导柱强度计算

合集下载

压铸公式汇总

压铸公式汇总

1、估算锁模力AXP F =吨A :为含浇排系统在内的全铸件在分型面上的投影面积P :比压,根据压铸件强度要求等选择,一般选择50MPa ,例如:比压选择为50MPa ,2900cm A =时, 4505.0900===X AXP F 吨2、预选压铸机根据锁模力的计算,结合压铸件技术要求,如有耐压、强度要求等选择DCC500压铸机。

3、比压的核算根据液体力学原理可知,冲头压射力=射出缸推力S a P A P A P ⨯=⨯0即:压射比压X 冲头截面积=系统工作压力X 压铸机压射缸截面积上式说明冲头直径越小则压室截面积越小,所能获得的压射比压越大例如:22010785.01354785.0⨯⨯=⨯⨯P则:MPa cm kg P 84/8432≈=该压铸机在40mm 压室直径状态下可提供的最大比压为84MPa 大于50MPa ,说明上述比压选择合理可行。

4、充填率计算 %100⨯⨯⨯=⎰ρK P L A M 总 M 总:包括浇排系统在内的铸件总重量(一模多腔时,M 总=一个铸件的重量X 模腔数+浇排系统重量)A P :冲头截面积L K :空压射行程ρ:合金液密度例如:g M 330=总,冲头直径cm d 5=,空压射行程cm L K 34=,合金液密度3/5.2cm g =ρ则:%8.19%1005.2345.23302==⎰X X X X π(标准30%-70%)5、充填时间210009T t ⨯= (铝合金经验公式)(镁合金系数为5/1000)(锌合金系数为7/1000) T:铸件平均壁厚例如:铝合金压铸件平均壁厚为mm 2时, 则:S t 036.02100092=⨯= 6、内浇口截面积:M A t V g g =⨯⨯⨯ρM:铸件重量(内浇口之上含集渣包)g V :内浇口速度7、压铸机冲头速度:Q g =Q P (合金液通过任何截面的流量相等)Q g :内浇口处的流量Q P :锤头处的流量(入料筒处流量)P P g g V A V P ⨯=⨯例:P V ⨯⨯=⨯250785.05.353.60s m V P /1.1= (此为最小冲头速度)8、模具套板边距S 计算边框长侧面受的总压力: N X X X X X H PL F 5000001050102001050336111===--; 边框短侧面受的总压力:N X X X X X H PL F 2500001050101001050336122===--; 套板边框厚度:66211222101001.042.0500000101001.08250000250000][4][8X X X X X X X X H L F H F F S ++=++=σσ mm m 77077.0==9、动模支承板厚度计算:动模支承板所受的总压力:N X X X PA F 450000010900105046===-;动模支承板厚度: []mm m X X X X X B FL K h W 94094.010906.025.0450000065.026====σ 10、导柱直径计算:A k d ⨯=。

模具相关尺寸的计算:

模具相关尺寸的计算:

模腔尺寸的‎计算: (1)、型腔的径向‎尺寸确定:按平均值计‎算,塑件的平均‎收缩率S为‎0.6% 7级精度模具最大磨‎损量取塑件‎公差的1/6;模具的制造‎公差£z=△/3取x=0.75。

LM1 5.98O+0.48 →6.26O-0.48 (LM1)o+£z=〔(1+s)Ls1-X△〕o+£z =〔(1+0.006)×0.26-0.75×0.48〕0+0.18=5.930+0.16 ②LM2 48O+0.48 →5.28O-0.48 (LM2)o+£z=〔(1+S) ×5.28-0.75×0.48〕o+£z =4.950+0.16 ③LM3 5.15O+0.48 →5.63O-0.48 (LM3)o+£z=〔(1+S) ×5.63-0.75×0.48〕o+£z =5.300+0.16 ④LM4 1O+0.48→1.38O-0.38 (LM4)o+£z=〔(1+S) ×1.38-0.75×0.38〕o+£z=1.100+0.12 ⑤LM5 18.89O+0.88→19.77O-0.88 (LM5)o+£z=〔(1+S)×19.77-0.75×0.88〕o+£z =19.230+0.29 ⑥LM60.96O+0.38→1.34O-0.38 (LM6)o+£z=〔(1+S) ×1.34-0.75×0.38〕o+£z =1.060+0.12 ⑦LM7∮2O+0.38 →∮2.38O-0.38 (LM7)o+£z=〔(1+S) ×2.38-0.75×0.38〕o+£z =2.100+0.12 ⑧LM8 ∮6.1O+0.58 →∮6.68O-0.38 (LM7)o+£z=〔(1+S) ×6.68-0.75×0.38〕o+£z =6.290+0.19 ⑨LM9 ∮0.77→1.05 (LM9) =〔(1+S)*1.05-0.75*0.38〕=0.86 o+0.13 ⑩LM10 10.5 →11.18 (LM10) =〔(1+S)*11.18-0.75*0.68〕 =10.74 (2)、型芯高度尺‎寸① H 4.7 →5.18 HM1 =〔(1+S)*5.18-0.75*0.48] =[(1+0.006)*4.7+0.5*0.48]=4.97 ② H 8.9 →9.48 HM2 =〔(1+S)*9.48-0.75*0.58〕 =[(1+0.006)*8.9+0.5*0.58] = 9.25 (3)、型芯的径向‎尺寸:① LM1=5.98 →5.98 LM1 =[(1+s)*Ls+x△] =[(1+0.006)*5.98+0.75*0.48]= 6.37 ②LM2=2.12 →2.12 LM2 =[(1+s)*Ls+X△] =[(1+0.006)*2.12+0.75*0.38] =2.42 (4)、型腔的深度‎尺寸① H m1 0.77 →1.15 Hm1 =〔(1+s)Hs1-x 〕 =〔(1+0.006)*1.15-0.5*0.38〕=0.97 Hm2 10.5 →11.18 Hm1 =〔(1+s)Hs2-x 〕 =〔(1+0.006)*11.18-0.5*0.68〕 =10.9 (5)斜导柱侧抽‎芯机构的设‎计与计算①:抽芯距(S) S=S1+(2→3)㎜ = +(2→3)㎜= +(2→3)㎜ =2.93+2.5㎜ =5.43㎜②:抽芯力(Fc) Fc=chp( cos -sin ) =[2*3.14*(3.1+1)∕2*10 ]*3.5*10 *1*10 *(0.15*cos30‎-sin30‎) =60.38N ③: 斜导柱倾斜‎角()斜导柱倾角‎是侧抽心机‎构的主要技‎术数据之一‎,它与塑件成‎型后能否顺‎利取出以及‎推出力、推出距离有‎直接关系。

YQ-注塑模具设计-各类计算公式

YQ-注塑模具设计-各类计算公式

注塑模具设计标准QR-ZY-GC-001 版本 2015一:关于司筒(推管)、顶针(推杆)的强度计算1:压曲负载 F[kgf]的计算 顶针的压曲强度计算通常利用欧拉公式: F=n×π2×A×E×( K )2L2:压缩负载 F1[kgf]的计算: 压缩负载是指熔融状树脂在填充,保压时施加到顶针上的负载。

F1=p×A n:支承条件常数 直杆时:n=4 台阶时:n=2.05 A:截面积[单位 mm] 圆截面:π ×d2 4 π 环形截面: ×(d2-d12) 4E:纵向弹性模量:21000[kgf/mm2]=2.1×105MPa=2.1×106 kgf/cm2 K:截面惯性半径 圆截面 环形截面 K=I / A (mm)K=d/4(mm) K=√d2+d12/16 (mm)I: 截面惯性矩[mm4] 圆截面: 环形截面:π ×d4 64 I= π ×(d4-d14) 64I=P: 型腔内压强[kgf/mm2] 3: 安全率的计算:1S=F >1 F1注塑模具设计标准QR-ZY-GC-001 版本 2015二:关于悬臂梁结构的最大挠度(δmax)计算公式 1:型芯前端有集中负载 δmax=Fl3/3EI δmax:最大挠度(cm) F: E: I: 集中负载(kgf/cm2) 纵向弹性模量 截面抗弯惯量(cm4)[惯性矩]Fl此公式同样可以计算斜顶杆的直径注:δ:斜顶杆变形量(cm);F:斜顶头的重力(kgf);E:纵向弹性模量 2.1x106(kgf/cm2);I:截面抗弯 惯性矩(cm4)。

2:型芯侧面有均布负载 δmax=ql4/8EI q: E: I: = Fl3/8EI q×l=F δmax:最大挠度(cm) 均布负载(kgf/cm); l 指型芯悬于模板的长度 纵向弹性模量 截面抗弯惯量(cm )[惯性矩]4ql实际上,熔化树脂会瞬间流向型芯的周围,因此只受单方向压力作用的可 能性极小。

注塑机设计中常用的计算规范(个人从实践经验总结)

注塑机设计中常用的计算规范(个人从实践经验总结)

注塑机设计中常用的计算规范一、螺杆塑化能力:G = 0.017682D·h3·n·ρSD/4*L理论注射容积:V=π2S式中:D s——螺杆直径(cm)L——螺杆行程(cm)实际注射量:G1=ρV式中:ρ—熔料的密度(g/cm3),计算时选PS料,ρ= 0.92。

V——理论注射容积(cm3)注1:计算公式来源于经验公式。

二、螺杆的强度根据螺杆最常见的破坏,是在加料段螺槽根径处发生断裂,所以螺杆的强度计算就以此处计算其应力。

σr =224τσ+c≤〔σ〕 式中:压缩应力σc =sF P 0= 210⎪⎪⎭⎫ ⎝⎛d D 0p剪应力 τ=stW M 材料许用应力〔σ〕=ny σ式中三、熔胶筒的壁厚:(按厚壁筒计算中的能量理论,校核其强度或计算壁厚)熔胶筒的总应力σr = P 1322-K K ≤ 〔σ〕熔胶筒壁厚 δ= 2b D (P3-〔σ〕〔σ〕- 1 ) 式中部分熔胶筒的K 值四、螺杆驱动功率:采用经验公式计算N s = C·5.2D·n4.1S式中:N s——螺杆驱动功率(kw)C ——与螺杆结构参数及传动方式有关的系数取C=0.00016D s——螺杆直径(cm)n ——螺杆转速(r/min)螺杆所需扭矩与直径及转速之间的关系,可用下式表示:M t = 10α·D mS式中:M t——螺杆扭矩(N·m)——螺杆直径(cm)DSα——比例系数,对于热塑性塑料α=1.2~1.5m ——由树脂性能而定的指数,m=2.7~3螺杆的驱动功率一般需留20~30%的余量,以作备用。

五、传动轴的强度:传动轴最常见的破坏是在承受扭矩的最小截面处发生断裂,所以传动轴的强度计算就以此处进行计算:σr =224τσ+c ≤〔σ〕 式中:压缩应力σc = sF P= 210⎪⎪⎭⎫ ⎝⎛d D 0p剪应力 τ=stW M 材料许用应力〔σ〕=ny σ式中六、轴 承1、基本额定动负荷计算:C =Tn dm h f f f f f ·P < C r (或C a ) 式中C ——基本额定动负荷计算值(N ); P ——当量动负荷,见下式(N ); h f ——寿命系数,按表7-2-4选取; n f ——速度系数,按表7-2-5选取;m f ——力矩负荷系数,力矩负荷较小时1.5,力矩负荷较大时2; d f ——冲击负荷系数,按表7-2-6选取; T f ——温度系数,按表7-2-7选取;C r ——轴承尺寸及性能表中所列径向基本额定动负荷(N ); C a ——轴承尺寸及性能表中所列轴向基本额定动负荷(N )。

浮船坞抱桩系泊装置结构优化设计研究

浮船坞抱桩系泊装置结构优化设计研究

浮船坞抱桩系泊装置结构优化设计研究袁元涛(上海华润大东船务工程有限公司,上海 202155)摘 要:以提高浮船坞运行效率为前提,针对浮船坞抱桩系泊装置结构展开分析。

介绍浮船坞抱桩系泊装置结构,并对其展开受力分析,最后从优化设计思路及方法、结构优化设计两个方面阐述结构优化设计,以期能够设计最佳抱桩系泊装置结构,实现浮船坞的有效运行。

关键词:浮船坞;抱桩系泊装置;船舶建造;沉船打捞中图分类号:U656 文献标识码:A 文章编号:1006—7973(2019)10-0069-02DOI编码:10.13646/ki.42-1395/u.2019.10.030浮船坞是船舶建造领域的一种工程船舶,可以用于船舶修建、沉船打捞、深水船舶运输等。

最初修建浮船坞的目的和干船坞相同,即船舶水下部分、推进器、舵等装置的检修,船舶水上部分、船舶机械装置也可以及时进行维修养护。

如果浮船坞处于泊碇状态受到水流力、风力等的冲击,可能无法维持正常运行,为了解决该问题需要设计系泊装置。

通常浮船坞泊碇包括锚泊泊碇、抱桩泊碇这两种形式,相比之下抱桩泊旋对于附近水域的影响较小,浮船坞平面位置维持不变,为岸坞设备运输提供便利条件。

浮船坞抱桩泊碇装置中有导柱、卡环这两个装置,导柱、卡环二者带有配合关系,这样一来使导柱结构尺寸成为卡环结构设计的重要影响因素。

所以,浮船坞抱桩系泊装置结构优化设计非常关键。

1 浮船坞抱桩系泊装置结构与方式浮船坞采用抱桩形式泊碇,抱桩装置由卡环和导柱组成,卡环设于水工建筑上,导柱设于坞墙外壁上。

导柱上基座上表面和坞顶甲板齐平,导柱下基座固定于下基座底座上。

下基座下表面高于坞基线600mm。

全船共设二套抱桩装置,设于浮坞左坞墙外侧。

浮船坞抱桩系泊装置结构主要有两种:第一,两根导柱设于坞体式结构。

抱桩系泊装置包括导柱、卡环,浮船坞侧面坞墙设置两根导柱,并且将卡环固定于系均壤之上,卡环内圈使用合金塑料,其作用在于缓冲、抗磨损;第二,两个卡环设于坞体式结构。

模具设计常用计算式导柱强度

模具设计常用计算式导柱强度

模具设计常用计算式导柱强度模具设计中的导柱强度计算是十分重要的,它影响着模具的稳定性和使用寿命。

下面将介绍几种常用的计算式和计算方法。

1.受力分析法导柱在模具工作过程中承受着来自零件加工的载荷,在受力分析中,我们需要确定导柱的受力方向和大小,以确定导柱的强度。

首先,我们需要确定零件的加工力和方向。

加工力包括轴向力、径向力和切向力。

根据零件的加工过程,可以计算出导柱的受力情况。

接下来,我们根据受力情况可以得出导柱的最大受力,进而计算导柱的应力。

在计算应力时,可以使用薄壁圆筒的公式。

如果导柱为实心圆柱,则可以使用杨氏模量和材料的截面面积来计算应力。

2.经验公式法经验公式法是一种简单快速的计算导柱强度的方法,适用于一些简单的模具设计。

常用的经验公式有以下几种:-约克公式:σ=Kd⁄(d-2r)其中,σ为导柱应力(N/mm²),K为经验系数,d为导柱的直径(mm),r为导柱的半径(mm)。

- Criteron公式:σ=3F⁄(πd²)其中,σ为导柱应力(N/mm²),F为导柱所承受的力(N),d为导柱的直径(mm)。

3.有限元分析法有限元分析法是一种计算模具导柱强度的精确方法。

它通过将模具导柱划分为有限个小单元,并对每个小单元进行受力分析和计算,得出导柱的应力分布情况。

在有限元分析中,导柱的几何形状、材料性质、受力情况等都需要输入到分析软件中。

通过计算得出导柱的应力、应变等参数,可以判断导柱的强度是否满足要求,并进行必要的修改和优化。

需要注意的是,不同的导柱形状、材料和使用条件都会对导柱的强度要求有所不同。

设计者应根据具体情况选择适合的计算方法,并结合实际经验和相关标准进行综合考虑和验证。

此外,在模具设计中,还需要考虑导柱的加工工艺、安装固定方式等因素,以确保导柱能够稳定可靠地工作。

总之,模具设计中的导柱强度计算是一个复杂而重要的问题,需要结合多种方法和理论进行综合分析,以确保导柱的强度和稳定性,从而提高模具的使用寿命和加工精度。

模具抽芯机构的设计。(理论知识)

模具抽芯机构的设计。(理论知识)

第八节:抽芯机构设计一`概述当塑料制品侧壁带有通孔凹槽,凸台时,塑料制品不能直接从模具内脱出,必须将成型孔,凹槽及凸台的成型零件做成活动的,称为活动型芯。

完成活动型抽出和复位的机构叫做抽苡机构。

(一)抽芯机构的分类1.机动抽芯开模时,依靠注射检的开模动作,通过抽芯机来带活动型芯,把型芯抽出。

机动抽芯具有脱模力大,劳动强度小,生产率高和操作方便等优点,在生产中广泛采用。

按其传动机构可分为以下几种:斜导柱抽芯,斜滑块抽芯,齿轮齿条抽芯等。

2.手动抽芯开模时,依靠人力直接或通过传递零件的作用抽出活动型芯。

其缺点是生产,劳动强度大,而且由于受到限制,故难以得到大的抽芯力、其优点是模具结构简单,制造方便,制造模具周期短,适用于塑料制品试制和小批量生产。

因塑料制品特点的限制,在无法采用机动抽芯时,就必须采用手动抽芯。

手动抽芯按其传动机构又可分为以下几种:螺纹机构抽芯,齿轮齿条抽芯,活动镶块芯,其他抽芯等。

3.液压抽芯活动型芯的,依靠液压筒进行,其优点是根据脱模力的大小和抽芯距的长短可更换芯液压装置,因此能得到较大的脱模力和较长的抽芯距,由于使用高压液体为动力,传递平稳。

其缺点是增加了操作工序,同时还要有整套的抽芯液压装置,因此,它的使用范围受到限制,一般很小采用。

(二)抽芯距和脱模力的计算把型芯从塑料制品成型僧抽到不妨碍塑料制品脱出的僧,即型芯在抽拔方向的距离,称为抽芯距。

抽芯距应等于成型孔深度加上2-3MM.一.抽芯距的计算如图3-102所示。

计算公式如下:S=H tgθ (3-26)式中S------ 抽芯距(MM)H------ 斜导柱完成抽芯所需的行程(MM)θ----- 斜导柱的倾斜角,一般取15·~20·2.脱模力的计算塑料制品在冷却时包紧型芯,产生包紧力,若要将型芯抽出,必须克服由包紧力引起的磨擦阻力,这种力叫做脱模力,在开始抽芯的瞬间所需的脱模力为最大。

影响脱模力因素很多,大致归纳如下;(1)型芯成型部分表面积和断面几何形状:型芯成型部分面积大,包紧力大,其模力也大;型芯的断面积积形状时,包紧力小,其脱模也小;型芯的断面形状为矩形或曲线形时,包运费力大,其脱模力也大。

折弯机设计毕业设计

折弯机设计毕业设计

折弯机设计毕业设计折弯机设计毕业设计摘要在研究国内外折弯机械的发展状况和我国折弯机械存在的问题的基础上,根据零件作业的要求,设计了一种利用液压元件驱动单向作业的折弯机。

该机型采用曲柄滑块机构,解决了实际生产之中薄板材的折弯。

并且通过对机构的运动分析和计算,通过机构的转化来实现使折弯力在加工过程之中始终与零件时刻保持垂直的一台空调冷凝器后罩生产线上专用的三梁二柱式的非标准设备。

该折弯机的特点是结构简单,操作容易,工效高。

关键词:折弯机液压非标设备折弯机设计毕业设计AbstractIn studies the domestic and foreign knee bend machinery the development condition and our country bends at the knees in the question foundation which the machinery exists, according to the components work request, designed one kind to actuate the unidirectional work using the hydraulic pressure part the booklet bender.This type uses the crank slide organization, has solved during the actual production the thin plate knee bend.And through to the organization movement analysis and the computation, realizes through the organization transformation makes the knee bend strength throughout to maintain on a vertical air conditioning condenser rear cowl production line in the processing process with the components time the special-purpose three Liang two column type non-standard equipment.This booklet bender characteristic is the structure is simple, the operation is easy, the work efficiency is high.Key word: Folds the bender Hydraulic pressure Non-sign equipment折弯机设计毕业设计目录摘要 (I)Abstract (II)第1章绪论 (1)1.1国内外的科技现状 (1)1.1.1国内外的现状 (1)1.2选题目的和意义 (2)1.3本文主要研究内容 (2)第2章折弯产品的零件图 (3)第3章折弯机设计原理和机构方案的分析、比较、确定 (5)3.1折弯机设计原理的分析、比较、确定 (5)3.2 折弯机结构方案的分析、确定 (6)第4章折弯机设计的计算和结构说明 (7)4.1 折弯力的计算 (7)4.2 压边力的计算 (9)4.2.1压紧块的设计 (9)4.2.2 压边力的计算 (9)4.2.3压紧块中心位置的确定 (10)4.3 机架的受力分析 (11)4.3.1机架以及相关零件参数的确定 (11)4.3.2机架的受力分析 (13)4.4油缸的选取 (18)4.4.1压紧缸的选取 (18)4.4.2 折弯缸的选取 (19)4.5 液压系统的设计 (25)4.5.1负载分析 (25)4.5.2执行元件主要参数的确定 (25)4.5.3拟定液压系统原理图 (26)第5章典型零件的加工工艺过程 (28)折弯机设计毕业设计5.1导柱 (29)5.2压紧块的工艺安排 (31)结论 (38)致谢 (32)参考文献 (40)折弯机设计毕业设计CONTENTS Abstract (II)Chapter 1 Introduction (1)1.1Domestic and international current situation of science and technology. 11.1.1 Domestic and overseas status (1)1.2Purpose and significance of the theme (2)1.3The main research contents (2)Chapter 2Bending of product parts diagram (3)Chapter 3Bending machine design principle and mechanism analysis (5)3.1Bending machine design principle analysis, comparison, determine the. 53.2 Bending machine structure scheme analysis, determine the (6)Chapter 4Bending machine design calculation and structure (7)4.1 Bending force calculation (7)4.2 Blank holder force calculation (9)4.2.1The press block design (9)4.2.2 Blank holder force calculation (9)4.2.3The pressing block center position determination (10)4.3 A force analysis (11)4.3.1Housing and related parts parameters (11)4.3.2 A force analysis (13)4.4Cylinder selection (18)4.4.1The selection of pressure cylinder (18)4.4.2 The selection of pressure cylinder (19)4.5 The design of hydraulic system (25)4.5.1Load analysis (25)4.5.2Executive element to determine main parameters (25)4.5.3Formulation of the hydraulic system principle diagram (26)Chapter 5Typical parts machining process (28)5.1Guide pillar (29)折弯机设计毕业设计5.2Pressing block for process planning (31)Conclusion (38)Thanks (32)References (33)第1章绪论机械工业担负着国民经济各部门,包括工业,农业和社会生活各个方面提供各种性能先进,价格低廉,使用安全可靠的技术装备的任务,在现代化建设中是举足轻重的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档