--. 因为0=⋅ON OM ,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.由①②知,1223λ<≤. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,.①当121x x ==时,221101MB λλλλλ=-=⇒+-=-, 因为01λ<<,所以12λ=;②当12x x ≠时,002222212111111y x k y x y x MN ⋅-=⇒⎪⎪⎩⎪⎪⎨⎧=--=--λλλλλλ. 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-; 由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x x λλ=-=+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-. 于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=- 因为01x >,所以2(1)123λλ->-,又01λ<<,23λ<<23λ<. 22.(1)11a =,39a =(2)对任意n ∈*N ,2n a n =【解析】解:(1)据条件得1111112(1)2n n n n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭① 当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+, 解得12837a <<.因为1a 为正整数,故11a =. 当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭, 解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明. 1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭ 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+- 22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++- 因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,. 又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤.故21(1)k a k +=+,即1n k =+时,2n a n =成立.由1,2知,对任意n ∈*N ,2n a n =.(2)方法二:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明. 1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 即21111(1)122k k k k k a k a k+++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数,则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③ 又由②右式,22221(1)21(1)1k k k k k k k k a k k+++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥, 所以4321221(1)11k k k ka k k k k k +++=+--+-+≥.又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥④ 据③④21(1)k a k +=+,即1n k =+时,2n a n =成立.由1,2知,对任意n ∈*N ,2n a n =.。
2007年高考理科数学试题及参考答案(江西卷)

A.人
B.环境
C.健康 D.护理
( ) 11.根据护理工作专业性质划分不包括
A.专业性
B.半专业性
C.非专业性 D.依赖性护理功能
( ) 12.护理工作根据场所不同的划分不包括
A.医院护理 B.社会护理
C 护理教育
D 家庭访视
( ) 13.当护士每日为病人做肢体功能锻炼,她扮演的角色为
A.管理者及协调者 B.促进康复者
疾,护士的心理素质体现了
A.良好的人生观及职业动机 B.敏锐的观察力及感知能力
C.精确的记忆力
D.良好的个性心理素质
( ) 16.护理的基本任务不包括
A.维护健康 B.预防疾病 C.减轻病痛 D.正确的诊断
第二章
()
17.吗啡给自体带来暂时的舒适,是健康的哪一种体现
A 身心健康 B.社会适应良好 C.道德健康 D.成瘾,从根本上破坏人的健康
A.1858 年 B.1859 年
C.1860 年 D.1856 年
( ) 5.国际护士节为每年的
A.5 月 10 日 B.5 月 12 日 C.10 月 1 日 D.10 月 12 日
( ) 6.我国从哪年开始参加南丁格尔奖评选活动
A.22%
A.1980 B.1973 C.1983 D.1985
C.青春期
D.中年期
( ) 30.成长与发展规律语言发展最快时段
A.2 岁 B.7 岁
C.3—5 岁 D.6 岁
( ) 31.人格结构不包括
A.本我 B 自我 C.超我 D.自卫
( ) 32.青春期发展障碍是
A.病人翻身 B.皮肤按摩
C.活动肢体 D.严格执行灭菌操作
( ) 27.安全的需要不包括
2007年全国统一高考数学试卷ⅰ(理科)解析

2007年全国统一高考数学试卷Ⅰ(理科)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A .B.C.D.2.(4分)设a是实数,且是实数,则a=()A .B.1 C.D.23.(4分)已知向量,,则与()A .垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A .B.C.D.5.(4分)设a,b∈R,集合,则b﹣a=()A .1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A .(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A .B.C.D.A .B.2 C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A .3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A .4 B.C.D.812.(4分)函数的一个单调增区间是()A .B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_________种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x (x>0)的图象关于直线y=x对称,则f(x)=_________.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为_________.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为_________.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5P 0.4 0.2 0.2 0.1 0.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷Ⅰ(理科)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)同角三角函数间的基本关系.考点:分根据tanα=,sin2α+cos2α=1,即可得答案.析:解解:∵α是第四象限角,=,sin2α+cos2α=1答:∴sinα=﹣故选D.点三角函数的基本关系是三角函数的基本,是高考必考内容.评:2.(4分)考复数代数形式的混合运算.点:复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.分析:解解.设a是实数,=是实数,则a=1,答:故选B.本题考查复数代数形式的运算,复数的分类,是基础题.点评:3.(4分)数量积判断两个平面向量的垂直关系.考点:专计算题.题:根据向量平行垂直坐标公式运算即得.分析:解解:∵向量,,得,答:∴⊥,故选A.本题单纯的考两个向量的位置关系,且是坐标考查,直接考垂直或平行公式.点评:4.(4分)考双曲线的简单性质.点:专计算题.分析:根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.解答:解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.点评:本题主要考查了双曲线的简单性质.属基础题.5.(4分)考点:集合的相等;集合的确定性、互异性、无序性.分析:根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b的值,计算可得答案.解答:解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.点评:本题考查集合元素的特征与集合相等的含义,注意从特殊元素下手,有利于找到解题切入点.6.(4分)考点:简单线性规划的应用.分析:要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.解答:解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C点评:本题考查的知识点是二元一次不等式与平面区域,要想判断一个点是否在不等式组表示的区域内,仅需将点的坐标代入验证即可.7.(4分)考异面直线及其所成的角.专题:计算题.分析:先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.解答:解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.点评:本题主要考查了异面直线及其所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.8.(4分)考点:对数函数的单调性与特殊点.分析:因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.解答:解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a=1,∴log a2a﹣log a a=,∴,a=4,故选D点评:本题主要考查对数函数的单调性与最值问题.对数函数当底数大于1时单调递增,当底数大于0小于1时单调递减.9.(4分)考点:必要条件、充分条件与充要条件的判断;函数奇偶性的判断.专题:压轴题.分析:本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.解答:解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B点评:本题考查充要条件的判断和函数奇偶性的判断,属基本题.10.(4分)考点:二项式定理的应用.题:分析:利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.解答:解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.11.(4分)考点:抛物线的简单性质.专题:计算题;压轴题.分析:先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.解答:解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.点评:本题主要考查抛物线的基本性质和直线和抛物线的综合问题.直线和圆锥曲线的综合题是高考的热点要重视.12.(4分)考点:复合三角函数的单调性.专题:计算题;压轴题;转化思想;换元法.分析:化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.解答:解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A点本题考查三角函数的单调性,考查发现问题解决问题的能力,是中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)考点:排列、组合的实际应用.分析:由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.解答:解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.点评:排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.排列与组合问题要区分开,若题目要求元素的顺序则是排列问题.14.(5分)考点:反函数.专题:计算题;方程思想.分析:由题意推出f(x)与函数y=log3x (x>0)互为反函数,求解即可.解答:解.函数y=f(x)的图象与函数y=log3x (x>0)的图象关于直线y=x对称,则f(x)与函数y=log3x (x>0)互为反函数,f(x)=3x(x∈R)故答案为:=3x(x∈R)点评:本题考查反函数的知识,考查计算能力,是基础题.15.(5分)考点:等比数列的性质.专题:计算题;压轴题.分析:先根据等差中项可知4S2=S1+3S3,利用等比赛数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.解答:解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为点评:本题主要考查了等比数列的性质.属基础题.16.(5分)考点:棱柱的结构特征;三角形中的几何计算.专题:计算题;压轴题.分析:由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.答:已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.点评:本小题主要考查棱柱的结构特征、三角形中的几何计算等基础知识,考查空间想象力.属于基础题.三、解答题(共6小题,满分82分)17.(12分)考点:正弦定理;正弦函数的定义域和值域.专题:计算题.分析:(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围.解答:解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<.,所以.由此有,所以,cosA+sinC的取值范围为.点评:本题主要考查了正弦定理得应用和三角函数中两角和公式的运用.涉及了正弦函数的性质,考查了学生对三角函数知识的把握.18.(12分)考点:离散型随机变量及其分布列;互斥事件与对立事件;离散型随机变量的期望与方差.题:分析:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.解答:解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为η200 250 300P 0.4 0.4 0.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).点评:本题考查离散型随机变量的分布列和期望,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.19.(14分)考点:直线与平面垂直的判定;直线与平面所成的角.专题:综合题;转化思想.分析:解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.解答:解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.点评:本小题主要考查空间线面关系、直线与平面所成的角等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.20.(14分)考点:导数的运算;利用导数求闭区间上函数的最值.专题:计算题;证明题.分析:(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x≥0上求出a的取值范围即可.解答:解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].点评:考查学生利用导数运算的能力,利用导数求闭区间上函数的最值的能力.21.(14分)考点:椭圆的应用.专题:计算题;压轴题.分(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可析:以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B (x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.解证明:(Ⅰ)椭圆的半焦距,答:由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BC相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.点本题综合考查椭圆的性质信其应用,难度较大,解题时要认真审题,仔细计算,注意公式的灵活运用,避免评:出现不应有的错误.22.(16分)考点:数列递推式;数学归纳法.专题:证明题;综合题;压轴题;归纳法.分析:(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.解答:解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.点评:本题主要考查求数列的通项公式的方法﹣﹣构造法和数学归纳法的一般过程.考查综合运用能力和计算能力.。
2007年高考理科数学试题及参考答案(江西卷)

物理创意想象来源:当今社会如果没有电的话,那世界将是一片黑暗。
我们无法想象没有电的生活。
由于世界各国用电越来越大,导致地球的资源一天天的减少。
当然不少科学家也努力向其它可循环能源探索。
比如风能、水能、太阳能、地热能等。
其实我们还有一种能源可以利用那就是闪电。
闪电简介:闪电是云与云之间、云与地之间或者云体内各部位之间的强烈放电现象。
底层为阴电,顶层为阳电,而且还在地面产生阳电荷,如影随形地跟着云移动。
正电荷和负电荷彼此相吸,但空气却不是良好的传导体。
正电荷奔向树木、山丘、高大建筑物的顶端甚至人体之上,企图和带有负电的云层相遇;负电荷枝状的触角则向下伸展,越向下伸越接近地面。
最后正负电荷终于克服空气的阻障而连接上。
巨大的电流沿着一条传导气道从地面直向云涌去,产生出一道明亮夺目的闪光。
就在这个时候,世界各地大约正有1800个雷电交作在进行中,它们每秒钟约发出600次闪电,其中有100次袭击地球。
据统计,每年地球上空会出现31亿多次闪电,平均每秒钟100次。
每次放电,其电能高达10万千瓦时,电流高达10万安培,连世界上最大的电力装置都不能和它相比。
所以这么好的资源我们为什么不好好利用呢!我的想法:如果我们有一种储存器。
当闪电来临时,我们可以用一种介质把闪电和这种特殊储存器连接起来,那么闪电的能量就被我们储存在这个容器里了。
然后利用高压输电原理就可以利用了。
但是闪电的电压高,放电时间短。
1.闪电是大功率高压放电,闪电收集必须解决高压大功率的电能的传输问题。
高压就意味着容易对外放电,功率大就意味着发热快。
解决高压问题可以采用陶瓷做绝缘材料,因为闪电的高压可以击穿空气,但是未必能够击穿陶瓷。
传输时功率过大的问题可以通过使用低电阻率的材料,增大导体截面积等方法解决。
2.闪电放出的能量的总量多,收集闪电就必须解决大容量的电能的存储问题。
闪电的能量大,电能的存储需要特殊的方法实现。
可以做一个大的电炉利用电流激发磁场,再利用磁场产生的涡流加热,利用电炉加热蒸汽机,产生动力,这时既可以发电,又可以作为有用的动力直接输出。
2007年全国各地高考数学试卷及答案(37套)word--完整版

2007年普通高等学校招生全国统一考试数学卷(四川.文)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.理)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.文)含答案
2007年普通高等学校招生全国统一考试数学卷(浙江.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.文)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.理)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.文)含答案
2007年普通高等学校招生全国统一考试数学卷(山东.理)含答案
2007年全国各地高考数学试卷及答案(37套)--完整版
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.文)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.文)含答案
宁夏和海南都是新课标教材,使用的是同一套数学题。
பைடு நூலகம் 四川省蓬安中学校 张万建 整理 zwjozwj@
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.理) 含答案
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.文) 含答案
2007年普通高等学校招生全国统一考试数学卷(江苏卷不分文理)含答案
注:使用全国卷Ⅰ的省份:河北 河南 山西 广西 ;
使用全国卷Ⅱ的省份:吉林 黑龙江 云南 贵州 新疆 青海 甘肃 内蒙 西藏
(Word版)2007年(江西)高考理科数学真题试卷

17.已知函数 在区间 内连续,且 .
(1)求实数 和 的值;
(2)解不等式 .
18.如图,函数 的图象与 轴交于点 ,且在该点处切线的斜率为 .
(1)求 和 的值;
(2)已知点 ,点 是该函数图象上一点,点 是 的中点,当 , 时,求 的值.
(1)证明:动点 的轨迹 为双曲线,并求出 的方程;
(2)过点 作直线交双曲线 的右支于 、 两点,试确定 的范围,使 ,其中点 为坐标原点.
22.设正整数数列 满足: ,且对于任何 ,有 .
(1)求 , ;
(2)求数列 的通项 .
2007年普通高等学校招生全国统一考试(江西卷)
理科数学
第Ⅰ卷
参考公式:
如果事件 、 互斥,那么
如果事件 、 相互独立,那么
如果事件 在一次试验中发生的概率是 ,那么 次独立重复试验中恰好发生 次的概率
球的表面积公式 其中 表示球的半径:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.化简 的结果是()
A. B. C. D.
2. ()
A.等于0B.等于1C.等于3D.不存在
3.若 ,则 等于()
A. B. C. D.2
4.已知 展开式中,各项系数的和与其各项二项式系数的和之比为64,则 等于()
A.4B.5C.6D.7
5.若 ,则下列命题中正确的是()
A. B. C. D.
6.若集合 , ,则 中元素的个数为()
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为 ,求随机变量 的期望.
20.如图是一个直三棱柱(以 为底面)被一平面所截得到的几何体,截面为 .已知 , , , , .
2007年江西省高考试题(数学理)全解全析

2007年普通高等学校招生全国统一考试(江西卷)数 学(理 科)全解全析参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C k n P k(1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简2)1(42i i++的结果是( ) A .2+i B .-2+i C .2-i D .-2-i【标准答案】 C 【试题分析】22424122(1)2i i i i i i++==+=-+,故选C 。
【高考考点】复数的运算。
【易错提醒】2i =-1是学生容易出错的地方,易忘记负号。
【备考提示】复数是高考经常出现的试题之一,一般出现在选择题或填空题,难度不会太大。
2.1lim 231--→x x x x ( )A .等于0B .等于lC .等于3D .不存在【标准答案】 B【试题分析】32211limlim 11x x x x x x →→-==-,故选B 。
【高考考点】极限。
【易错提醒】未将分子分解因式,直接将x =1代入分母,不存在,错选(D )。
【备考提示】极限也是高考中经常出现的试题之一,有时也会在解答题中出现。
3.若tan(4π一α)=3,则cot α等于 A .-2 B .-21 C .21D .2【标准答案】 A【试题分析】tan(4π一α)=31tan 13tan cot 21tan 2αααα-⇒=⇒=-⇒=-+,故选A 。
【高考考点】三角函数,两角差的正切公式。
【易错提醒】两角差的正切公式与两角和的正切公式混淆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试(江西卷)数 学(理 科)全解全析参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )k n -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简2)1(42i i++的结果是( ) A .2+i B .-2+i C .2-i D .-2-i【标准答案】 C 【试题分析】22424122(1)2i i i i i i++==+=-+,故选C 。
【高考考点】复数的运算。
【易错提醒】2i =-1是学生容易出错的地方,易忘记负号。
【备考提示】复数是高考经常出现的试题之一,一般出现在选择题或填空题,难度不会太大。
2.1lim 231--→x x x x ( )A .等于0B .等于lC .等于3D .不存在【标准答案】 B【试题分析】32211limlim 11x x x x x x →→-==-,故选B 。
【高考考点】极限。
【易错提醒】未将分子分解因式,直接将x =1代入分母,不存在,错选(D )。
【备考提示】极限也是高考中经常出现的试题之一,有时也会在解答题中出现。
3.若tan(4π一α)=3,则cot α等于 A .-2 B .-21 C .21D .2【标准答案】 A【试题分析】tan(4π一α)=31tan 13tan cot 21tan 2αααα-⇒=⇒=-⇒=-+,故选A 。
【高考考点】三角函数,两角差的正切公式。
【易错提醒】两角差的正切公式与两角和的正切公式混淆。
【备考提示】两角差(和)的正弦、余弦、正切公式要注意对比记忆,特别注意符号。
4.已知(x +33x)n 展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于A .4B .5C .6D .7【标准答案】 C 【试题分析】令x=1,得(x +33x)n 展开式中,各项系数的和为4n ,又各项二项式系数的和2n ,则64642262n n n n =⇒=⇒=,选C 。
【高考考点】二项式定理。
【易错提醒】计算要细心。
【备考提示】解选择题时,特殊值法能起到事半功倍的效果,在考试时,经常可以用到。
5.若0<x <2π,则下列命题中正确的是 A .sin x <x π3 B .sin x >x π3 C .sin x <224x π D .sin x >224x π【标准答案】 D【试题分析】0<x <2π,取2,sin 442x ππ==, 334x π=, 22414x π=,123424<<,排除B 、C ;取1,sin662x ππ==,21132x π=<,312x π=,排除A ,选D 。
【高考考点】三角函数。
【易错提醒】取特殊值,不要轻易下结论。
【提示】取特殊值时,能排除的先排除,对还不能排除的,再取特殊值,直到最后一个答案才成立。
6.若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为A .9B .6C .4D .2【标准答案】 C 【试题分析】作出210210x y x y -+≥⎧⎨--≤⎩的可行域(右图),由x ,y ∈M ={0,l ,2}可知满足条件的N 有 (0,0)、(1,1)、(2,1)、(2,2)共4个,选C 。
【高考考点】集合与二元一次不等式组的平面区域。
7.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线, 垂足为点H .则以下命题中,错误..的命题是A .点H 是△A 1BD 的垂心B .AH 垂直平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45° 【答案】D【解析】如图,连接AC 1,易证AC 1 面A 1BD ,AC 1 面CB 1D 1 , 则AC 1与面A 1BD 的交点为H ,故B 、C 正确;三棱锥A-A 1BD 是正三棱直线AH 和BB 1所成角锥,所以点H 是△A 1BD 的垂心,A 正确;则D 是错误的。
事实上,易知1AC C ∠是直线AH 和BB 1所成角,显然不为45°,从而选D 。
8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 1 【答案】A【解析】由圆口酒杯的形状易知,h 2最大,h 4最小,排除B 、C 、D ,选A 。
9.设椭圆)0(12222>>b a b y a x =+的离心率为e =21,右焦点为F(c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P(x 1,x 2)A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能 【答案】A 【解析】e =12c a =,1ba<⇒点P(x 1,x 2)到圆x 2+y 2=2的圆心O(0,0)的距离为 22222121212()2()2()12b c bd x x x x x x r a a a=+=+-=-+=+<=,选A 。
10.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为 A .91 B .121 C .151 D .181【答案】B【解析】将一个骰子连续抛掷三次,它落地时向上的点数的可能情况共有63种,其中点数依次成等差数列,公差d 可能为0, 1, 2。
d=0,有6种,d= 1有8种,d= 2有4种, 故落地时向上的点数依次成等差数列的概率为18166612=⨯⨯,选B 。
11.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为 A .-51 B .0 C .51D .5 【答案】B【解析】()()()()()()()(0)0f x f x f x x f x f x f x f ''''''-=⇒--=⇒-=-⇒=,(5)()(5)(5)()(5)()(5)(0)0f x f x f x x f x f x f x f f '''''''+=⇒++=⇒+=⇒==,则曲线y =f (x )在x =5处的切线的斜率为(5)0f '=,选B 。
12.设p :f (x)=e x +In x +2x 2+mx +l 在(0,+∞)内单调递增,q :m ≥-5,则p 是q 的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C【解析】f (x)=e x +In x +2x 2+mx +l 内单调递增1()40(0)xf x e x m x x'⇔=+++≥> 1(4)(0)x m e x x x ⇔≥-++>,1101,44(4)5x x x e x e x x x>⇒>+≥⇒-++<-,f (x)=e x +In x +2x 2+mx +l 内单调递增5m ⇔≥-。
选C 。
二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.设函数y =4+log 2(x -1)(x ≥3),则其反函数的定义域为 .【答案】[5)+,∞【解析】x ≥324log (31)5y ⇒≥+-=,函数y =4+log 2(x -1)(x ≥3)的值域为[5)+,∞,则其反函数的定义域为[5)+,∞。
14.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p+q ,若a 1=91,则a 36= .【答案】4【解析】因数列{a n }对于任意p ,q ∈N *,有a p +a q =a p+q ,所以112111112n n n n n n n n a a a a a a a a a a a +++++++=⎧⇒-=-=⎨+=⎩,所以{a n }是公差为a 1的等差数列,则a 36=a 1+35 a 1=36 a 1=4。
15.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN , 则m +n 的值为 . 【答案】2【解析】法一:如图,设P 是AC 的中点,连结OP ,则12O PAB OP AB =且,11112222AB AN AC m AM AN n AN OP PN AM AN AM AN AM AN--=⇒=⇒=111222m n m n ⇒=-⇒+=。
法二:(特殊化法)当N 与C 重合时,M 与B 重合,则m=n=1 m+n=2。
16.设有一组圆C k :(x -k +1)2+(y -3k)2=2k 4 (k ∈N * ).下列四个命题: A .存在一条定直线与所有的圆均相切 B .存在一条定直线与所有的圆均相交 C .存在一条定直线与所有的圆均不.相交 D .所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号) 【答案】B 、D【解析】圆心(k-1,3k )(k N *∈)在射线y=3x +3上,半径22r k =,结合图形易知真命题的代号是B 、D 。
事实上,C 1:x 2+(y -3)2=2,圆心(1,3),半径12r =,C 2:(x-1)2+(y -6)2=32,圆心(1,6),半径242r =,圆心距1210C C =,又21122132,1032r r C C r r -=<⇒<-,所以圆C 1内含于圆C 2,则不存在一条定直线与所有的圆均相切,A 是错误的;直线x=0与所有圆都相交,因为圆心(1,3)k k -到直线x=0的距离212d k k k N *=-<∈对恒成立,则B 对C 错;因为(0-k +1)2+(0-3k)2=2k 4 (k ∈N * )即2k 4-7k 2-1=0 (k ∈N * )无解,所以圆不过原点,则D 正确。