中南大学复变函数考试卷试题及答案

合集下载

(完整版)《复变函数》考试试题与答案(十二)

(完整版)《复变函数》考试试题与答案(十二)

《复变函数》考试试题(十二)一、判断题。

(正确者在括号内打√,错误者在括号内打×,每题2分)1.设复数111z x iy =+及222z x iy =+,若12x x =或12y y =,则称1z 与2z 是相等的复数。

( )2.函数()Re f z z =在复平面上处处可微。

( )3.22sin cos 1z z +=且sin 1,cos 1z z ≤≤。

( )4.设函数()f z 是有界区域D 内的非常数的解析函数,且在闭域D D D =+∂上连续,则存在0M >,使得对任意的z D ∈,有()f z M <。

( )5.若函数()f z 是非常的整函数,则()f z 必是有界函数。

( )二、填空题。

(每题2分)1.23456i i i i i ⋅⋅⋅⋅= _____________________。

2.设0z x iy =+≠,且arg ,arctan 22y z x ππππ-<≤-<<,当0,0x y <>时,arg arctan y x=+________________。

3.若已知222211()(1)(1)f z x iy x y x y =++-++,则其关于变量z 的表达式为__________。

4以z =________________为支点。

5.若ln 2z i π=,则z =_______________。

6.1z dz z==⎰________________。

7.级数2461z z z ++++L 的收敛半径为________________。

8.cos nz 在z n <(n 为正整数)内零点的个数为_______________。

9.若z a =为函数()f z 的一个本质奇点,且在点a 的充分小的邻域内不为零,则z a =是1()f z 的________________奇点。

10.设a 为函数()f z 的n 阶极点,则()Re ()z a f z s f z ='=_____________________。

复变函数试卷及答案

复变函数试卷及答案

复变函数试卷及答案【篇一:《复变函数》考试试题与答案各种总结】xt>一、判断题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若{zn}收敛,则{re zn}{im zn}与都收敛. ( )4.若f(z)在区域d内解析,且f(z)?0,则f(z)?c(常数).( )5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.( )6.若z0是f(z)的m阶零点,则z0是1/f(z)的m阶极点. ( )7.若z?z0limf(z)存在且有限,则z0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域d内的单叶函数,则f(z)?0(?z?d). ( )9. 若f(z)在区域d内解析, 则对d内任一简单闭曲线c?cf(z)dz?0.( )10.若函数f(z)在区域d内的某个圆内恒等于常数,则f(z)在区域d 内恒等于常数.()二.填空题(20分)dz?__________.(n为自然数)1、 ?|z?z0|?1(z?z)n22sinz?cosz? _________. 2.3.函数sinz的周期为___________.f(z)?4.设?1z2?1,则f(z)的孤立奇点有__________.n?nzn?0的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若n??limzn??z1?z2?...?zn?n??n,则______________.limezres(n,0)?z8.________,其中n为自然数.sinz9. 的孤立奇点为________ .zlimf(z)?___zf(z)的极点,则z?z010.若0是.三.计算题(40分):1. 设1f(z)?(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz.?|z|?1cosz2.3?2?7??1f(z)??d?c??z3. 设,其中c?{z:|z|?3},试求f(1?i).w?4. 求复数z?1z?1的实部与虚部.四. 证明题.(20分) 1. 函数为常数. 2. 试证: f(z)?f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内在割去线段0?rez?1的z平面内能分出两个单值解析分支,并求出支割线0?rez?1上岸取正值的那支在z??1的值.《复变函数》考试试题(一)参考答案一.判断题?2?in?11. ? ;2. 1;3. 2k?,(k?z);4. z??i; 5. 1 0n?1?6. 整函数;7. ?;8. 三.计算题.1. 解因为0?z?1, 所以0?z?1?1?zn111n??z??(). f(z)???2n?02(z?1)(z?2)1?z2(1?)n?021; 9. 0; 10. ?.(n?1)!2. 解因为z?resf(z)?limz??2?2z??2?lim1??1, coszz???sinzz??2resf(z)?limz???2z???2?lim1?1. coszz????sinz所以1sf(z)?resf(z)?0. z?2cosz?2?i(re??z??z?2223. 解令?(?)?3??7??1, 则它在z平面解析, 由柯西公式有在z?3内, f(z)??(?)?c??z?2?i?(z).所以f?(1?i)?2?i??(z)z?1?i?2?i(13?6i)?2?(?6?13i). 4. 解令z?a?bi, 则 w?z?122a(?1?bi)2a(?1)b2. 2?1?1?122222z?1z?1(a?1)?b(a?1)?ba(?1)?bz?12(a?1)z?12b, . )?1?im()?z?1(a?1)2?b2z?1(a?1)2?b2故 re(四. 证明题.1. 证明设在d内f(z)?c.令f(z)?u?iv,则f(z)?u2?v2?c2.2?uux?vvx?0两边分别对x,y求偏导数, 得??uuy?vvy?0(1)(2)因为函数在d内解析, 所以ux?vy,uy??vx. 代入 (2) 则上述方程组变为?uux?vvx?022. 消去ux得, (u?v)vx?0. ??vux?uvx?01) 若u?v?0, 则 f(z)?0 为常数.2) 若vx?0, 由方程 (1) (2) 及 c.?r.方程有ux?0, uy?0, vy?0. 所以u?c1,v?c2. (c1,c2为常数).22所以f(z)?c1?ic2为常数. 2.证明f(z)?的支点为z?0,1. 于是割去线段0?rez?1的z平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z从支割线上岸一点出发,连续变动到z?0,1 时, 只有z的幅角增加?. 所以f(z)?的幅角共增加?. 由已知所取分支在支割线上岸取正值, 于是可认为该分2?i?2支在上岸之幅角为0, 因而此分支在z??1的幅角为,故f(?1)??.2《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数f(z)?u(x,y)?iv(x,y)在d内连续,则u(x,y)与v(x,y)都在d 内连续. ( )2. cos z与sin z在复平面内有界.( )3. 若函数f(z)在z0解析,则f(z)在z0连续. ( )4. 有界整函数必为常数. ( )5. 如z0是函数f(z)的本性奇点,则limf(z)一定不存在. ( )z?z06. 若函数f(z)在z0可导,则f(z)在z0解析. ( )7. 若f(z)在区域d内解析, 则对d内任一简单闭曲线c?f(z)dz?0.c( )8. 若数列{zn}收敛,则{rezn}与{imzn}都收敛. ( ) 9. 若f(z)在区域d内解析,则|f(z)|也在d内解析. ( )11110. 存在一个在零点解析的函数f(z)使f()?0且f()?,n?1,2,....n?12n2n( )二. 填空题. (20分)1. 设z??i,则|z|?__,argz?__,?__z?1?i2.设f(z)?(x2?2xy)?i(1?sin(x2?y2),?z?x?iy?c,则limf(z)?________.3.dz?|z?z0|?1(z?z0)n?_________.(n为自然数)4. 幂级数?nzn的收敛半径为__________ .n?0?5. 若z0是f(z)的m阶零点且m0,则z0是f(z)的_____零点.6. 函数ez的周期为__________.7. 方程2z5?z3?3z?8?0在单位圆内的零点个数为________. 8. 设f(z)?1,则f(z)的孤立奇点有_________. 21?z9. 函数f(z)?|z|的不解析点之集为________.z?110. res(,1)?____. 4z三. 计算题. (40分)3sin(2z)的幂级数展开式. 1. 求函数2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z?i处的值.??|z|dz,积分路径为(1)单位圆(|z|?1)?ii3. 计算积分:i的右半圆.4. 求sinzz?2(z?)22dz.四. 证明题. (20分)1. 设函数f(z)在区域d内解析,试证:f(z)在d内为常数的充要条件是f(z)在d内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.【篇二:复变函数试题与答案】>一、选择题1.当z?1?i时,z100?z75?z50的值等于() 1?i(a)i (b)?i(c)1 (d)?12.设复数z满足arc(z?2)??3,arc(z?2)?5?,那么z?() 61331?i (d)??i 2222(a)?1?3i (b)?3.复数z?tan??i(3?i (c)??????)的三角表示式是() 2 ???)?i??)] (b)sec?(a)sec22??3?3???)?i??)] 22?(c)?sec3?3?????)?i??)](d)?sec???)?i??)] 2222224.若z为非零复数,则z?与2z的关系是()2222(a)z??2z (b)z??2z22(c)z??2z (d)不能比较大小5.设x,y为实数,则动点(x,y)z1?x??yi,z2?x??yi且有z1?z2?12,的轨迹是()(a)圆(b)椭圆(c)双曲线(d)抛物线6.一个向量顺时针旋转?3,向右平移3个单位,再向下平移1个单位后对应的复数为1?3i,则原向量对应的复数是()(a)2(b)1?i (c)3?i (d)3?i17.使得z2?z成立的复数z是() 2(a)不存在的(b)唯一的(c)纯虚数(d)实数8.设z为复数,则方程z??2?i的解是()(a)?3333?i (b)?i (c)?i (d)??i 44449.满足不等式z?i?2的所有点z构成的集合是() z?i(a)有界区域(b)无界区域(c)有界闭区域(d)无界闭区域10.方程z?2?3i?2所代表的曲线是()(a)中心为2?3i,半径为2的圆周(b)中心为?2?3i,半径为2的圆周(c)中心为?2?3i,半径为2的圆周(d)中心为2?3i,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(a)z?1?2 (b)z?3?z?3?4 z?2z?a?1(a?1) (d)z?a?z?a?c?0(c?0) 1?az(c)12.设f(z)?1?,z1?2?3i,z2?5?i,,则f(z1?z2 )(a)?4?4i(b)4?4i(c)4?4i(d)?4?4i13.limim(z)?im(z0)() x?x0z?z0(a)等于i(b)等于?i(c)等于0(d)不存在14.函数f(z)?u(x,y)?iv(x,y)在点z0?x0?iy0处连续的充要条件是()(a)u(x,y)在(x0,y0)处连续(b)v(x,y)在(x0,y0)处连续(c)u(x,y)和v(x,y)在(x0,y0)处连续(d)u(x,y)?v(x,y)在(x0,y0)处连续 2z2?z?115.设z?c且z?1,则函数f(z)?的最小值为() z (a)?3 (b)?2(c)?1 (d)1二、填空题1.设z?(1?i)(2?i)(3?i),则z? (3?i)(2?i)2.设z?(2?3i)(?2?i),则argz?3.设z?,arg(z?i)?3?,则z? 4(cos5??isin5?)24.复数的指数表示式为 2(cos3??isin3?)5.以方程z?7?i的根的对应点为顶点的多边形的面积为6.不等式z?2?z?2?5所表示的区域是曲线的内部 67.方程2z?1?i?1所表示曲线的直角坐标方程为2?(1?i)z8.方程z?1?2i?z?2?i所表示的曲线是连续点和的线段的垂直平分线9.对于映射??2i22,圆周x?(y?1)?1的像曲线为 z410.lim(1?z?2z)? z?1?i三、若复数z满足z?(1?2i)z?(1?2i)?3?0,试求z?2的取值范围.四、设a?0,在复数集c中解方程z2?2z?a.五、设复数z??i,试证z是实数的充要条件为z?1或im(z)?0. 21?z3六、对于映射??11(z?),求出圆周z?4的像. 2z七、试证1.z1?0(z2?0)的充要条件为z1?z2?z1?z2; z2z1?0(zj?0,k?j,k,j?1,2,?,n))的充要条件为 z22.z1?z2???zn?z1?z2???zn.八、若limf(z)?a?0,则存在??0,使得当0?z?z0??时有f(z)?x?x01a. 2九、设z?x?iy,试证x?y2?z?x?y.十、设z?x?iy,试讨论下列函数的连续性: ?2xy,z?0?1.f(z)??x2?y2 ?0,z?0??x3y?,z?02.f(z)??x2?y2.?0,z?0?第二章解析函数一、选择题:1.函数f(z)?3z在点z?0处是( )(a)解析的(b)可导的(c)不可导的(d)既不解析也不可导2.函数f(z)在点z可导是f(z)在点z解析的( )4 2(a)充分不必要条件(b)必要不充分条件(c)充分必要条件(d)既非充分条件也非必要条件3.下列命题中,正确的是( )(a)设x,y为实数,则cos(x?iy)?1(b)若z0是函数f(z)的奇点,则f(z)在点z0不可导(c)若u,v在区域d内满足柯西-黎曼方程,则f(z)?u?iv在d内解析(d)若f(z)在区域d内解析,则在d内也解析4.下列函数中,为解析函数的是( )(a)x2?y2?2xyi(b)x2?xyi(c)2(x?1)y?i(y2?z?x20?2x)(d)x3?iy35.函数f(z)?z2im(z)在处的导数( )(a)等于0 (b)等于1 (c)等于?1(d)不存在6.若函数f(z)?x2?2xy?y2?i(y2?axy?x2)在复平面内处处解析,那么实常数a?( )(a)0(b)1(c)2(d)?27.如果f?(z)在单位圆z?1内处处为零,且f(0)??1,那么在z?1内f(z)?( )(a)0(b)1(c)?1(d)任意常数8.设函数f(z)在区域d内有定义,则下列命题中,正确的是(a)若f(z)在d内是一常数,则f(z)在d内是一常数(b)若re(f(z))在d内是一常数,则f(z)在d内是一常数(c)若f(z)与f(z)在d内解析,则f(z)在d内是一常数(d)若argf(z)在d内是一常数,则f(z)在d内是一常数9.设f(z)?x2?iy2,则f?(1?i)?( )5【篇三:大学复变函数考试卷试题及答案】ss=txt>?z2?,z?01.设f?z???z,则f?z?的连续点集合为()。

《复变函数》考试试题与答案各种总结.docx

《复变函数》考试试题与答案各种总结.docx

---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。

完整版)复变函数测试题及答案

完整版)复变函数测试题及答案

完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。

复变函数试题、答案

复变函数试题、答案

学年第二学期《复变函数》试卷 甲使用班级:电气、电子 闭卷 课程编号:答题时间: 120 分钟共 4 页第 1 页一、填空:(每空2分,共20分)1. z=-2+3i, Re (z)= -2 , Im (z)= 3 , |z| =13, Arg (z)= -arctan 3/2 +(2k+1)π 。

2. f(z) = 2x -3y + (sin x -3y )i 是否是解析函数? 不是 。

3. ⎰ii dz z - 34 = 0 。

4. C 是正向单位圆周,⎰C dz z 2)cos( = 0 。

5. Ln(-1) = i (2k+1)π6.∑+∞=202n n nz 的收敛半径 = 1 。

7. C 是正向单位圆周,⎰C dz zz 2)cos( = 2πi 。

二、计算下列各题:(10分/小题,共70分)1.设函数f (z )=my 3+nx 2y+i (x 3+lxy 2)是全平面内的解析函数。

求l, m, n 的值。

解 u = my 3+nx 2y v=(x 3+lxy 2) (3分)由f (z ) 解析, 得 x y yx v u v u -== (4分)解得 n = l = -3 , m = 1 (3分)共 4 页第 2 页2. 求⎰=-+-5)3)(1(13z dz z z z 解 ⎰=-+-5)3)(1(13z dz z z z =⎰=+-+-5.01)3)(1(13z dz z z z +⎰=--+-5.03)3)(1(13z dz z z z (4分)=i 2π(1313-=--z z z +3113=+-z z z ) (4分)=i 6π (2分) (本题方法不唯一)3. 已知u (x,y ) = x 2 – y 2 -2xy , 求其共轭调和函数v (x,y )及解析函数f (z )= u (x,y ) +i v (x,y )。

解 由f (z ) 解析, 得z i x y i y x iv u z f x x )1(2)22(22)(/+=----=+= (4分)所以C z i z f ++=2)1()( (5分) C 是任意纯虚数 (1分)(本题方法不唯一)共 4 页第 3 页4.求⎰=-+-322)1(12z dz z z z . 解i6)12( i 2)1(1212322ππ='+-=-+-==⎰z z z z dz z z z (10分)5.求)2)(1(12--+z z z 在圆环1<|z |<2内的洛朗展开式解 1<|z |<2时12,11<<zz (3分))2)(1(12--+z z z =∑∑∞=+∞=+-+-01011325n n n n n z z (7分)(本题有其他等价形式,不唯一)6.求11+-z z 在z 0 = 2点的泰勒展开式,并指出它的收敛半径.解 321132111-+-=+-z z z (3分)|z -2|<3时321132111-+-=+-z z z =∑∑∞=+∞=---=---1103)2(2)1(313)2()1(321n n nn n n nn z z (5分)收敛半径r=3 (2分)(本题有其他等价形式,不唯一)7.求dt tt e t ⎰∞+-0 22sin 。

《复变函数》考试试题(八)参考答案

《复变函数》考试试题(八)参考答案

《复变函数》考试试题(八)参考答案一、判断题.1. ×2. ×3. ×4. √5. × 二、填空题.1. 1-2. ()π-3. 1()f z z z=+4. 0,∞5. i6. 2π7. 18. 221nπ-9.本性 10. π- 三、计算题.1.解:arg 2155z k ik w zeπ+= 0,1,2,3,k =1=- 得251k ieππ+-= 从而有2k =4114105102331(1)22(co s sin )44iw i e i i ππππ-+--=⋅=+=2.解:(1)2()1L n z f z z =-的各解析分支为2ln 2()1k z k f z z π+=-,(0,1,)k =± .1z =为0()f z 的可去奇点,为()k f z 的一阶极点(0,1,)k =± 。

0R e ((),1)0s f z = R e ((),1)ks f z k i π= (1,2,)k =±± (2)1100011R e R e !!znn n z z n e z ss zz n n ∞++===⎡⎤=⋅=⎢⎥⎣⎦∑ 3.计算下列积分 解:(1)72323221()12(1)(2)(1)(1)zf z z z z zz==-+-+1R e (,)1s f C -∞=-=-2()2[R e (,)]2z f z d z i s f i ππ==-∞=⎰(2)设2222222()()()()zzf z z a z a i z a i ==++-令22()()zz z a i ϕ=+, 32()()a iz z z a i ϕ'=+则23()2()1R e (,)1!(2)4a i a i s f a i i a i aϕ'===-I m 0()2R e (,)2z f z d z i s f a i aππ>==⎰2222()2x d x x a aπ+∞-∞=+⎰4.儒歇定理:设c 是一条围线,()f z 及()z ϕ满足条件: (1)它们在c 的内部均解析,且连续到c ; (2)在c 上,()()f z z ϕ>则f 与f ϕ+在c 的内部有同样多零点,即()10f z = 6()6g z z z =+有 ()()f z g z >由儒歇定理知66100z z ++=在1z <没有根。

复变函数试卷(含答案)

复变函数试卷(含答案)

e 1 z
z
z
2
z
2
z
3
z
3
z
n
,
n
2. (本题 8 分)解:
e
e e
z z
2!
z
3!

n! ( 1) n! z ,
n
----------------------------- 3
二、计算下列积分(3 小题,共 15 分):
1.(本题 5 分)分别小圆 C 1 , C 2 包围点 z1 1, z 2 2 i , 使得 C 1 , C 2 互不相交,且在 C 内,----- 1

1 ( z 1)
2
( 1)
n0

n
( z 1)
n
--------------- 2

3 页

2 页
*

*
*
*
* 课 程 考 试 试 卷


( 1) ( z 1)
n
n2

n0
n 2


( 1) ( z 1) 。
n n
---------------------- 2
沿圆周c的正向积分选择题每题3分共15a扇形b直线a复平面上处处解析b仅在直线上解析c复平面上处处不解析d复平面上处处可导4
*
----------------------------装--------------------------订----------------------线-------------------------------------------------------------装----------------------------------订---------------------------------线--------------------------专业: 电学类各专业

(完整版)复变函数试题及答案

(完整版)复变函数试题及答案
C是复数其实部等于1D是复数其模等于1
2、下列命题正确的是()
A B零的辐角是零
C仅存在一个数z,使得 D
3、下列命题正确的是()
A函数 在 平面上处处连续
B 如果 存在,那么 在 解析
C每一个幂级数在它的收敛圆周上处处收敛
D如果v是u的共轭调和函数,则u也是v的共轭调和函数
4、根式 的值之一是()
1、 的指数形式是
2、 =
3、若0<r<1,则积分
4、若 是 的共轭调和函数,那么 的共轭调和函数是
5、设 为函数 = 的m阶零点,则m =
6、设 为函数 的n阶极点,那么 =
7、幂级数 的收敛半径R=
8、 是函数 的奇点
9、方程 的根全在圆环内
10、将点 ,i,0分别变成0,i, 的分式线性变换
二、单选题(每小题2分)
1 2 3 4 5
四 计算题(每小题6分,共36分)
1解: , 分
…5分
解得: 分
2解:被积函数在圆周的 内部只有一阶极点z=0
及二阶极点z=1 分
= 2i(-2+2)=0 分
3解:
= …4分
( <2)…6分
4解: 被积函数为偶函数在上半z平面有两个
一阶极点i,2i…1分
I= …2分
= …3分
= …5分
A可去奇点B一阶极点C一阶零点D本质奇点
6、函数 ,在以 为中心的圆环内的洛朗展式
有m个,则m=( )
A 1 B2C3 D 4
7、下列函数是解析函数的为()
A B
C D
8、在下列函数中, 的是()
A B
C D
9、设a ,C: =1,则 ()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学考试试卷(B)
2008--2009学年第二学期 时间110分钟
复变函数与积分变换课程40学时2.5学分 考试形式:闭卷 专业年级:教改信息班 总分100分,占总评成绩70 %
注:此页不作答题纸,请将答案写在答题纸上 一、单项选择题(15分,每小题3分)
1. 设()2
,0
0,0z z f z z z ⎧≠⎪=⎨⎪=⎩
,则()f z 的连续点集合为( )。

(A )单连通区域 (B )多连通区域 (C )开集非区域 (D )闭集非闭区域 2. 设()(,)(,)f z u x y iv x y =+,那么(,)u x y 与(,)v x y 在点()00,x y 可微是()f z 在点
000z x iy =+可微的( )。

()()()()A B C D 充分但非必要条件必要但非充分条件
充分必要条件既非充分也非必要条件
3. 下列命题中,不正确的是( )。

()()()()()()()()()0Res ,0
Im 1.
z z A f z f z B f z D z f z D C e i
D z e i
ωπω∞∞=-=<<<+如果无穷远点是的可去奇点,那么若在区域内任一点的邻域内展开成泰勒级数,则在内解析.幂级数的和函数在收敛圆内是解析函数.函数将带形域0()映射为单位圆
4. 设c 是()1z i t =+,t 从1到2的线段,则arg d c
z z ⎰( )。

()
()
()()
()114
4
4
A B i
C i
D i π
π
π
++
5. 设()f z 在01z <<内解析且()0
lim 1z zf z →=,那么()()
Res ,0f z =( )。

()()()()2211A i B i C D ππ--
二、填空题(15分,每空3分) 1.()Ln 1i -的主值为 。

2.函数()()Re Im f z z z z ()=+仅在点z = 处可导。

3.罗朗级数的()()1
1211133n
n
n
n n n z z ∞

==⎛⎫
⎛⎫-+-- ⎪ ⎪-⎝⎭⎝⎭∑∑收敛域为 。

4. 映射1
w z
=,将圆域11z -<映射为 。

5.
1
1
cos z dz z ==⎰ 。

三.(10分)求解析函数f z u iv ()=+,已知2
2
,()1u x y xy f i i =-+=-+。

四.(20分)求下列积分的值 1.
()
2
2
4
1z z e dz z
z =-⎰
2.
()2
sin 0x x
dx a x a
+∞
>+⎰
五.(15分)若函数()z ϕ在点0z 解析,试分析在下列情形: 1.0z 为函数()f z 的m 阶零点; 2.0z 为函数()f z 的m 阶极点;
求()()()0Res ,f z z z f z ϕ⎡⎤
'⎢⎥⎣⎦。

六.(15分)写出函数2
cos z
e z
的幂级数展开式至含项为止,并指出其收敛范围。

七.(10分)求函数()()()13sin 2f t tu t t t δ=++-+傅氏变换。

中南大学考试试卷答案(B)
2008--2009学年第二学期 时间110分钟
复变函数与积分变换 课程40学时2.5学分 考试形式:闭卷 专业年级:教改信息班0701 总分100分,占总评成绩70 %
注:此页不作答题纸,请将答案写在答题纸上 三、单项选择题(15分,每小题3分) 1.A 。

2. B 。

3. A 。

4. C 。

5.C 。

四、填空题(15分,每空3分) 1
.4
i π。

2. i - 。

3. 233z <-<。

4. 半平面()1
Re 2
w >
R 。

5.0。

三.(10分)解:容易验证u 是全平面的调和函数。

利用C-R 条件,先求出v 的两个偏导数。

()()()
()
()(),0,00
222,2(,)22211
222
x y x
y v u v u y x x y x y y x v x y y x dx x y dy C
x dx x y dy C x xy y C
∂∂∂∂=-=-==+∂∂∂∂=-+++=-+++=-+++⎰
⎰⎰则
四.(20分)求下列积分的值 1.()23e i π-
2.这里m=2,n=1,m-n=1,R(z)在实轴上无孤立奇点,因而所求的积分是存在的
22
e d 2πRes[()e ,]ix iz
x x i R z ai x a +∞
-∞
=+⎰
e
2lim
2ππ2
iz a
a
z ia ze i i ie z ia π--→==⋅=+
22220
sin 11d Im().22
ix
a x x x x e dx e x a x a π+∞
+∞--∞==++⎰
⎰因此
五.(15分)
()()()()()()()
()
()()()()()()00000000000!
(1)0,n n
m
z z z z z z z z z z z n z f z m z f z z z z z z z z ϕϕϕϕϕψψψ'=+-+
+
-+
=-≠解:函数在点解析等价于在的一个邻域内
为的阶零点等价于在的一个邻域内其中在点解析,于是在的去心领域
()()()()()()()()()()()()()()()()()
()()()()()1001000000!,Res ,2Res ,n n f z m z z m z m z z z z m z z z f z z z z z z n z f z z z m z f z f z z z m z f z ϕψϕϕψϕϕϕψψϕϕϕϕ∞-=⎧⎫'''⎪⎪
=+=+-+⎨⎬
--⎪⎪⎩⎭⎡⎤'=⎢⎥⎣⎦⎡⎤
'=-⎢⎥⎣
⎦∑由此可知与上面类似六.
()()()()2
22
2
2422422012211,cos 2
11
,.1,
222!!111cos 12!4!2!
cos 2cos ,z z n n
n z
z n e z R z e z z z z n z z z z z n e c c z c z z z
e z z c c π
πππ+±<=+++++<∞-=-++
++<∞⎛⎫=+++< ⎪

⎭=函数距原点最近的奇点其距离就是函数在幂级数展开式的收敛半径,
即=收敛范围为由及幂级数的除法,可设
注意到与均为偶函数,其展开式中不含
项可知()()()2
32422
2420202424
11
1
11112!
!
2!4!2!
329
1,,,
2243291cos 224
2n
n n z z z z c c z z z z n n c c c e z z z z π==⎛⎫-+++
++=++
⨯-+++
+
⎪ ⎪⎝

===⎛
⎫=+++< ⎪

⎭于是比较同次系数得故
七.(10分)
证明:()[1]2πδω=F 2
1
[()]()tu t i πδωω
'=-
+F
()3[3]i t e ωδ--=F ()()[sin 2]22t i πδωδω=+--⎡⎤⎣⎦F
从而()()()()32
1
[]2()22i f t e i ωπδωπδωδωδωω
-'=-+++++--⎡⎤⎣⎦F。

相关文档
最新文档