《运筹学》综合练习题
运筹学考试练习题精选全文完整版

可编辑修改精选全文完整版运筹学自测题第一套题一、判断题(T-正确,F-错误)1.图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
2.若线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
3.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
4.线性规划问题的可行解如为最优解,则该可行解一定是基可行解。
5.任何线性规划问题存在并具有唯一的对偶问题。
6.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。
7.整数规划的目标函数值一般优于其相应的线性规划问题的解的目标函数值。
8.分枝定界法在需要分枝时必须满足:分枝后的各子问题必须容易求解;各子问题解的集合必须包含原问题的解。
9.整数割平面法每次只割去问题的部分非整数解。
10.线性规划问题是目标规划问题的一种特殊形式。
11.目标规划模型中,应同时包含系统约束(绝对约束)与目标约束。
12.图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意。
13.网络图中代表两点之间的距离长短的数字,其含义也可以是时间或费用。
14.在制定网络计划时,将一个任务分解成若干个独立的工作单元,称为任务的分解。
二、选择题1.线性规划数学模型的特征是:________都是线性的。
A. 目标函数和决策变量B. 决策变量和约束条件C. 目标函数和约束条件D. 目标函数、约束条件及决策变量2.关于剩余变量,下列说法错误的是:A. 为将某个大于等于约束化为等式约束,在该约束中减去一个剩余变量B. 剩余变量在实际问题中表示超过收益的部分C. 剩余变量在目标函数中的系数为零D. 在用单纯形法求解线性规划问题时,剩余变量一般作为初始基变量。
A. 任意m 个列向量组成的矩阵B. 任意m 阶子矩阵C. 前m 个列向量组成的矩阵D. 任意m 个线性无关的列向量组成的矩阵A. mB. n-mC. 至少mD. 至少n-m5.如果是求极大值的线性规划问题,单纯形法的每次迭代意味着其目标函数值将( A)必然增加;(B)必然减少;(C)可能增加;(D)可能减少6.单纯形法求解线性规划问题时,如何判断问题存在无界解?(A)全部变量的检验数非负;(B)某个检验数为正的非基变量,其系数列向量不存在正分量;(C)最终的单纯形表中含有人工变量,且其取值不为零;(D)非基变量全部非正,且某个非基变量的检验数为零。
运筹学综合复习题

1、已知原问题为32134m ax x x x Z ++=⎪⎪⎩⎪⎪⎨⎧≤≥=++≥+-≤-+无符号限制321321321321,0,041632532x x x x x x x x x x x x 要求:(a) 写出其对偶问题; (b) 已知原问题最优解为()T*=4,0,0X ,试根据对偶理论,直接求出对偶问题的最优解。
2、分配甲、乙、丙、丁四个人去完成A 、B 、C 、D 、E 五项任务。
每个人完成各项任务的时间如下表所示。
任务人甲乙丙丁A B C D E2529314237393424382620332840323623452742任务E 必须完成,其他4项中可任选3项完成。
试确定最优分配方案,使完成任务的总时间最少。
3、用标号法求下图中1v 到7v 的最短距离1v 2v 3v 4v 5v 6v 7v 91273487385104、用标号算法求下图从s 到t 的最大流量及最小割。
弧旁数字为()ij ij f cst45))5、某公司拟将五台设备分配给下属的甲、乙、丙三个工厂,各工厂获得这种设备后,可以为公司带来的盈利如下表所示:工厂盈利设备数甲乙丙012345000354710691111121112131113问分配各工厂多少台这种设备,可以为公司带来盈利总和为最大。
用动态规划方法求解。
6、一自动化工厂的组装车间从本厂的配件车间订购各种零件。
估计下一年度的某种零件的需求量为20000单位,单位产品的年存储费为其价值的20%,该零件每单位价值为20元,所有订货均可及时送货。
一次订货的费用是100元,车间每年工作日为250天。
(1)计算经济订货批量; (2)每年订货多少次;(3)如从订货到交货的时间为10个工作日,产出是一致连续的,求订货点。
7、某企业要确定下一计划内产品产量。
根据以往经验及市场调查,已知产品销路较好、一般和较差的概率分别为0.3、0.5和0.2,采用大批量生产时可能获得的利润分别为20万元、12万元和8万元;采用中批量生产时可能获得的利润分别为16万元、16万元和10万元;采用小批量生产时可能获得的利润分别为12万元、12万元和12万元。
(完整版)《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
最全运筹学习题及答案

最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。
《 运筹学》复习题

《运筹学》复习题一、单项选择题1、()运筹学的主要内容包括: [单选题] *A.线性规划B.非线性规划C.存贮论D.以上都是(正确答案)2、()下面是运筹学的实践案例的是: [单选题] *A.丁谓修宫B.田忌赛马C.二战间,英国雷达站与防空系统的协调配合D.以上都是(正确答案)5、()运筹学模型: [单选题] *A.在任何条件下均有效B.只有符合模型的简化条件时才有效(正确答案)C.可以解答管理部门提出的任何问题D.是定性决策的主要工具8、()图解法通常用于求解有()个变量的线性规划问题。
[单选题] *A.1B.2(正确答案)C.4D.510、 (D)将线性规划问题转化为标准形式时,下列说法不正确的是: [单选题] *A.如为求z的最小值,需转化为求-z的最大值(正确答案)B.如约束条件为≤,则要增加一个松驰变量C.如约束条件为≥,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变量12、()关于主元的说法不正确的是: [单选题] *A.主元所在行称为主元行B.主元所在列称为主元列C.主元列所对应非基变量为进基变量D.主元素可以为零(正确答案)13、()求解线性规划的单纯形表法中所用到的变换有: [单选题] *A.两行互换B.两列互换C.将某一行乘上一个不为0的系数(正确答案)D.都正确14、()矩阵的初等行变换不包括的形式有: [单选题] *A. 将某一行乘上一个不等于零的系数B.将任意两行互换C. 将某一行乘上一个不等于零的系数再加到另一行上去D.将某一行加上一个相同的常数(正确答案)17、()关于标准线性规划的特征,哪一项不正确: [单选题] *A.决策变量全≥0B.约束条件全为线性等式C.约束条件右端常数无约束(正确答案)D.目标函数值求最大18、()线性规划的数学模型的组成部分不包括: [单选题] *A.决策变量B.决策目标函数C.约束条件D.计算方法(正确答案)19、()如果在线性规划标准型的每一个约束方程中各选一个变量,它在该方程中的系数为1,在其它方程中系数为零,这个变量称为: [单选题] *A.基变量(正确答案)B.决策变量C.非基变量D.基本可行解21、 (C)关于线性规划的最优解判定,说法不正确的是: [单选题] *A.如果是求最小化值,则所有检验数都小于等于零的基可行解是最优解。
最全的运筹学复习题及答案

四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。
建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
月销售分别为250,280和120件。
问如何安排生产计划,使总利润最大。
2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:起运时间服务员数2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。
六、用单纯形法求解下列线性规划问题:七、用大M法求解下列线性规划问题。
并指出问题的解属于哪一类。
八、下表为用单纯形法计算时某一步的表格。
已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10X l X2X3X4—10 b -1 f gX3 2 C O 1 1/5X l a d e 0 1(1)求表中a~g的值 (2)表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解第四章线性规划的对偶理论五、写出下列线性规划问题的对偶问题1.minZ=2x1+2x2+4x3六、已知线性规划问题应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Y l﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学综合练习题
第一章线性规划及单纯形法
1、教材43 页——44 页1.1 题
2、教材44 页1.4 题
3、教材45 页1.8 题
4、教材46 页1.13 题
5、教材46 页1.14 题
6、补充:判断下述说法是否正确
LP 问题的可行域是凸集。
LP 问题的基本可行解对应可行域的顶点。
LP问题的最优解一定是可行域的顶点,可行域的顶点也一定是最优解。
若LP 问题有两个最优解, 则它一定有无穷多个最优解.
x x x
求解LP 问题时,对取值无约束的自由变量,通常令j j j,其中
x j x j 0,在用单纯形法求得的最优解中,不可能同时出现xj x
当用两阶段法求解带有大M的LP模型时,若第一阶段的最优目标函数值为零,则可断言原LP 模型一定有最优解。
7、补充:建立模型
(1)某采油区已建有n个计量站B l, B2…B n,各站目前尚未被利用的能力为b i, b2-b n (吨液量/ 日)。
为适应油田开发的需要,规划在该油区打m 口调整井A i, A a…A m,且这些井的位置已经确定。
根据预测,调整井的产量分别为a i, a a-a m (吨液量/日)。
考虑到原有计量站富余的能力,决定
不另建新站,而用原有老站分工管辖调整井。
按规划要求,每口井只能属于一个计量站。
假定
A i 到
B j 的距离d ij 已知,试确定各调整井与计量站的关系,使新建集输管线总长度最短。
(2)靠近某河流有两个化工厂(见附图),流经第一个工厂的河流流量是每天500 万立方米;在两个工厂之间有一条流量为每天200万立方米的支流。
第一个工厂每天排放工业污水2万立方米;
第二个工厂每天排放工业污水1.4 万立方米。
从第一个工厂排出的污水流到第二个工厂之前, 有20%可自然净化。
根据环保要求,河流中工业污水的含量不应大于0.2%,若这两个工厂都各自处理一部分污水, 第一个工厂的处理成本是1000元/万立方米, 第二个工厂的处理成本是800 元
/万立方米。
试问在满足环保要求的条件下,每厂各应处理多少污水,才能使总的污水处理费用为最小?建立线性规划模型。
缺资源是哪些?(10分)
第二章线性规划的对偶理论与灵敏度分析
1、教材77—78 页2.1,22,2.3 题
2、教材79—80页2.10题:
①写出其对偶问题
②用单纯形法求解原问题及对偶问题
③比较②中原问题及对偶问题最优解的关系,掌握当求解原问题
题/原问题的最优解
3、教材80 页2.12、2.14 题
4、设有LP模型如下:
Max z CX
s.t. AX IX s b
X 0X s 0
/对偶问题后,如何辨识对偶问
C C B B1A 0
试用矩阵语言,描述其最优性检验条件为:C B B 1 0
5、写出二题线性规划的对偶规划(10分)
6、某公司计划制造i、n两种家电产品,已知各制造一件时分别占用的设备A、B的台时、调试时
I n 每天可用能力
设备A (小时)0 5 15
设备B (小时) 6 2 24
调试工序(小时) 1 1 5
利润(元) 2 1
②.该公司计划推出新型号的家电产品川,生产一件所需设备A、B及调试工序的时间分别为3、4、2小时,该产品单件获利3元,试判断且仅判断该产品是否值得生产?(10分)
③.对第一问中获利最大的线性规戈醮型建立其对偶规戈肪莫型,并回答其最优解和说明该公司的短
间及每天可用的设备能力和单件产品的获利情况如下表:
①•建立获利最大的线性规划模型并求解(可不考虑整数要求,10分)
第三章运输问题
1、教材107页3.1、3.5题
2、教材103页例题6
3、教材109 页3.10,3.11 题
4、补充:一个有退化基可行解的运输问题
某运输问题的运价及各产地、销地的数据如下表
试确定总运费最低的运输方案。
(注意:本题存在退化的基本可行解)
第四章目标规划
1、“目标规划不会出现无解”的结论对否?
2、用图解法及单纯形法求解教材125页4.2题
3、教材114页例3及116页例5.
第五章整数规划
1、判断说法是否正确:
①分枝定界求解整数规划时,分枝问题的最优解不会优于原(上一级)问题的最优解
②整数规划中,割平面的构造应满足能割掉松弛问题的最优解,但不割掉原问题的可行解。
2、教材154 —155 页5.4,5.5 题
3、教材155页5.6,5.7题
4、教材156 —157 页5.13,5.14 题
5、对教材11页例1建立其整数规划模型,并用分支定界法与割平面求解。
第七章动态规划
1、判断结论正误
①动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已作出的决策
②对于同一个动态规划问题,逆序法与顺序法的解不一样
2、教材237页7.1,7.2题
3、某企业有某种高效率设备3台,拟分配给所属甲、乙、丙车间,各车间得到设备后,获利情况
如下表,试建立最优分配方案(20分)
4、教材238页7.6题
5、某企业今有3个可供选择的投资项目,其收益所得及所需投资额如下表,由于可支配资金只有
10万元,试进行项目选择。
6、石油公司所属某仪器厂按合同向勘探单位提供地震勘探仪器,在计划年度内各季度的合同交货
量、该厂的生产能力、生产成本及成品库中的维护与保管成本数据如下表,试建立总成本最低的生产计划模型并用表上作业法求解一步。
第八章图与网络分析
本章只考察一一最短路问题与最大流问题
1、教材264页例12
2、下图是一个交通网络,每条边(弧)的容量及一个可行流如下表所示,试求这个网络的最大流。
第九章网络计划
1、判断说法正误
①PERT计算中,总时差是线路上的时差,可以串用,但单时差是工序的时差,不能串用
②在PERT计算中,将最早节点时刻等于最迟节点时刻、且满足俎仃)t(i,j) t E(i)0节点连
接而成的线路是关键线路
2、教材313页9.2题
3、某工程的PERT数据如下表:
①画出网络图并予节点以正确的编号
②计算最早、最迟节点时刻
4、考虑由A、B、……H等八道工序组成的产品加工任务,这些工序的先后顺序和加工的时间如下表所示:
要求:
1、 绘制所给工序的网络图;
2、 计算各节点的最早与最迟节点时刻;
第十章排队论
本章不做重点要求
1、在一个随机服务系统中,当其输入过程是一普阿松流时,即有
一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为入的负指数分布,即有
P X t e 七说法正确否?
第十一章存贮论
本章公式记忆太多,不做重点要求
1、 分析建立模型
不允许缺货、补充时间无限短的确定型存储模型的假设条件是: 不允许缺货 补充时间无限短
需求是连续的且需求速率R 为常数 单位物资单位时间的存储费用C
i 是常数
每次定购费C 3 (不考虑货款)是常数 试:(1)画出存储量变化曲线
(2)分析费用,建立总平均费用最低的订货模型(订货周期、订货量)
2、 参看弄懂教材 362页:“模型二,允许缺货,补充时间较长”
;能够根据其他模型条件,从而由
模型二得到其他模型
P N t
n
t n
t
e
n! ,则同。